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Abstract 
Omnidirectional video cameras are becoming 

increasingly popular in computer vision.  One family of 
these cameras uses a catadioptric system with a 
paraboloidal mirror and an orthographic lens to produce 
an omnidirectional image with a single center-of-
projection. In this paper, we develop a novel calibration 
model that we combine with a beacon-based pose 
estimation algorithm. Our approach relaxes the 
assumption of an ideal paraboloidal catadioptric system 
and achieves an order of magnitude improvement in pose 
estimation accuracy compared to calibration with an ideal 
camera model. Our complete standalone system, placed on 
a radio-controlled motorized cart, moves in a room-size 
environment, capturing high-resolution frames to disk and 
recovering camera pose with an average error of 0.56% in 
a region 15 feet in diameter.  

 

1. Introduction 
Recently, we have seen a surge in the use of 

omnidirectional cameras for applications such as 
telepresence, 3D reconstruction, and autonomous 
navigation [3, 4, 17, 18, 20, 21, 22, 23].  

Omnidirectional images can be created by several 
approaches [9, 10, 11, 12, 13]. Nayar [13] proposes a 
catadioptric system for producing omnidirectional images 
with a single center-of-projection (COP). In this design, we 
view a convex paraboloidal mirror (i.e. the parabola’s focal 
point is behind the mirror) with an orthographic projection. 
The full hemisphere of the field-of-view (FOV), namely 
360 by 180 degrees, in front of the mirror is reflected onto 
an image plane parallel and in front of the mirror. Using 
simple transformations, we can generate cylindrical and 
planar re-projections of any part of the FOV, except for an 
area occluded by the mount near the image center. 

In practice, it is difficult to achieve a perfect 
orthographic projection, mainly because of the aperture 
problem. One approach uses a telecentric lens to create 

almost ideal orthographic projections but severely limiting 
the placement and size of the mirror. Another possibility 
uses a zoom lens combined with magnification lenses to 
approximate an orthographic projection but this approach 
is error prone. Unfortunately, both solutions cause 
substantial errors in pose estimation.  

Alternative mirror configurations have also been 
investigated to ease the orthographic projection 
requirement. For instance, Bruckstein [5] proposes using 
two parabolic mirrors. Similar to the single mirror design, 
the incoming rays bounce off a convex paraboloidal mirror 
but then are reflected off a second concave paraboloidal 
mirror centered beneath the first mirror. The reflected rays 
converge at the second mirror’s focal point. A camera, with 
a standard perspective lens, is placed at the focal point. 
The system relies on accurate computation of the effective 
COP for the camera and then on precise localization of the 
second mirror’s focal point. Errors in the localization of 
the COP cause the camera to capture rays that correspond 
to slightly non-parallel rays reflected off the first mirror. 

Hyperboloid mirrors can also be used [2, 16]. The 
reflection surface of these mirrors (purposefully) converge 
rays to a point in front of the mirror. This class of mirrors, 
which is not so commonly fabricated, also suffers from the 
same problem -- we must assume to be able to precisely 
locate the camera at the converging point.  

We use an omnidirectional camera based on the design 
proposed by Nayar [13] and relax the assumption of an 
ideal projection system for the camera (i.e. perfect 
orthographic projection and perfect placement) and instead 
augment the calibration model for paraboloidal 
catadioptric cameras to compensate for mild perspective 
projection in addition to radial distortion and mirror 
misalignment. Consequently, we are able to produce 
significant improvements in the accuracy of pose 
estimation. 

Our objective is to accurately determine the position and 
orientation of an omnidirectional camera moving within an 
average size room, ideally with minimal set up time and 



   
 
 
 

without being too intrusive in the 3D environment. We use 
our new calibration model together with a robust beacon-
based pose estimation algorithm to compute the camera’s 
absolute position and orientation while moving at a fixed 
eye height, inside a region approximately 5 meters in 
diameter. 

