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ABSTRACT
This paper proposes a group annotation approach to interac-
tive semantic labeling of data and demonstrates the idea in a
system for labeling objects in 3D LiDAR scans of a city. In
this approach, the system selects a group of objects, predicts
a semantic label for it, and highlights it in an interactive dis-
play. In response, the user either confirms the predicted label,
provides a different label, or indicates that no single label can
be assigned to all objects in the group. This sequence of in-
teractions repeats until a label has been confirmed for every
object in the data set. The main advantage of this approach
is that it provides faster interactive labeling rates than alter-
native approaches, especially in cases where all labels must
be explicitly confirmed by a person. The main challenge is
to provide an algorithm that selects groups with many objects
all of the same label type arranged in patterns that are quick to
recognize, which requires models for predicting object labels
and for estimating times for people to recognize objects in
groups. We address these challenges by defining an objective
function that models the estimated time required to process all
unlabeled objects and approximation algorithms to minimize
it. Results of user studies suggest that group annotation can
be used to label objects in LiDAR scans of cities significantly
faster than one-by-one annotation with active learning.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces; I.2.10. Artificial Intelligence: Vision and
Scene Understanding; I.5.5 Pattern recognition: Applications

INTRODUCTION
There has recently been an explosion in the amount of 3D
data collected in urban environments, as several companies
(e.g., Google and Navteq) and government agencies (e.g.,
U.S. Geological Survey) are continuously collecting LiDAR
data using scanners mounted on cars and/or airplanes flying
overhead. For example, one such data set combining both
types of data from Ottawa, Canada is shown in Figure 1.

While this LiDAR data provides immediate opportunities for
visualization applications, its true value cannot be realized
until semantic objects in the data have been segmented and
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Figure 1: Our goal is to label small objects in a 3D point
cloud. This image shows a section of Ottawa, with the se-
mantic labels of 1,224 small objects represented by colors.

labeled (colored points in Figure 1). If a semantically la-
beled 3D model of a city could be acquired, then applica-
tions such as urban planning, augmented reality maps, virtual
tourism, and emergency response planning would be greatly
enhanced. For example, identifying locations of stop signs,
traffic lights, and street signs would augment electronic maps
and help guide navigation of self-driving cars, and labeling
fire hydrants, electrical power boxes, and fire escapes would
help emergency response planning and disaster simulation.

With these applications in mind, a number of researchers have
begun to develop systems aimed at automatic segmentation
and labeling of 3D LiDAR point clouds. In particular, great
progress has been made over the last several years on recog-
nition of roads, buildings, trees and other large urban struc-
tures. Unfortunately, recognition of small objects (cars, signs,
fire hydrants, etc.) is more difficult, and thus the accuracy of
current labeling algorithms are relatively poor for those ob-
jects. For example, state-of-the-art labeling algorithms based
on supervised learning [11, 19, 20, 33] achieve only 42%–
82% accuracies depending on the number of categories and
their generality, which is far lower than the 95+% that is re-
quired for consumer mapping, augmented reality, and urban
simulation applications. Therefore, a person has to check and
fix the predicted label for every object before a data set can
be deployed to users (a practice common even for large urban
structures at most companies that annotate electronic maps).

The goal of our project is to develop an interactive system
for high-throughput and high-accuracy labeling of small ob-
jects in LiDAR scans of cities. This goal is a bit different
than any previous system, and thus raises several interesting
research opportunities. First, our goal is to produce a label
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for every object in a specific data set with as much com-
puter assistance as possible, which is different than previous
work in computer vision focusing on crowd-sourced creation
of object recognition benchmarks where computer assistance
is specifically avoided to ensure unbiased ground truth labels
(e.g., [7, 39]). Second, our goal is to minimize the total time
required to provide and/or confirm a label for every object in a
data set, which is different than most previous work on inter-
active machine learning where the goal is mainly to maximize
the accuracy of a classifier with the fewest training examples
(e.g.,[28]). Finally, our goal is to label all objects residing in a
single 3D environment (a city), and thus it is possible for our
system to show multiple objects to a user in a single view and
ask him/her to label them with a single command (e.g., if they
all require the same label), which is different than almost all
previous interactive labeling and classification systems where
objects must be displayed and/or labeled separately.

