
1

2

There are two major classes of algorithms for extracting most kinds of

lines from 3D meshes. First, there are image-space algorithms that

render something (such as a depth map or cosine-shaded model), then

extract lines by doing some sort of image processing on the framebuffer

(for simple operations such as thresholding, there are often ways of

achieving the same effect using texture mapping, or vertex or pixel

shaders). The advantage of this kind of algorithm is that it can be fast,

easy to implement, and provides some notion of view-dependent level of

detail. A major disadvantage is that it makes it difficult to control the

appearance and stylization of the resulting lines.

A second class of algorithm operates in object space – on the model

directly. These algorithms tend to be a little more complex, and it is

more difficult to adapt them to take advantage of graphics hardware. On

the other hand, they provide good control over stylization.

Finally, there are hybrid (usually multi-pass) algorithms, which perform

a bit of processing in object space, but the lines ultimately show up only

in the frame buffer. These are much less general than the other kinds of

algorithms, and are specialized for e.g. contours.

3

Let’s start with occluding contours (or interior and exterior

silhouettes), and look at image-space algorithms. A very simple

technique is to render a lit version of the model (without color),

then perform a thresholding step: any region darker than a threshold

is set to black (or the line color), and anything above the threshold

is set to the background color. There are many ways to do this

thresholding step as part of the rendering, using pixel shaders,

texture mapping, environment mapping, etc.

4

One major problem with this algorithm is that the thickness of the

lines can vary, sometimes quite a bit. There are a few tricks to get

around this problem.

5

First, you can use a texture map indexed by n dot v, but use

mipmapping. The trick is to make the width of the black region in

the texture map the same width in all mipmap levels.

6

Another solution is to take advantage of the fact that, for a

constant-curvature region, you can determine how thick the lines

will be as a function of radial curvature. Then, the approximation

is to change the threshold depending on the square root of radial

curvature.

7

There’s a second, completely different, image-space algorithm

that’s possible. Now, instead of rendering n dot v, we render a

color that depends on depth (or just look at the depth buffer instead

of the color buffer). The image processing operation we have to do

here is more complicated: edge detection instead of just

thresholding. This is an interesting tradeoff: we have made the

rendering simpler, but the image processing more complex.

8

Let’s now move to object-space algorithms for contour extraction.

Recall that we talked about two possible definitions of contours on

polygonal meshes: contours along the mesh edges (separating front-

facing and back-facing faces), or contours within faces (zeros of

interpolated n dot v). For the first definition, a simple brute-force

algorithm is just to loop over all edges, and check whether each has

one adjacent frontface and one adjacent backface.

9

For the first definition, a simple brute-force algorithm is just to loop

over all edges, and check whether each has one adjacent frontface

and one adjacent backface.

This has the disadvantage that the contour, when viewed as a path

along mesh edges, can form loops.

10

The other definition involves computing n dot v at each vertex, then

looping through all faces of the mesh. For each face, you first ask

whether n dot v has a different sign at some vertex. If so, you

interpolate along edges connecting positive-(n dot v) vertices and

negative-(n dot v) vertices to find zeros, then connect the two

points with a segment.

12

Both of these object-space algorithms are brute-force: they require

looping over all the edges, vertices, and/or faces of the model.

There is a large body of work on acceleration techniques that try to

reduce running time. For the contours-within-faces case, one

popular technique is to construct a hierarchical data structure,

where each node stores a bounding cone of the normals below it.

At run time, the tree is traversed, and any nodes for which the cone

is entirely frontfacing or entirely backfacing can be pruned.

13

Another interesting acceleration technique involves the Gauss map.

As a preprocess, a data structure is built that represents the space of

possible directions (the space of directions conceptually

corresponds to a sphere, but usually a cubemap is easiest to work

with). For each edge, we compute an arc (shown in yellow)

between the directions corresponding to the normals of the two

faces touching that edge. Each direction intersected by this arc gets

a pointer back to the edge. At run time, we check all directions

corresponding to the normals perpendicular to the view: any arc

that intersects that circle of directions (shown in green) represents

an edge that is part of the silhouette (in practice, a superset of edges

is generated because of the discretization of the Gauss map, so

candidate edges must be verified).

14

A very different sort of acceleration technique, most suited to

interactive systems, relies on randomization. We pick random faces

on the mesh, and check whether they contain a contour. If so, we

follow the contour by walking to adjacent faces, eventually

extracting an entire contour loop. In order to improve the

efficiency of the random testing, we can test those faces that

contained a contour in the previous frame before resorting to the

random testing.

This algorithm, of course, is not guaranteed to find all the contours

unless we test all faces. However, it is very likely that all

significant contours will be found, and the reliance on temporal

continuity means that it is very likely that after a few frames it will

find everything.

15

Regardless of the details, all object-space contour finding

algorithms must deal with the problem of visibility. Although we’ll

look at some strategies for this later on, for now let us emphasize

the fact that there are two ways in which a contour can be invisible:

it can be occluded by a distant portion of the mesh, or it can be

occluded locally. The latter pieces of the contour can be identified

simply by checking the sign of the radial curvature, so at least part

of the visibility problem can be solved locally. Full visibility is

usually resolved using an algorithm such as ray tracing or z-

buffering.