For static scenes, we can loosely group pose estimation 
algorithms into two categories. The first category uses 
frame-to-frame changes (e.g., optical flow) to determine 
the pose offset from one frame to the next. The second 
category recognizes features of known 3D location and 
every frame computes pose from the projected position of 
these features. A large body of literature exists on 
approaches for standard cameras. Our algorithm falls in the 
second category and takes advantage of the 
omnidirectional view of the camera.  

Gluckman and Nayar [7], Yagi et al. [22], and Kang [8] 
have proposed alternative catadioptric pose estimation 
methods. These methods depend on frame-to-frame 
changes, either optical flow [7, 22] or feature tracking [8], 
to measure ego-motion. With these approaches it is 
difficult to obtain robust and accurate absolute pose in 
room-size environments. Our system (although not self-
calibrating, such as in Kang [8]) allows recording multiple 
discontinuous image sequences and producing consistent 
absolute pose. Furthermore, our approach extends to multi-
room environments, as described in the future work 
section. 

Figure 1 shows a picture of our camera setup. We use a 
camera based on the commercial S1 design of 
CycloVision/Remote Reality Incorporated [24]. The 
camera is placed on a battery-operated motorized cart 

together with a computer, frame grabber, and fast disk 
system to store the captured video. The cart is radio-
controlled. First, we apply our calibration procedure to the 
catadioptric system. Then, we place a pair of posts, each 
equipped with small, bright light bulbs (LEDs are not 
sufficiently visible at 5 meters) in the corner of the 
trackable region (e.g., room). Given our calibrated model, 
we simply need to measure the distance between the posts 
and then the system triangulates its position and orientation 
with an average pose error of 0.5%, an order of magnitude 
improvement over the average pose error of 5% we 
observed when assuming an ideal catadioptric system. 

The rest of the paper is organized as follows. Section 2 
and 3 describe our camera model and calibration 
procedure. Section 4 presents our pose estimation 
algorithm. Results are listed in Section 5. We compare our 
results with a theoretical error model in Section 6. Finally, 
we conclude and outline future work in Section 7. 

2. Camera 

2.1 Ideal Model 
For an ideal imaging system, the camera model is 

simple. We obtain the mirror center and the mirror radius 
either manually or by using an automatic algorithm, such 
as Geyer and Daniilidis [6]. With this information, we 
quickly determine the distance d between the mirror's ideal 
focal point and the projection of a 3D point p onto the XY-
plane (i.e., the mirror’s reference plane). 

Figure 2 illustrates the ideal camera model. A given 3D 
point p=(px, py, pz) reflects off the mirror at m=(mx, my, mz) 
and projects onto the image plane at i=(ix, iy). Since the 
mirror is symmetric about the z-axis, we replace m with 
(mr, θ, mz) and p with (pr, θ, pz), where mr = (mx

2+my
2)1/2, 

pr = (px
2+py

2)1/2, and θ is the angle of the vectors with the 
x-axis (because of circular symmetry, we can ignore θ for 
the remainder of this discussion). Since we know the 
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Figure 2. Ideal Camera Model. We depict a 
paraboloidal catadioptric system and an ideal setup 
for computing distance between the mirror’s focal 
point and a 3D point. 

Figure 1. Camera Setup. The paraboloidal mirror is
attached to the base of an acrylic dome. The dome is
fastened to the video camera. The entire camera is on
a radio-controlled motorized cart. 



   
 
 
 

profile of the mirror, namely the parabola mz = mr
2/(2r) – 

r/2 (where r is the mirror radius), we trivially compute (mr, 
mz) from a projected position (ix, iy). Then, we use similar 
triangles to obtain d = (pzmr)/mz. With at least two such 
points, we can triangulate the camera's position. 
Unfortunately, this scheme does not yield very accurate 
results. In fact, we observed pose estimation errors close to 
45 cms within our trackable region. 

2.2 Our Model 
Our camera model does not assume a perfect system. 

Instead, we compute the convergence of the reflected rays 
(which is equivalent to determining an effective focal 
length), the distance between the mirror and the image 
plane, radial distortion, and minor mirror misalignment 
(e.g., unknown lateral mirror translation and unknown 
mirror rotation with respect to the mirror reference plane). 
In addition, because of the mild perspective projection, the 
mirror reflects objects that are slightly behind the reference 
plane of the mirror. We provide a formula to compute the 
subset of the mirror that exactly reflects a hemisphere of 
the FOV.  