This paper describes a system called IGRA (Intelligent
Grouping for Rapid Annotation), which integrates ideas from
human-computer interaction, active machine learning, and
perceptual psychology to provide an interactive interface for
labeling objects in LiDAR scans of cities quickly and accu-
rately. The system starts from a point cloud acquired from
LiDAR scans of a city and executes a number of preprocess-
ing steps to segment the points into objects and compute geo-
metric features for each object. It then executes an interactive
labeling program that iteratively highlights groups of objects
in the 3D point cloud and asks the user to perform one of
three commands for each group: 1) confirm the predicted la-
bel for all objects in the group, 2) select a label for all objects
in the group, or 3) decline to label the group, in which case
a subset of the group will be highlighted in the next iteration.
Each of these commands can be executed with a single key
press (e.g., hitting the space bar confirms the predicted label
for a group), and each command provides labels for multiple
objects, and thus the system is very high-throughput. More-
over, the label for every object is explicitly confirmed by the
user in at least one group, and thus the resulting set of labels
is very high-accuracy.

The main research contribution of the paper is the introduc-
tion of an interactive labeling approach in which users are
iteratively asked to label groups of objects. To investigate
this approach, we developed: 1) an active learning algorithm
to construct groups of objects that aims to maximize the ex-
pected labeling throughput (confirmed labels per unit time),
2) a perceptual model based on Gestalt principles to estimate
the amount of time required for a user to recognize the la-
bel of a group or determine there is not one such label, and
3) an interactive system that incorporates visualization of 3D
point clouds with interactive labeling in an interface that can
be learned by novices in a few minutes. Experiments with
this system suggest that our group annotation approach can
label all small objects in a large city 1.7 times faster than a
traditional one-by-one labeling approach.

RELATED WORK
Interactive annotation of multimedia data is an important
problem with a long history of prior work.

Manual Annotation. There has been much work over the
last decade on user-interfaces for manual annotation of visual
data. For example, interactive methods have been proposed
for labeling images by object category [7], segmenting and
labeling scenes in images [26], and labeling 3D point clouds
of indoor [30] and outdoor scenes [10]. These methods are
directed mainly at producing ground-truth data sets for object
recognition benchmarks and thus purposely limit the amount
of computer-assistance provided to people when choosing ob-
ject labels so as not to bias the results. In contrast, our paper
is targeted at applications where the goal is to label a given
3D data set with as much computer assistance as possible.

Computer-Assisted Annotation. Other researchers have in-
vestigated interactive tools to annotate 3D data sets with al-
gorithmic assistance [18]. For example, Nan et al. [21] and
van de Hengel et al. [14] have proposed interactive tools for
users to annotate primitives in 3D data and specify spatial re-
lationships between them that allow an automatic algorithm
to propagate annotations based on detected regular patterns.
Other systems produce annotation hypotheses automatically
and allow users to fix errors and/or refine them interactively
[29, 38]. For example, Shao et al. propose a system of this
type for segmentation and labeling of indoor RGBD scenes.
While these systems share the same goal as ours, they require
a much more taxing type of user interaction: the user must
search for annotations to create/revise and then execute direct
manipulation commands to apply them, which are difficult
operations in complex 3D data sets. As a result, their inter-
faces require far greater skill and time than our approach.

Active Learning. Many systems provide assistance not only
for specifying annotations, but also for finding which exam-
ples to annotate. For example, active learning systems use a
utility function to choose examples for users to label when
training a classifier [28]. This approach has been widely used
to select frames to be annotated in images and videos [17],
and it has been used to specify segmentations in 3D images
interactively [32]. While these methods are related to ours,
their goals and operations are quite different: they usually ask
users about examples one-by-one with the goal of training a
classifier with the highest accuracy in the fewest interactions.
In contrast, we ask users about groups of objects for labeling
a specific data set in the least amount of time.

Cost-Sensitive Active Learning. Others have made the ob-
servation that not all examples take the same amount of time
for users to annotate, and thus the “cost” of an annotation
should be considered when selecting examples for users to
label (e.g., for training classifiers of images [34]). Other re-
search have considered a value of information (VOI) frame-
work that chooses the samples by balancing the risk of misla-
beling a sample and the cost of annotation [23]. Our system
leverages these ideas by introducing a model to estimate the
accuracy and time for a user to annotate a group of objects in
3D, which is used to minimize the total time required for an
interactive labeling session.

