
Supplementary Material for
The Generalized PatchMatch
Correspondence Algorithm

Connelly Barnes1, Eli Shechtman2, Dan B Goldman2, Adam Finkelstein1

1Princeton University, 2Adobe Systems

1 Overview

In our submission, we elided less important details from the sections on k-nearest
neighbors, enrichment, and the parallel tiled algorithm (Sections 3.2, 3.3, and
3.6, respectively, of the submission), and referred the interested reader to the
supplementary material.

Therefore, the supplementary material addresses the details of these three
sections. First, we discuss details of the k-nearest neighbors algorithm. We in-
clude a description of the ten different alternative algorithms that we compared
our heap algorithm against (Section 2), and offer additional benchmarks compar-
ing our algorithm, kd-tree, and FLANN (Section 3). Second, we discuss different
variants of the enrichment algorithm beyond the forward and inverse enrichment
algorithms mentioned in the submission (Section 4). Finally, we demonstrate the
roughly linear speed-up obtained by our parallel tiled algorithm on a multicore
machine (Section 5).



2 Connelly Barnes, Eli Shechtman, Dan B Goldman, Adam Finkelstein

2 Variants of k-nearest neighbors

In our submission, we described a heap algorithm for finding k-nearest neighbors.
The heap algorithm generally outperforms the ten alternative k-NN algorithms
that we compared against, as well as kd-tree and FLANN, so we suggested
it is a good algorithm for a wide variety of problems requiring image patch
correspondence. Here we describe these ten alternative algorithms. The relative
efficiency of these algorithms, as well as further comparisons with kd-tree and
FLANN are shown in Figure 1. The k-NN algorithms are as follows:

Heap. As a reminder, the heap algorithm stores a heap of k nearest neighbors
at every patch position. During propagation, we improve the k nearest neighbors
at the current position, by exhaustively testing each of the k nearest neighbors
implied by the adjacent patches to the left or above (or below or right on even
iterations). If any candidate is closer than the worst nearest neighbor currently
stored at (x, y), the worst nearest neighbor is replaced with the candidate. This
can be done efficiently with a max-heap, where the heap stores the patch distance
D. The random search phase works similarly: n samples are taken around each
of the k nearest neighbors already in the heap, giving nk samples total. The
worst element of the heap is evicted if the candidate’s distance is better.

Fig. 1. Upper left: Comparison of variants of our k-NN. This is similar to Figure 2 left
of our submission, except the images are sampled at 0.1 MP instead of 0.2 MP. The
other three graphs show that our k-NN outperforms kd-tree by factor of roughly 3-10,
and FLANN by a factor of roughly 1.4-7, depending on k value and resolution. These
plots are averaged over the dataset of 36 images.



Title Suppressed Due to Excessive Length 3

Heap algorithm with fewer P or RS operations. The previous heap
algorithm can be modified to only propagate or random search on one element,
instead of all elements. For propagation, one can examine only the adjacent
nearest neighbor with smallest distance (denoted “P best” in Figure 1) or
choose an element at random as a candidate for propagation (denoted “P
random”). Likewise, in random search, one can randomly sample around the
nearest neighbor with smallest distance (denoted “RS best”) or sample around
a randomly chosen nearest neighbor (denoted “RS random”). Finally, one could
run propagation or random search on the top m nearest neighbors, where m
is randomly chosen uniformly between 1 and k (denoted “P varying” and “RS
varying”). As shown in Figure 1, these strategies are slower than the original
heap algorithm.

Use the 1-NN algorithm to find k-NN. One can use the original
PatchMatch algorithm to find k-NN. One strategy is to retain all of the candidate
nearest neighbors sampled by the algorithm in a list, and take the top k of these,
after partial sorting of the list (denoted “List 1-NN”). Another strategy is to run
the 1-NN algorithm k times, with each run constrained so that nearest neighbors
cannot be equal to any of the previously chosen nearest neighbors (denoted
“Run 1-NN k times”). Again these strategies are slower than the original heap
algorithm.

Changing k during iterations. One can start on iteration 1 with a number
of nearest neighbors k0, and after half of the iterations are completed, increase or
decrease this to the final desired number of nearest neighbors k, either dropping
the worst elements of the heap, or adding uniform random elements as needed.
We tried increasing from a small number of nearest neighbors k0 = k/2 (denoted
“Increase k”), and decreasing from a large number of nearest neighbors k0 = 2k
(denoted “Decrease k”). Again these algorithms are slower than the simple heap
algorithm.

3 Comparison of our k-NN against kd-tree and FLANN

In Figure 1, the upper-right and lower plots give additional comparisons of the
speed of our algorithm against kd-tree and FLANN. These plots are similar to
Figure 2 left in our submission, however they vary the number of neighbors
from k = 4 to k = 64, and the image resolution from 0.3 to 1.0 megapixels.
We find that for equal errors, our k-NN outperforms kd-tree by a factor of
roughly 3-10, and FLANN by a factor of roughly 1.4-7, depending on k value
and resolution. These plots are generous to the competing algorithms, because
they tune all parameters of the competing algorithms, whereas we only varied
the number of iterations of our algorithm. The “FLANN” data points indicate
a dense random sampling of the FLANN parameter space, and the “FLANN-
optimize” curve indicates that the simplex method included in FLANN was used
to tune the algorithm. These data points exclude the overhead time of the tuning
optimization. Note also that the plots in Figure 1 do not include enrichment, so
the performance gap becomes greater when enrichment is employed.