Figure 3 depicts our camera model. The points p, m, and 
i are equivalent to those of Figure 2. In our model, we 
assume all reflected rays converge at a distance H from the 
mirror’s focal point. Basic optics tells us the incident angle 
equals the reflected angle. We express this as ( n̂ is the 
surface normal at m): 
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For a given 3D point p, a mirror radius r, and a 
convergence distance H, the free variable in this equation 
is mr. We group terms and rewrite this polynomial 
expression as: 
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We then solve this 5th degree polynomial for mr [15] and 
choose the real solution in the range [0, r] and compute mz 
using the parabola equation. 

With this new information, we more accurately 
determine the distance d between the mirror’s ideal focal 
point and the XY-plane projection of the 3D point p. We 
extend the incident ray (i.e. the ray from the 3D point to 
the mirror) to intersect the mirror reference plane. Because 
of the perspective projection, the ray overshoots the 
parabola’s focal point by c=mz/tan(α)-mr, where α is the 
angle of ray with the XY plane. The final value for d is 
now: 

d = (pzmr)/mz – mz/tan(α) + mr           )3(  

The radius r180 of the mirror that exactly reflects 180 
degrees can be obtained by plugging pz=mz=mr

2/(2r)–r/2 
into (2). This simplifies the expression to: 

))4(( 2
180 rHHrHrr −−+=           (4) 

3. Calibration 
Our camera calibration procedure consists of three 

steps: (1) measure numerous 3D points and their 
corresponding projected positions on the image plane, (2) 
unreflect the 3D data points using a convergence distance 
guess so as to make the catadioptric system fit into a 
pinhole camera model [19], and (3) use an optimization 
loop [15] to best fit the camera’s internal and external 
parameters to the calibration points. As we change the 
convergence distance guess during the optimization, we 
continuously recompute the unreflected 3D position of all 
the data points. Figure 4 illustrates how we unreflect the 
points. At the end, the optimized parameters are substituted 
back into the model. 

Our camera model, like Tsai’s [19], has eleven variable 
camera parameters (5 internal and 6 external). We 
determine the mirror center manually (see Section 5.1). 
Below we summarize the remaining nine parameters: 
• Focal length (f): this is equivalent to the convergence 

angle of the reflected rays. If the reflected rays were 
exactly parallel, this value would go to infinity. Also 
note, that from the final convergence distance, we 
compute the subset of the mirror that reflects 180 
degrees of the FOV. 

• Camera-to-world translation (tx,ty,tz): this represents 
the offset between the image plane and mirror 
reference plane. 

• Camera-to-world rotation (rx,ry,rz): this represents the 
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Figure 3. Our Camera Model. We show a paraboloidal
catadioptric system that accounts for the (mild amount of)
perspective projection that occurs in a practical system.
This allows us to more accurately compute the distance
between the mirror’s ideal focal point and a 3D point. 



   
 
 
 

rotation of the mirror reference plane with respect to a 
assumed world coordinate frame. This does not 
account for any rotation of the mirror itself with 
respect to the lens. 

• Radial lens distortion coefficient (k) and uncertainty 
scale factor in the horizontal direction (sx) are carried 
over from a standard camera. 

4. Pose Estimation 
Our pose estimation algorithm uses beacons placed in 

the environment to triangulate camera position and 
orientation. We place a pair of posts, equipped with small 
bright light bulbs, in the corner of the trackable region 
(Figure 5). For our current pose estimation scheme, we 
only need one bulb per post, but we place two for 
redundancy. The small light bulbs are easy to track and 
their projection is at least a few pixels wide at a distance of 
15 to 20 feet away. We assume the ground plane is 
relatively smooth and that the mirror stays approximately 
parallel to the ground. We arbitrarily place the origin of the 
world coordinate frame at post 1, at the same height as the 
mirror reference plane, and align the +x axis with the 
vector from post 1 to post 2. This approach combined with 
our calibrated camera model and omnidirectional view 
computes pose quite accurately.  