Multiple Instance Learning. Other systems have considered
labeling data with multiple objects in a single query [2]. For
example, in multiple-instance learning (MIL), labels are as-
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1) 149 short posts 2) 210 cars 3) 154 short posts

4) 33 tall posts 5) 11 cars 6) 23 street lights

Figure 2: Screenshots from an initial sequence of labeling operations in IGRA. The screenshots shows the objects (highlighted
in yellow) labeled by a user in the first 6 group annotations, with the number of objects in each group listed below.

sociated with bags, which may contain multiple objects, and
labels associated with a bag usually indicate that at least one
object in the bag has the given label [8]. This MIL approach
is best suited for data that inherently has multiple instances in
a single data item that cannot be separated (e.g., multiple ob-
jects appearing in the same image). Since objects in 3D point
clouds are relatively simple to separate with standard segmen-
tation algorithms, we can easily construct arbitrary groups of
objects to be labeled in our system.

OVERVIEW
This paper describes an interactive system for high-
throughput and high-accuracy labeling of small objects in Li-
DAR scans of cities using group annotation. The input to the
system is a set of segmented objects, each represented by a
set of 3D points within a LiDAR scan of a city, and the output
is a manually specified semantic label for each object.

At startup, the user is presented with an interface for view-
ing 3D point clouds, with which they can rotate, zoom, and
pan a virtual camera and/or adjust how points and objects are
displayed (e.g., turn on/off the display of points that are not
parts of objects, turn on/off the display of current label names,
etc.), much like many other 3D visualization systems.

The key new aspect of the system is that it iteratively selects
groups of objects, shows them to the user (drawn in bright
yellow from a spinning centered view as shown in Figure 2),
predicts a single label for all objects in the group (shown in
text above the group), and then asks the user to execute one
of three actions: 1) confirm the predicted label (hit the space
bar), 2) specify a new label (select a label from a menu on the
left of the screen or hit an alphanumeric character associated
with the label), or 3) ask the system to contract or expand the
group (left-arrow or right-arrow key, respectively). If the user

confirms or specifies a label for the group (actions 1 or 2),
then all objects within the group are assigned that label and
subsequently displayed in the color associated with the label.
Otherwise, a new group is shown to the user. The system
iterates this group labeling interaction until labels have been
confirmed or specified for all objects in the data set (Figure 1).

This user interface was chosen for a number of reasons. First,
it leverages a person’s ability to recognize a semantic label for
a group of related objects more quickly than a sequence of in-
dividual objects – e.g., it is possible to recognize that all the
objects highlighted in first image of Figure 2 are short posts
of a fence without carefully inspecting each one individually.
Second, it automatically finds (groups of) objects that need
labels and moves the virtual camera to view them automati-
cally – e.g., avoiding the need for expensive visual search and
interactive camera control. Third, it provides a rapid way for
users to confirm the labels for all objects in the data set – e.g.,
if the labels predicted for a sequence of groups are correct,
then the user must only hit the space bar to confirm them.

As an example, consider the sequence of screenshots in Fig-
ure 2 of the first six groups annotated by a novice user in
an actual session in our user study. Each screenshot shows a
group of objects (in yellow) labeled by a user with a single in-
teraction (key click). From these screenshots, we can see that
it is often possible to recognize the label for a large group of
objects even without inspecting any single object closely –
the pattern of objects helps us identify the appropriate label.
We also observe that large numbers of objects can be labeled
with just a few simple commands. The sequence shown in
Figure 2 required a total of 7 key clicks (the fifth group was
contracted before it was labeled) and provided confirmed la-
bels for 578 objects in a total elapsed time of 137 seconds.
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METHODS
The main research challenge in implementing our system is
to develop effective methods for selecting groups to be anno-
tated by a user at each step of an interactive labeling session.

Ideally, selected groups should contain very large number of
objects, all of which require the same label, most of which
have not been previously labeled, and all of which are ar-
ranged in patterns quickly recognizable by a person – then,
large groups of objects could be labeled quickly and easily
with our interface. However, building groups with these prop-
erties is non-trivial. Since the labels of objects are not known
in advance, the system must predict them and model the prob-
ability that a group contains objects of the same type. Since
different groups of objects require different amounts of time
for a user to recognize their labels, the system must employ
a model of human perception to estimate the cost of asking
the user about a group. These considerations must be en-
coded into an objective function that models the benefit (time-
savings) of labeling objects in a group.