4 Connelly Barnes, Eli Shechtman, Dan B Goldman, Adam Finkelstein

198

199

200

201

202

203

204

205

206

0 10 20 30 40 50 60

A
ve

ra
ge

 E
rr

o
r

Time [sec]

Variants of Enrichment
k=16, 0.1 Megapixel

Heap Alone

Forward Enrichment (f^2)

Inverse Enrichment (f^-1)

Forward + Inverse Enrich. (f^-1 + f^2)

Forward Enrich. (f^2), O(k)

Forward Enrich (f^3), O(k)

Forward Enrich. (f^4), O(k)

Inverse Enrich. (f^-2)

Fig. 2. Effect of different variants of enrichment on convergence. This is the same as
Figure 3 left of the submission, but it includes more variants. Here O(k) indicates
that the O(k) time algorithm was used. The fastest algorithm overall is the f−1 inverse
enrichment followed by the f2 forward enrichment. This plot was averaged over a subset
of the 36 images in the dataset.

4 Variants of enrichment

In Section 3.3 of our submission, we discussed an optimization technique
for further improving PatchMatch performance: enrichment. As a review,
enrichment is defined as the propagation of good matches from a patch to its
k-NN, or vice versa. We call this operation enrichment because it takes a nearest
neighbor field f and improves it by considering a “richer” set of potentially good
candidate matches than propagation or random search alone.

In our submission we introduced two types of enrichment, in the special case
of matching patches in image A to other patches in the same image. Here we
elaborate on the different possible variants of enrichment. We show in Figure 2
that the simplest forward enrichment algorithm (f2) and inverse enrichment
algorithm (f−1) generally perform best.

Forward enrichment uses compositions of the function f with itself to
produce candidates for improving the nearest neighbor field. The canonical case
of forward enrichment is f2. That is, if f is a NNF with k neighbors, we construct
the NNF f2 by looking at all of our nearest neighbor’s nearest neighbors: there
are k2 of these. The candidates in f and f2 are compared and the best overall are
used as an improved NNF f ′. If min() denotes taking the top k matches, then we
have: f ′ = min(f , f2). Alternatively, higher orders of the function can be used,
such as f3, f4 and so forth. One problem is that simplest enrichment algorithm
takes O(k2) time to find distances to the k2 neighbors, while the higher order
algorithms take O(k3), O(k4) time, thus for high numbers of neighbors k the
algorithms do not scale well. Therefore we propose two variants of enrichment



Title Suppressed Due to Excessive Length 5

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Sp
e

e
d

u
p

Number of Cores

Speedup vs Number of Cores

Fig. 3. Approximately linear speedup of parallel algorithm with increasing number of
cores. We attribute deviations from linearly to cache effects.

that take O(k) time: we can either take k random samples from the function
fn, or we can take the top n

√
k elements of f before computing fn. As shown

in Figure 2 these alternative algorithms generally underperform the simplest f2

enrichment algorithm.
Similarly, inverse enrichment walks the nearest-neighbor pointers back-

wards to produce candidates for improving the NNF. The canonical algorithm is
f−1, representing the multi-valued inverse of function f . The improved NNF is
given by f ′′ = min(f , f−1). As before, we can consider higher inverse powers of f ,
such as f−2 or f−3. These functions have varying numbers of neighbors at each
offset, but averaged over the domain, will have k2 or k3 neighbors, respectively,
per patch, therefore, the same strategies for reducing running time to O(k) can
be applied to inverse enrichment. As shown in Figure 2, the simplest f−1 inverse
enrichment outperforms the alternatives, when it is coupled with f2 forward
enrichment (interestingly, the f−2 inverse enrichment slightly outperforms f−1

for large numbers of iterations, however, this performance advantage disappears
when it is combined with forward enrichment).

5 Speed-up for parallel tiled algorithm

We tested the parallel tiled algorithm, described in Section 3.6 of the submission,
on two 8 core machines. On one machine we obtained a slightly sub-linear
speedup. On the other machine we obtained a slightly super-linear speedup,
as shown in Figure 3. We attribute the variation in speed-up to cache effects.

One implementation detail of the parallel tiled algorithm is that resource
conflicts can occur where information is shared between adjacent nearest
neighbors during propagation. In particular, it is possible for the bottom row
of a tile to be written while the top row of the next tile is using the data for



6 Connelly Barnes, Eli Shechtman, Dan B Goldman, Adam Finkelstein

propagation (or vice versa on even iterations, where scanlines are processed
bottom-to-top). Therefore, as a special case, we write back the last row of
each tile only after the critical section that is used to synchronize the tiles.
(Alternatively to avoid this synchronization issue, on an n core machine, one can
simply split the input into 2n tiles vertically, and process even tiles in parallel,
followed by odd tiled in parallel.)

6 Discussion

We have illustrated that our heap algorithm generally outperforms ten other
algorithms based on PatchMatch, as well as kd-tree and FLANN, for various
parameter settings. We have also discussed other variants of enrichment, and
demonstrated that the simple forward (f2) and inverse (f−1) enrichment algo-
rithms are good choices for accelerating convergence. We finally demonstrated
that the algorithm can be further accelerated on multicore architectures, with
a roughly linear speed-up on an eight core machine. We believe these proper-
ties show that our algorithm is a flexible and efficient tool for dense, global
correspondence problems.