4.1 Computing Position 
We obtain the camera’s position by solving an over-

determined system. At setup time, we measure the length 
d0 of the vector between the two posts. At run time, for 
each captured frame (see Figure 6), we compute the length 
of the vectors from the mirror's ideal focal point to the 
posts (d1 and d2) and the angle A between the vectors from 
the focal point to the posts. These three vectors and angle 
form a triangle. We fit the values into a triangulation and 
obtain the camera’s position. 

Our first task is to measure the distance in the XY plane 
from the focal point to each of the posts. Since we have 
constructed the motorized cart and the posts, we measure 
their heights once. For each captured frame, we compute 
the center-of-mass of each bulb and then input the bulb’s 
image position into the equations of Section 2.2. 
Afterwards, we use a weighted average of the distances to 
each bulb. We give more weight to the bottom bulb 
because an image produced by a paraboloidal mirror more 
accurately samples the environment towards the middle of 
the image (bottom of the FOV) than the scenery towards 
the border of the image (near the horizon of the FOV). 
Needless to say, the precision ultimately depends on the 
overall pixel resolution. In Section 6, we discuss system 
accuracy issues. 

Our next task is to compute the XY-plane angle between 
the posts. To accomplish this, we average for each post the 
vectors from the mirror center to each of the bulbs. Then, 
we compute the projected angle A between the two vectors. 

Our final task is to compute the camera's position. The 
cosine rule gives us a relationship between the three sides 
of a triangle (d0, d1, d2) and one angle (A) of a triangle. We 

i2
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mirror

image plane

p0 p1

m0 m1
m2

p0' p1'

p2'

i1i0

Figure 4. Calibration Procedure. We perform an 
optimization loop over the camera model’s parameters. 
We fit the calibration points by continuously unreflecting 
the points using the equations of Section 2 and the 
current convergence distance guess. 

Figure 5. Example Pose Estimation Setup. The cart 
is placed inside an example environment for calibration 
and testing. The posts, outlined by boxes in the figure, 
are placed in the corners of the trackable region. 



   
 
 
 

assume the ratio of d1 to d2 is similar to the ratio of their 
errors (i.e., shorter distances have smaller errors). Thus, we 
multiply each distance by a scalar t and substitute the new 
distance values back into the cosine rule and obtain: 

Adddd
dt

cos2 21
2
2
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1

2
0

−+
=           (5) 

Now that the three sides and the angle of the triangle 
agree, we compute camera position (x, y). Figure 7 
illustrates the configuration. We also need to determine if 
the camera is on the positive side (S=1) or the negative 
side (S=-1) of the x-axis. To this end, we compute in 
image space the dot product between the normal of the 
vector to post 1 and the vector to post 2. The sign of the 
product tells us on which side the camera is located. The 
following expressions summarize how we compute 
position given d0, d1, d2, t, and S: 
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4.2 Computing Orientation 
We compute the camera's orientation in the XY plane by 

measuring the angle between the world coordinate frame's 
+x axis and the image plane's +x axis. Figure 7 shows how 
to compute orientation. Using the distance values di, we 
obtain the additional angles B and C of the triangle. If the 
image x-axis is aligned with the world x-axis, then angle D 
equals B and E equals C. In general, D=B+Ω and E=C-Ω, 
where Ω is the rotation of the image with respect to the 
world x-axis. For each post, we compute the angles D and 
E in image space and use a simple averaging of the 
resulting Ω values to obtain the final camera orientation.  

5. Implementation and Results 

5.1 Camera 
Our panoramic camera uses a high-resolution 3-CCD 

color video camera (JVC KY-F70, 1360x1024 progressive 
pixels @ 7.5Hz) and a mirror and lens-system obtained 
from a commercial S1 unit. We have also used a NTSC-
resolution 3-CCD color video camera (Hitachi HV-D25, 
640x480 interlaced pixels @ 30Hz). The acrylic dome was 
machined to ensure the mirror is perpendicular to the 
camera axis.  