Given such an objective function, we must develop an algo-
rithm to search for the group with maximal benefit at every
step of the labeling process. Our overall goal is to construct
a sequence of groups that minimize the total time required
by a user to label and/or confirm every object in the data set.
Of course, achieving this goal is NP-Hard: choosing just one
group is an instance of the optimal subset selection problem,
which is NP-hard (e.g., [37]), let alone optimally choosing the
entire sequence. In our interactive system, we select groups
that approximately optimize this goal given current estimates
of the object labels and annotation times.

Our solutions for these two main issues (defining an objective
function and implementing a group selection algorithm) are
discussed in the following sections.

OBJECTIVE FUNCTION
Our objective function, B(G, L), estimates the expected ben-
efit (time savings) of asking a user to select a label from a set
L for a group of objects G (rather than annotating the objects
one-by-one). Specifically, we define our objective function
as:

B(G, L) = PLabel(G)T1x1(G, L)− TGroup(G, L) (1)

where TGroup(G, L) is the expected time it will take a user to
provide a response for a group G; PLabel(G) is the expected
probability that the user will provide a label for the group
G (rather than contract or expand it); and T1x1(G, L) is the
expected time it would take a user to label all objects in G
one-by-one (without group annotation).

This benefit formulation reflects the fact that the total time
for the annotation session is reduced by T1x1(G, L) time if
the user provides a label for the group, which occurs with
probability PLabel(G). TGroup(G, L) time is added to the ses-
sion for the user to process the group, regardless of whether a
label is provided or not. So, intuitively, B(G, L) is higher if
groups are larger (T1x1(G, L) is higher), more likely to con-
tain objects of the same label (PLabel(G) is higher), and faster
for a person to recognize the label (TGroup(G, L) is lower).

While this formulation is nice theoretically, it requires esti-
mating three terms (PLabel(G), TGroup(G, L), and T1x1(G, L)),
all of which depend on unknowns (object labels, user behav-
ior, etc.). The following paragraphs provide details for how
we estimate values for those terms.

Estimating Probability that the User Provides a Label.
Our first challenge is to estimate PLabel(G), the probability
that the user will provide a label for a given group G – i.e.,
confirm the predicted label or provide a new one explicitly.
This can occur only if all objects in G belong to the same cat-
egory (require the same label). Thus, we compute PLabel(G)
by estimating the joint probability that all objects oi ∈ G be-
long to the same category.

The challenge in estimating the joint probability is that we
don’t know which label will be assigned. In fact, it is pos-
sible that no instances of the correct label for a group have
been previously entered by the user, or in fact that no labels
have been entered at all, and therefore it is not always possi-
ble to simply train a classifier to estimate the probability of
assigning any given label based on previous training data.

Our approach is to develop an estimator for the probability
PLabel(oi, oj) that any two objects oi and oj have the same la-
bel, and then combine those probabilities to estimate the joint
probability of a single label for all objects in the group. To do
this, we compute the product of |G|−1 pairwise probabilities,
where the pairs are chosen to be the highest probability ones
that span all objects in G. That is, if MSTLabel is the mini-
mum spanning tree of a fully-connected graph, where nodes
represent objects and edges represent 1−PLabel(oi, oj), then:

PLabel(G) =
∏

(oi,oj)∈MSTLabel

PLabel(oi, oj) (2)

This method for combining the pairwise probabilities is
based on two assumptions. First, the pairwise probabilities,
PLabel(oi, oj), are more reliable for high probability pairs than
for any other (i.e., long-range distances in the feature space
should not be trusted), and thus combining probabilities for
pairs of objects connected in the MST is more reliable than
using other pairs at all. Second, the pairwise probabilities for
pairs of objects in the MST are independent, and thus they
can be multiplied to estimate the joint probability.

While many ways could have been used to estimate
PLabel(G), this formulation was chosen because it leverages
the latent structure of the data, even when labels have not yet
been assigned for nearby examples (which is a common case
in our system). This is a form of transductive learning [4, 9].
Like semi-supervised learning methods based on diffusion,
we form groups of objects that are all likely to have the same
label using transitivity through closely related objects.

