

Surface Reflectance - BRDF

SIGGRAPH2008

· Bidirectional Reflectance Distribution Function

$$f_r(\omega_i \to \omega_o) = \frac{dL_o(\omega_o)}{dE_i(\omega_i)}$$

4-dimensional function: also written as

$$f_r(\theta_i, \phi_i, \theta_o, \phi_o) = \frac{dL_o(\omega_o)}{dE_i(\omega_i)}$$

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, and I. W.

Ginsberg, Geometrical Considerations and Nomenclature for Reflectance, Boulder CO: National Bureau of Standards, 1977.

BRDF

- · Radiance/irradiance ratio
 - Directional exitant radiance distribution
 - For each direction of incident irradiance

BRDF

- Radiance/irradiance ratio
 - Directional exitant radiance distribution
 - For each direction of incident irradiance

BRDF

- Radiance/irradiance ratio
 - Directional exitant radiance distribution
 - For each direction of incident irradiance

Properties of the BRDF

Energy conservation:

$$\int_{\Omega} f_r \cos \theta_o \, d\omega_o \le 1$$

· Helmholtz reciprocity:

$$f_r(\omega_i \to \omega_o) = f_r(\omega_o \to \omega_i)$$

Isotropy

· A BRDF is isotropic if it stays the same when surface is rotated around normal

• Isotropic BRDFs are 3-dimesional functions:

$$f_r(\theta_i, \theta_o, \phi_i - \phi_o)$$

Torrance-Sparrow BRDF • D term is distribution of microfacets (i.e., how many are pointing in each direction) • Beckmann distribution $D = \frac{e^{-[(\tan \beta)/m]^2}}{4m^2 \cos^4 \beta}$ β is angle between n and n n is halfway between n and n n is "roughness" parameter

Many additional effects could be incorporated into appearance functions: add 1 dimension for each Wavelength Fluorescence Time dependence Phosphorescence

Rest of This Tutorial A Review of Radiometry & Physical Models – Rusinkiewicz Principles of Acquisition – Zickler (Spatially Varying) BRDF Models – Lawrence From BSSRDFs to 8D Reflectance Fields – Lensch The Human Face Scanner Project – Weyrich Future Directions / Q&A

Outline

- 1. 5D: Homogeneous Reflectance (BRDF)
- 2. 7D: Spatially-varying Reflectance (SV-BRDF)
- 3. 9D: Subsurface Scattering (BSSRDF)
- 4. Calibration
- 5. Open problems

Balancing Needs

- 1. (Per-object) Acquisition Time
- 2. Accuracy and Precision
- 3. Cost
- 4. Generality: how broad is the class of surfaces being considered?

Homogeneous Reflectance

• BRDF: Five dimensional domain

$$f(\lambda, \vec{\omega_i}, \vec{\omega_o}) = f(\lambda, \theta_i, \phi_i, \theta_o, \phi_o)$$

• Isotropic BRDF: Four dimensional domain

$$f(\lambda, \theta_i, \theta_o, |\phi_i - \phi_o|)$$

BRDF: Measurement Scale

- One measures averages of the BRDF over finite intervals of surface area and solid angle.
- The measurement scale must be appropriate for the BRDF model to be valid (more on this later).

Four-axis gonioreflectometer Source Source Off-axis excoder gears Supple holder and turnshile Large ring bearing Militia ex al. 1000

Outline

- 1. 5D: Homogeneous Reflectance (BRDF)
- 7D: Spatially-varying Reflectance (SV-BRDF)
- 3. 9D: Subsurface Scattering (BSSRDF)
- 4. Calibration
- 5. Open problems

Spatially-varying Reflectance

- SV-BRDF: Seven dimensional domain $f(\lambda, \vec{x}, \vec{\omega_i}, \vec{\omega_o}) = f(\lambda, x, y, \theta_i, \phi_i, \theta_o, \phi_o)$
- Isotropic SV-BRDF: Six dimensional domain $f(\lambda,x,y,\theta_i,\theta_o,|\phi_i-\phi_o|)$

625,000,000 images

1° sampling:

>10⁹ MB

General Reflectance Properties

- SIGGRAPH200
- Isotropy, reciprocity, separability are commonly exploited
- Compressibility
 - Implicit in parametric approaches; used in non-parametric approaches as well
- · Spatial smoothness
 - Exploited in parametric (e.g., [Sato, Wheeler, Ikeuchi, 1997]) and non-parametric (e.g., [Zickler et al., 2006]) approaches
- Spatial regularity
 - Exploited in parametric (e.g., [Lensch et al., 2001], [Goldman et al. 2005]) and non-parametric (e.g., [Lawrence et al., 2006]) approaches

Some Open Problems

- Automatic scale selection
- Acquisition (inference) in complex lighting environments. [Dror 2001, Ramamoorthi and Hanrahan 2001]

Some Open Problems

- Automatic scale selection
- Acquisition (inference) in complex lighting environments. [Dror 2001, Ramamoorthi and Hanrahan 2001]
- SV-BRDF acquisition as an inference problem.
 What are the priors?
- · Increased spectral resolution
- Combined shape and reflectance acquisition

Summary

SIGGRAPH2008

- sparse/scattered data
- interpolation
- flexibility
- local minima

Summary

- sparse/scattered data
- interpolation
- · flexibility
- local minima

Summary

- sparse/scattered data
- interpolation
- flexibility/accuracy
- local minima

Summary

- · sparse/scattered data
- interpolation
- flexibility
- local minima

Future Directions

- higher-dimensional datasets
 - subsurface scattering / reflectance field
 - time-varying properties
 - etc.
- rigorous probabilistic framework
- measurement
 - synchronous shape + appearance
 - lowering calibration burden

Future Directions

- higher-dimensional datasets
 - subsurface scattering / reflectance field
 - time-varying properties
 - etc.
- rigorous probabilistic framework
- measurement
 - synchronous shape + appearance
 - lowering calibration burden

Future Directions

- higher-dimensional datasets
 - subsurface scattering / reflectance field
 - time-varying properties
 - etc
- rigorous probabilistic framework
- measurement
 - synchronous shape + appearance
- lowering calibration burden

Future Directions

- higher-dimensional datasets
 - subsurface scattering / reflectance field
 - time-varying properties
 - etc
- rigorous probabilistic framework
- measurement
 - synchronous shape + appearance
 - lowering calibration burden

Near-Field Reflectance Fields

SIGGRAPH2008

- Sequential Sampling
- Dual Photography
- Symmetric Photography based on *H*-matrices
- first methods for acquiring the global light transport in arbitrary scenes

- densely sampled 8D reflectance fields
- upsampling / interpolation
- dynamic near-field reflectance fields
- · interactive relighting
- · global illumination with reflectance fields
- theory on the complexity of reflectance fields

Thanks

- BMBF (FKC01IMC01)
- DFG Emmy Noether Program

http://mpi-inf.mpg.de/~lensch