To calibrate the camera, we first perform a few 
empirical measurements. We place the mirror reference 
plane at a known height and slowly raise a marker placed 
at a distance until its reflection falls off the edge of the 
mirror. Then, we measure the marker’s height and the 
distance from the mirror to the marker. This gives us a 
rough approximation of the convergence of the reflected 
rays. Next, we measure the diameter and height of the 
mirror. This allows us to verify that the mirror’s focal point 
is indeed in the middle of the mirror and on the mirror 
reference plane (height should equal ¼ of the diameter). 
Using a captured frame, we fit a circle to pass through 20 
approximately evenly sampled locations along the mirror’s 
edge and obtain the mirror’s center coordinate and radius. 

5.2 Calibration 
We create calibration data points by moving the cart 

around a room size environment and capturing frames 
containing projected points from known 3D locations. We 
obtain the calibration points by placing the light posts in 
two corners of the environment and moving the cart to 20 
approximately evenly and randomly distributed locations, 
thus obtaining a total of 80 calibration points. For each 
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world
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world
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Figure 7. Position and Orientation. (a) To compute 
position (x,y), we use the (adjusted) distance values di
and the cosine rule. (b) To compute orientation Ω, we 
compute the angle between the image’s x-axis the world 
space x-axis.  

Figure 6. Captured Frame. This is an example frame 
that could be used for a variety of computer vision 
algorithms. The bulbs are used to determine the distance 
to each post and the angle between the vectors from the 
mirror’s center to each post. 



   
 
 
 

point, we record its projected image position and its 3D 
world location. We compute the 3D location by measuring 
the distance between the camera and the posts using plumb 
lines and tape measures. We estimate our empirical 
measurements to be accurate to within 1 cm.  

We plug all the values into the calibration procedure 
(Section 3) and run an optimization [15] over the 9 camera 
model parameters (takes a few seconds on an SGI Indigo2 
with a MIPS R4400 @ 250 MHz). We obtain fixed 
internal camera parameters, such as the CCD chip size and 
actual number of sensor elements in the CCD array, from 
the chip specifications. The calibration procedure 
converges very well for both cameras. By fitting the 
original calibration points back into the camera model, we 
observe that the high-resolution camera converges to a 
maximum deviation of 1.7 mm from any calibration point 
and the NTSC-resolution camera converges to a maximum 
deviation of 5 mm. For the high-resolution camera, 
calibration obtained a convergence distance H=20.67 cms 
(α=5.59 degrees). 

In order to maximize the mirror image-size in the frame, 
we use a two-pass approach. We run the calibration once, 
conservatively adjust the mirror and lens to maximize the 
screen-space used by the subset of the mirror that reflects 
180 degrees, and then run the calibration procedure again. 

5.3 Pose Estimation 
For each tracking session, we place the posts in the 

corner of the trackable region and measure the distance 
between the posts. The heights from the ground plane to 
the mirror reference plane and to each bulb are determined 
once (both posts are identical) and used for all tracking 
sessions. We initialize pose by clicking on the bulbs in the 
first captured frame and subsequently using a simple 

threshold and center-of-mass computation to track the 
bulbs. For distances up to 5 meters, the bulbs always 
appear as high-intensity circular blobs, 5 to 12 pixels wide. 
Additional lights and specularities can confuse the tracking 
algorithm but we found the bulbs to work very well in our 
indoor environments. For the high-resolution camera, we 
verify position accuracy by empirically measuring the 
distance between the mirror’s center and the posts. Our 
pose estimation experiments used scale values t ranging 
approximately from 0.9 to 1.1 (other values, such as c and 
r180, can be computed from H or α). 

We show the results of three pose estimation approaches 
in Figure 8. First, we show the pose estimation results if we 
were to assume an ideal catadioptric system (average error 
is 21.4 cms). Second, we show the results of an ideal 
system but we fit the computed distance measurements and 
the measured angle together using equations (5) and (6) 
(average error is 17.4 cms). Third, we show the pose 
estimation error of our approach (average error is 2.8 cms). 
For our test room of 5 meters in diameter, our method has 
a mean error of 0.56% of the room diameter and a standard 
deviation of 0.48% of the room diameter. 