Estimating Probability that a Pair Has Same Label. Mo-
tivated by this formulation for PLabel(G), we must estimate
PLabel(oi, oj), the probability that any two objects oi and oj

have the same label. To do this, we start by computing a
feature vector for each object representing properties of its
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shape, such as height, width, etc.1 Then, we model the dis-
similarity of two objects based on the distance D(oi, oj) be-
tween their feature vectors.

Instead of simply using the Euclidean distance in the fea-
ture space, we base our affinities on a density-sensitive dis-
tance metric using the formulation from [5] and algorithms
from [40]. Density-sensitive distances capture cluster infor-
mation about objects in the feature space and thus provide
a better model for predicting which objects are in the same
category. The way they do it is through analyzing the con-
nectivity graph in shape space and computing distance as a
weighted length of edges on the path between two objects in
a fashion that reflects the changes in lengths of edges (varia-
tions of densities) along the way.

We follow the general density-based distance approach, but
with several augmentations appropriate for our setting. First,
to normalize for local densities, we shift distances down so
that closest k nearest neighbors of every object are 0. This
introduces asymmetry, and so we restore symmetry for every
pair of objects oi, oj by taking the largest density-sensitive
distance between oi → oj and oj → oi.

Second, to account for objects that have already been as-
signed a label by the user (e.g., in a prior interaction within
the same session), we define D(oi, oj) = ∞ if the near-
est labeled neighbors of oi and oj are assigned different la-
bels. Otherwise, we set it to be the minimum of D(oi, oj)
and max(D(oi, o

NN
j ), D(oj , o

NN
i )), where oNN

i and oNN
j

are the previously labeled objects (with the same label) that
are closest in feature space to oi and oj , respectively. This
adjustment creates zero-distance ”wormholes” between sep-
arated clusters of objects that share the same label, a method
derived from previous work on constrained clustering (e.g.
[36]).

Third, we convert each distance D(oi, oj) into an affinity
ALabel(oi, oj) by transforming into the range [0, 1] by:

ALabel(oi, oj) =
1

1 + D(oi, oj)

Finally, we estimate the probability that two objects will be
assigned the same label by:

PLabel(oi, oj) = ALabel(oi, oj)C(oi, oj)

where C(oi, oj) is a penalty term to account for pairs of ob-
jects that have appeared in groups of objects contracted by the
user in previous interactions – i.e., if two objects were part of
a group that the user declined to label in the past, they proba-
bly should not be grouped again. Initially, C(oi, oj) for every
pair of objects is one. Then, every time a group is contracted
by the user all C(oi, oj) where oi,j ∈ G are multiplied by
1 − 1/|G|. This factor provides a soft penalty for showing
poor groups of objects repeatedly.
1In our current implementation, we compute the following six shape
properties for each feature vector: (1-3) the 5% trimmed spread,
median, and median absolute deviation of Z-coordinates (Z is up),
(4) the 5% trimmed maximum distance of a point from the centroid
in the XY plane, and (5-6) the variances of points distribution in the
two principle axis directions in the XY-plane.

Estimating Time for a User to Provide a Response. The
next problem we must address is to develop a model for
TGroup(G, L), which estimates how long it will take a user to
provide an annotation response when shown a selected group
G for a given set of candidate labels L.

Such a model is difficult to estimate accurately, since it de-
pends on the spatial reasoning aptitudes of individual users
and complex factors related to perception of groups. How-
ever, we can apply basic principles of perceptual psychology
to form a simple, approximate model that is adequate for our
system. Our model is a sum of three terms:

TGroup(G, L) = TId(G, L) + TVerify(G) + TCmd(L) (3)

where TId(G, L) is the time required to identify a label for
the group, TVerify(G) is the time to verify that all objects in
the group require the same label, and TCmd(L) is the time to
convey the response to the system. Note that the second term
is zero if there is only one object in G, and so

T1x1(G, L) = (TId(G, L) + TCmd(L))|G|

Predicting the Time to Recognize a Label for a Group.
The human visual system is capable of rapidly grasping the
gist of images representing scenes. After exposure of as lit-
tle 100ms [27], people can answer specific questions about
what they saw [31]. The process of recognizing sets of sim-
ilar objects is also fast [6] and robust [13]. Since a group of
objects can be represented cognitively with summary statis-
tics [3], recognition times for salient groups can be extremely
rapid. Since items perceived as a group can ”pop-out” from
clutter [16, 25], they can often be recognized as a whole more
quickly and accurately than as individuals [1, 24].

