
Merge2-3D: Combining Multiple Normal Maps with 3D Surfaces

Sema Berkiten
Princeton University

berkiten@princeton.edu

Xinyi Fan
Princeton University

xinyi@princeton.edu

Szymon Rusinkiewicz
Princeton University
smr@princeton.edu

Data Acquisition

Figure 1. Left: the multi-light capture setup for photometric stereo. Right: NextEngine laser scanner used for 3D acquisition.

Initial alignment
nSIFT: first two columns show detected nSIFT keypoints with their orientations of the real normal

map and the best-matched rendered normal map; and the last columns show the matches between the
real and the best-matching rendered normal map.

Real normal map Rendered normal map Matches

Real normal map Rendered normal map Matches

Fine Alignment
Figure 2 shows the value of the energy function over time, for two different models. Restarts are

marked with vertical dashed lines. At the beginning and end, and at some restarts, we visualize the
remaining misalignment: the normal map is rendered in red, while the mesh is in blue. We observe that
the energy drops quickly during the first several iterations, eventually converging after 2–3 restarts.

0 100 200 300 400 500 600 700 800

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Nelder Mead Iteration

E
n

er
g

y

0 100 200 300 400 500 600 700

1.8

2

2.2

2.4

2.6

2.8

3

3.2

x 10
5

Nelder Mead Iteration

E
n

er
g

y

Figure 2. Optimized energy as a function of Nelder-Mead iterations for a scarab model (scanned with a laser scanner) and a penguin model (acquired
with MS Kinect). False-colored visualizations of the normal maps (in red) blended with the 3D models (in blue) are shown below each graph for the initial
alignment, after each restart, and the final alignment from left to right. (Restart positions are marked with vertical dashed lines.)

Blending

(a) Penguin

(b) Scarab

Figure 3. Comparison of different blending methods. Left: averaging all sample normals. Center: choosing the normal which is captured from the most
direct view point. Right: our proposed blending method. Normals are false-colored by embedding in the RGB color space.

Surface Enhancement

We solve the following nonlinear energy function via Gradient Descent:

E = λEp + (1− λ)En, (1)

where Ep is the position term and En is the normal term. These are formulated as follows:

Ep =
#vert∑
v=1

‖pv − pmesh
v ‖2 (2)

En =

#vert∑
v=1

−‖nv · nmeasured
v ‖2, (3)

Algorithm 1 Gradient Descent for Surface Enhancement
Input: Initial vertex positions Pv of 3D model, per vertex blended normals from 2D normal maps Nv .

Initialize: P0 = Pv ,
Jacobian0 = 0,
Conjugate0 = 0,
n = 0.
repeat

Jacobiann+1 = Jacobian Calculation(Jacobiann, Pn, Pn+1)
β = ‖Jacobiann+1‖/‖Jacobiann‖
Conjugaten+1 = Jacobiann + βConjugaten
γ = Line search(Pn, Conjugaten+1)

Pn+1 = Pn + γConjugaten+1

n = n+ 1
until

∑
‖ Pn - Pn+1 ‖ < τ

return Pv = Pn+1

Algorithm 2 Jacobian Calculation
Input: (Jacobiann, Pn, Pn+1

Jacobianvertex = 2λ(Pn+1 − Pn)
Area-weighted vertex normal can be written as : nv = normalize(

∑#neighbors
i=1 Pn[neighbori]× Pn[neighbori+1])

nmeasured : projected/blended normals from normal maps
for ni: each neighbor of vertex v do

given ni current neighbor of v, nprev and nnext are the previous and the next neighboring vertices
Jacobianedgex+ = nmeasured[ni]y(Pn+1[nprev]z − Pn+1[nnext]z) + nmeasured[ni]z(Pn+1[nnext]y − Pn+1[nprev]y)
Jacobianedgey+ = nmeasured[ni]x(Pn+1[nnext]z − Pn+1[nprev]z) + nmeasured[ni]z(Pn+1[nprev]x − Pn+1[nnext]x)
Jacobianedgez+ = nmeasured[ni]x(Pn+1[nprev]y − Pn+1[nnext]y) + nmeasured[ni]y(Pn+1[nnext]x − Pn+1[nprev]x)

end for
Jacobiann+1 = Jacobianvertex + Jacobianedge

return Jacobiann+1

Time Analysis

The algorithm proposed by Nehab et al., Poisson reconstruction, and our algorithm converge in 12, 6,
and 3 iterations in average, respectively. Note that the initial alignment code is not optimized and does
brute-force search to find the best matching, and we run 3 iterations for each normal map: 72 rendered
images compared to each acquired normal map in total.

Synthetic Dataset

Dataset Armadillo (0.2M vertices)

Normal Maps 6
Initial Alignment (min/normal map) ∼10 mins
Alignment Refinement (sec) 14.2 / 12.2 / 13.1 / 12.8 / 20.33 / 13.3
Blending (sec) 2.2 (DC fixing)/ 1.9
Nehab et al. (sec/iteration) 0.7
Poisson Reconstruction (sec/iteration) 79
Ours (sec/iteration) 9.1

Acquired Datasets

Dataset 00496(1M vertices) 512(0.5M vertices)

Normal Maps 4 2
Initial Alignment (min/normal map) ∼27 mins ∼28 mins
Alignment Refinement (sec) 28.1 / 13.6 / 10.8 / 13.3 16.4/17.5
Blending (sec) 2.7 (DC fixing)/14.7 17.8 (DC fixing)/8.3
Nehab et al. (sec/iteration) 11.1 3.9
Poisson Reconstruction (sec/iteration) 400 285
Ours (sec/iteration) 15.3 9.7

Dataset Penguin(0.4M vertices) Soldier (0.5M vertices)

Normal Maps 2 2
Initial Alignment (min/normal map) ∼18 mins ∼19 mins
Alignment Refinement (sec) 49.7 / 63.3 100.8 / 79.4
Blending(sec) 25 (DC fixing)/ 5.8 6.4 (DC fixing)/ 7.4
Nehab et al. (sec/iteration) 2.3 2.9
Poisson Reconstruction (sec/iteration) 99.5 174
Ours (sec/iteration) 22.4 18.9

Results
Here we show one of the input normal maps, the coarse scanned 3D model, and our optimized

result for each of 5 datasets. Notice the significant additional detail, present in the normal maps, that
is introduced into the 3D models using our method. This is a high-resolution PDF — please zoom in to
see the full detail.

Normal map Coarse 3D Model

Our Result

Normal map Coarse 3D Model

Our Result

Normal map Coarse 3D Model

Our Result

Normal map Coarse 3D Model

Our Result

Normal map Coarse 3D Model

Our Result

Normal map Coarse 3D Model

Our Result

Normal map Coarse 3D Model

Our Result

Normal maps from varying views

Coarse 3D Model Our Result

Coarse 3D Model Our Result