6. System Accuracy 
To better understand the limiting accuracy of our 

system, we formulate an approximate theoretical error 
model. In a (catadioptric) pose estimation system the 
precision ultimately depends on the accuracy of the 
calibrated camera model and on the resolution of the 
imaging device. If we assume the calibrated camera model 
to be fairly accurate, then the relationship between the size 
of the environment and the resolution of the camera 
determine the majority of the error.  Figure 9 shows 
approximate error surfaces as a function of mirror radius R 
(in pixels) and diameter D (in cms) of the trackable region. 
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Figure 8. Pose Estimation Error. We show the pose
estimation error for three approaches: our (calibrated)
model, an ideal model, an ideal model with distance
values adjusted in order to fit the pose triangulation
together. The sample locations are approximately
evenly distributed throughout the trackable region. 

Figure 9. Theoretical Error Model. These surfaces 
show the limiting accuracy of our pose estimation 
method, for varying mirror radii R and for varying 
environment sizes D. The upper surface is due to 
inaccurate distance to illuminated post estimation and 
the lower surface is due to inaccurate measurement of 
the angle between vectors to the posts. 



   
 
 
 

The vertical axis represents position error (in cms). The 
upper surface is the error de as a consequence of inaccurate 
distance estimation to the illuminated posts. The lower 
surface is the error ae as a consequence of inaccurate 
measurement of the angle between the vectors to the posts.  

Figure 10 shows the slice of the theoretical error 
surfaces for a system with R=500 pixels, such as ours. Our 
errors are in the same range as the limiting accuracy. In 
particular, our average position error of 2.8 cms is about 
the same as the limiting accuracy of roughly 3 cms (for 
D=500 cms). 

How well we can estimate the distance to each post 
depends on the vertical angular accuracy. In Figure 11(a), 
we depict the vertical profile of the mirror.  If we 
(conservatively) assume uniform sampling along the image 
plane and the difference between the camera height and the 
bulb height is P cms then the distance error de (in cms) is: 
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The precision of the measured angle between the vectors 
to each post depends on the horizontal angular accuracy. 
The angular resolution of the system is best at the outer 
circumference of the mirror (Figure 11b). Thus, we can 
conservatively measure the distance error ae (in cms) as a 
consequence of angular error by: 

)1tan(
2
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We interpret these distances as the radius of a circle of 
uncertainty around the mirror’s center. As shown in Figure 
9, the distance error ranges from under 1 cm of error to 
over 40 cms of error for a low-resolution image (R=100 
pixels) in a large trackable region (D=1000 cms). For 
Figures 9 and 10, we assume a reasonable value of P 
equals 150 cms.  

7. Conclusions and Future Work 
We have presented a camera model, calibration 

procedure, and pose estimation algorithm for a 
paraboloidal catadioptric system. Our model relaxes the 
requirement of a perfect orthographic projection, integrates 
radial distortion correction, and compensates for (minor) 
mirror misalignment. Our real-time system very accurately 
recovers the position and orientation of an omnidirectional 
camera moving in an eye height plane within a room-size 
environment. The pose estimation method has a brief setup 
time and does not significantly disturb the surrounding 
environment. We achieve an order of magnitude 
improvement over the ideal system. Furthermore, we 
present a theoretical error model comparing our results to 
the limiting accuracy of the system. 

The captured omnidirectional images are used for a 
variety of computer vision and computer graphics 
applications that require accurate camera pose. The 
degrees of freedom in camera movement is sufficient for a 
large class of walkthrough-style applications. For instance, 
our system is currently used as part of a research effort for 
virtual walkthroughs of existing indoor environments [1]. 

In the future, we would like to extend the method to 
include pitch, roll and changing camera height. The two 
bulbs per post setup is sufficient to detect the presence of 
pitch, roll, and changing eye height, although the recovered 
values might not be sufficiently accurate. Robustness and 
accuracy can be further increased by more posts and bulbs, 
but at the cost of obstructing the environment to capture. 
We are also investigating expanding our pose estimation 
algorithm to multi-room environments by exploiting 
similarities with the classical art gallery problem [14]. 
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