Accordingly, we model the time TId(G, L) for a person to
identify the label for a group as a function that is indepen-
dent of the size of the group, but dependent on the numbers
of labels to choose from. Specifically, we estimate it as the
choice reaction time (CRT) of choosing among |L| labels us-
ing Hick’s law [15]:

Tid(G, L) = aIdHeq(|L|)

where Heq(n) = log2(n + 1) is the information-theoretic
entropy of a decision among n equiprobable options, and aId
is a processing speed constant factor.

Predicting the Time to Search for an Outlier. Although
recognizing the label for a group of similar objects is ex-
tremely fast, the process of checking whether there is an out-
lier within a group can be much slower. In our system, we
model the time TVerify(G) for a person to verify that the labels
of all objects in the group are the same category using a se-
quence of binary decisions, where each binary decision deter-
mines whether two objects within G are in the same category
or not. Under the assumption that a person considers best
grouped perceptually pairs of objects available when making
such a decision, we estimate the total time as a sum of binary
decisions made for pairs of objects connected in a minimum
spanning tree (MSTGest):

TVerify(G) = Σ(oi,oj)∈MSTGestTVerify(oi, oj , G) (4)
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where TVerify(oi, oj , G) is the time it takes a person to de-
cide whether two objects within G have the same label, and
MSTGest is a minimum spanning tree constructed based on a
cognitive measure of affinities between objects, AGest, which
is defined below.

Predicting the Time to Check if Two Objects Have the
Same Label. We model TVerify(oi, oj , G), the time it takes
for a person to make a decision about whether two objects
have the same label or not, as a choice reaction time (CRT)
using Hick’s law:

TVerify(oi, oj , G) = aVerify(oi, oj , G)H(PLabel(oi, oj))

where aVerify(oi, oj , G) is a task complexity function that de-
pends on geometric properties of the object pair and H(p) =
p log2( 1

p + 1) + (1 − p) log2( 1
1−p + 1) is the information-

theoretic entropy of a binary decision, where p is the prob-
ability of each outcome, in our case modeled as the affinity
between the two object shapes (p = PLabel(oi, oj)).

When estimating the task complexity function,
aVerify(oi, oj , G), we expect people to recognize the
match between labels of two objects more quickly if they are
closer to one another and/or are arranged in a regular pattern
governed by Gestalt rules [35]. We combine these factors as
follows:

aVerify(oi, oj , G) = TVerify(AGest(oi, oj , G)+(1−AGest)d(oi, oj))

where TVerify is the fastest possible time required to recognize
whether two objects have the same labels, AGest(oi, oj , G) is
a measure [0-1] of how much the pair of objects participates
in a group with strong Gestalt principles, and d(oi, oj) is the
distance between the objects in relative units (d(oi, oj) =

|oi−oj |2
max(|oi|∞,|oj |∞) ). Intuitively, the value of aVerify(oi, oj , G)
is equal to TVerify for objects connected by strong Gestalt cues
(when AGest(oi, oj , G) = 1), and otherwise is larger than
TVerify when Gestalt cues are weaker and/or the distance be-
tween objects is larger.

Estimating the Effects of Gestalt Cues. To estimate the
affinity of two objects based on Gestalt cues, we detect regu-
lar patterns in the arrangements of objects in a group, and we
model the proximities/sizes of objects:

AGest(oi, oj , G) = R(oi, oj , G)S(oi, oj) (5)

where R(oi, oj , G) is a value [0-1] representing how much oi

and oj participate in a regular pattern within G, and S(oi, oj)
represents a measure of the proximity of two objects relative
to their sizes.

When estimating R(oi, oj , G), we consider objects as form-
ing a regular pattern if they are situated along a line and
share similar spacing between them. Hence the small-
est size of the group that can exhibit such traits is three,
and we set R(oi, oj) = R(oi) = 1 for all pairs/objects
in groups of less than three. To evaluate the regularity
for any three objects oi,j,k we compute the translation be-
tween every two, replicate it and compute the distance to
the third. Then we take the smallest of these distances
dr(oi, oj , ok) and compute regularity score as R(oi, oj , ok) =

exp(−dr(oi, oj , ok)/min(|oi|∞, |ok|∞, |ok|∞)). To define
regularity available for two objects oi and oj within a group
R(oi, oj , G) = maxok∈G(R(oi, oj , ok)).