16

Let’s look at one algorithm in the “hybrid” category. Imagine

doing a standard rendering pass, then keep the z-buffer on and

render just the backfaces slightly enlarged (which can be done by

actually changing the geometry, or by rendering the backfaces

using thick outlines). Around the contours, the second rendering

pass will “peek out” from behind the geometry rendered on the first

pass. This is a nice algorithm because it can be very fast (modern

graphics hardware can do it in one pass), and requires neither

additional data structures nor image processing. However, just as

with image-space algorithms, there is no control over stylization.

17

18

Here is your brain on contours. Here is your brain on suggestive

contours. Any questions?

19

Let’s move on to algorithms for suggestive contours. There are

three different definition, and each gives rise to a different

algorithm. The first definition, “contours in nearby views”, is

difficult to work with and requires a search over viewpoints.

20

Let’s move on to algorithms for suggestive contours. There are

three different definition, and each gives rise to a different

algorithm. The first definition, “contours in nearby views”, is

difficult to work with and requires a search over viewpoints.

21

The second definition, “local minima of n dot v”, gives rise to an

image-space algorithm in which an (n dot v)-shaded image is

rendered, and a “valley detection” filter is used to detect valleys of

intensity.

22

Finally, the third definition, “zeros of radial curvature (subject to a

derivative test)” naturally leads to an object-space algorithm.

23

This algorithm extracts loops where radial curvature is zero, using

either a brute-force approach or one of the acceleration techniques

we talked about…

24

Then, the derivative (in the projection of the view direction, which

we’ve been calling w) of the radial curvature is tested at each point

along the curve, and we reject regions where it’s negative.

25

Finally, we can stylize the lines however we want, such as this style

that fades out strokes as the derivative of curvature approaches

zero.

26

This algorithm can be augmented to throw out some of the unstable

lines.

27

The idea is that if, at an inflection corresponding to a zero of radial

curvature, the curvature is varying rapidly, that location is stable.

28

On the other hand, these shallow inflections are rather unstable…

29

The addition of the slightest bit of noise causes perturbations in the

suggestive contours, and might introduce new ones (or delete

existing ones). So, one way to prune strokes is to apply some

threshold to the magnitude of the curvature derivative, which

eliminates these shallow inflections.

30

We can derive this speed from the implicit function theorem, which

says that we have to look at both how quickly radial curvature is

changing with respect to camera motion (numerator), and how

quickly radial curvature is varying over the surface (denominator).

31

We can derive this speed from the implicit function theorem, which

says that we have to look at both how quickly radial curvature is

changing with respect to camera motion (numerator), and how

quickly radial curvature is varying over the surface (denominator).

32

Working out the math, we get this formula. Looking at the

individual terms, we can see that velocity will be largest, hence the

curves most unstable, when the terms in the denominator are zero.

These correspond to sin(theta)=0 (looking at the surface) and

gradient(kr)=0 (shallow inflections).

Conversely, when the terms in the numerator are zero we have the

maximal stability. This happens when cos(theta) is near zero (i.e.,

approaching a true contour), or when the Gaussian curvature is

small (approaching the parabolic lines). This is a mathematical

explanation of why suggestive contours (when considered over all

views) tend to hug the parabolic lines.

33

Here are a couple of examples of pruning according to the formula

for the speed (right), or according to a simpler formula that just

tries to avoid shallow inflections and lines seen head-on (center).

34

Very similar acceleration techniques to those used for contours can

be used for suggestive contours.

35

The performance of the randomized algorithm across a flythrough

involving several views is presented here. Using the lines from the

previous frame as seeds had a fairly large impact, while another

technique (walking “downhill” from the random seeds in search of

a zero of radial curvature) shows limited improvement. Overall,

very decent results can be obtained by testing 10% of the faces or

less.

36

Finally, there’s a way to use the graphics hardware to extract

suggestive contours, similar to the use of texture maps indexed by

(n dot v) to draw contours. The idea is to use a texture map with a

dark line in part of it, with the horizontal texture coordinate indexed

by radial curvature and the vertical coordinate indexed by the

derivative (possibly with some sin(theta) terms as well). The dark

part of the texture map will only be accessed if the radial curvature

is near zero and the derivative is greater than zero (or some

threshold). Note that in most cases the curvature and derivative

will have to be computed “by hand” at each vertex, and the correct

texture coordinates passed in.

37

Here’s a comparison of a few different algorithms. The first two

images come from the object-space algorithm, with and without

fading of strokes. The rightmost image was done using the

texturemap-based algorithm.

38

Finally, let’s look briefly at algorithms for computing ridge and

valley lines. Because these are defined in terms of high-order

derivatives, which are often noisy, a big challenge is in getting

good, robust estimates of these differential quantities.

39

A paper from last year achieved good results by computing the

derivatives using implicit function fits, then doing some filtering on

the resulting strokes.

40

Another interesting approach is to look for lines that are stable over

different scales of filtering. This algorithm actually operates on

unorganized point clouds, and doesn’t need a full mesh.

41