When estimating S(oi, oj), we account for the effect that
similarities of objects are harder to recognize when the ob-
jects are smaller on the screen. Since the virtual camera
is positioned so that the entire group is within view, ob-
jects that are further apart relative to their sizes in world
space appear smaller on the screen after perspective projec-
tion. So, we model the effects of object proximity and size as
S(oi, oj) = 1

1+max(0,d(oi,oj)−c) .

Estimating Time for User to Enter Label. Finally, we
model the time TCmd(L) for a person to provide a label to
the system as another choice among |L| labels using Hick’s
law [15]:

TCmd(L) = aCmdHeq(|L|)
where aCmd is a processing speed constant factor.

In all, our model predicts that groups can be labeled more
quickly if they have objects with more similar shapes,
stronger regular patterns, closer proximities in 3D, larger
sizes on the screen, and fewer potential labels.

GROUP SELECTION ALGORITHM
Given this objective function, our main algorithmic task is to
select the best group of objects to present as a query to the
user at each step of the interactive labeling process.

Finding the best group is a very difficult problem. Select-
ing an optimal subset is intractible even with simple objective
functions [37], and ours is far from simple since the benefit
of every group depends on a non-linear function of all objects
in the group (e.g., to estimate Gestault cues).

To limit the search space, we first construct a hierarchical
clustering tree T of all objects in the data set D, with each
node representing a group of objects in the leaf nodes of its
subtree. Then, having constructed T, we search for the best
group among its non-root nodes by evaluating B(G, L). This
limits the search space to a set of candidates that is linear
in ‖D‖. Additionally, it produces a hierarchical nesting of
groups that naturally lends itself to implementation of the
group contraction and expansion commands supported by our
user interface.

Even with this reduced search space, building T is non-trivial.
In particular, hierarchical clustering based on B(G, L) can
lead to groups with poor regular patterns, since decisions
made greedily in the early stages of the algorithm are based
mainly on shape similarity and spatial proximity between ob-
jects (e.g., when just two objects are merged into a group) and
therefore are likely to form small groups that cannot later be
merged into large ones with good regular patterns. To avoid
this, instead of joining groups according to B(G, L), we join
groups in the best-first order of AGest(oi, oj , D) - a version
of AGest(oi, oj , G) from eq. (5) that represents the best pos-
sible Gestalt score of a pair oi, oj with any third object from
the entire D, not only from G. Specifically, our algorithm
traverses pairs of objects oi ∈ Gi, oj ∈ Gj , Gi ∩ Gj = ∅
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in a descending order of AGest(oi, oj , D) until B(Gij , L) ≥
max(B(Gi, L), B(Gj , L)); once such pair (oj , oj)k is dis-
covered groups Gi and Gj are merged into Gij . This en-
forces the priority of joining pairs of objects that are globally
in stronger patterns.

Constructing T in this way still requires evaluating B(G, L)
for O(‖D‖2) candidate groups. It is thus desirable to avoid
having to recompute MSTLabel (in eq. (2)) and MSTGest(in
eq. (4)) in every evaluation. Notice that when a decision to
join groups Gi and Gj into Gij is made, it is mandated by
a pair of objects (oj , oj) in respective groups that appear in
a globally strong pattern according to AGest(oi, oj , D). A set
of all such edges {(oj , oj)k} that contributed to the appear-
ance of a group G on T thus forms a spanning tree ST∼(G)
over all objects in G with edges, chosen with the objec-
tive of the largest AGest(oi, oj , D) and non-decreasing benefit.
ST∼(G) is not exactly MSTGest due to AGest(oi, oj , D) 6=
AGest(oi, oj , G), however ST∼(G) is readily available with-
out additional computations and allows for a recursive formu-
lation of TVerify(Gij) from eq. (4)

T∼Verify(Gij) = TVerify(oi, oj , D) + T∼Verify(Gi) + T∼Verify(Gj)

which reuses values previously computed for Gi and Gj . For
the same reason of immediate availability we use ST∼(G)
instead of MSTLabel, however, ST∼(G) is built not directly
considering PLabel(oi, oj) at all. Using a product on ST∼(G)
as in eq. (2) is thus likely to over-constrain construction of T
and build only very small groups due to many elements of the
product being much smaller than what they would have been
if the actual MSTLabel was used. To adjust, we replace the
product with the minimum, which only estimates the group’s
density in the feature space instead of performing a likelihood
computation, in the following fashion:

P∼Label(Gij) = min(PLabel(oi, oj), P∼Label(Gi), P∼Label(Gj)).

which is also a recursive formulation allowing for reusing of
values computed for subgroups during the tree construction.

These two approximations were made in the interest of con-
structing candidate groups (nodes of T) with large-scale reg-
ular patterns at interactive rates. They do not guarantee opti-
mality of the candidate groups according to B(G, L). How-
ever, we evaluate B(G, L) for each group in the tree T and
choose the best one to show the user. Empirically, we ob-
serve that this approach produces groups with good B(G, L)
at interactive rates (∼1 second per group).

RESULTS
We have performed a series of experiments to test how well
group annotation works for labeling small objects in 3D
points clouds with the IGRA system.

Data Set. For our experiments, we tested the proposed meth-
ods on a point cloud captured with 4 terrestrial (car-mounted)
and 1 aerial (airplane-mounted) LiDAR scanners within a 6
km2 section of downtown Ottawa, Canada [22] (see Figure 1).

The data set contains approximately 1 billion points, each of
which is represented by a 3D position, RGB color, and scalar
intensity, though the colors and intensities of terrestrial points

are very noisy and thus not used by our system. It was cho-
sen because it is has been used for evaluation by previous
systems for recognition of small objects in LiDAR scans of
cities. In particular it was first used by Golovinskiy et al.
[12], who reported approximately 58% precision and 65% re-
call using fully automatic algorithms to recognize 1,063 ob-
jects amongst 17 semantic categories in a 0.3km2 “evalua-
tion area.” We executed our tests on similar set of 18 ob-
ject categories (bush, fire hydrant, mailbox, newspaper box,
parking meter, advertising kiosk, garbage can, recycle bin,
phone booth, traffic sign, highway sign, A-frame sign, side-
walk light, street light, traffic ligth, short fence post, tall fence
post, and car) in the same evaluation area of Ottawa, using a
slightly expanded “ground-truth set” of 1,224 objects.

Data Segmentation. We segmented the LiDAR points into
objects using the algorithms described in [11, 12]. Specif-
ically, plane extraction algorithms were used to remove the
points associated with major planar structures in the environ-
ment (ground and buildings), and then hierarchical clustering
and graph cut algorithms were used to detect the locations
of potential objects and cluster points into objects. The re-
sults of these automatic segmentations were improved inter-
actively with a simple tool that allows a user to specify points
inside and/or outside any object and then resolves the object
segmentation boundary with a graph cut. These improved
segmentations were used in our tests – the user only had to
provide a label for each object.

We chose to create segmentations as a pre-process in our tests
for several reasons. First, most small objects in a LiDAR
scan of a city can be segmented automatically with high ac-
curacy ( 90% in [12]), and so the segmentations in our tests
are quite representative of those created with state-of-the-art
algorithms. Second, segmentations can often be refined auto-
matically after objects have been labeled – e.g., using an algo-
rithm that aligns objects of the same type to form a consensus
of the correct segmentation. So, precise pre-segmentations
may not be necessary. Of course, there are complicated in-
terplays between the accuracy of the segmentations with the
effectiveness of the shape-based classifiers, the robustness of
the consensus algorithms, the ability of people to recognize
objects, the quality of the data, and so on. We defer investiga-
tion of these interplays to future work in order to focus on the
main idea of the paper: group annotation. Finally, the pro-
posed group annotation approach is not specific to labeling
LiDAR data. It is a general idea for labeling any kind of data
that can be shown in groups (perhaps cells in stained micro-
scopic images, tumors in medical images, etc.). The segmen-
tation challenges for each of those types of data is different.
Hence, we avoid mixing our evaluation of the group anno-
tation metaphor with the specific challenges of segmenting a
particular data set.

User Study Design. To test whether group annotation is help-
ful for labeling objects in this data set, we ran a user study
with 10 participants ranging in age from 20 to 40, including
4 women and 6 men.

We split the participants randomly into two sets of five. We
asked one set of participants (GA) to label objects in the
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ground truth set using the group annotation interface de-
scribed in this paper. We asked the other set (IA) to label
the same objects with the same interface but with a classical
least confidence active learning algorithm which suggests ob-
jects one-by-one. The order of assigning participants to one
of these two conditions was random, and no participant was
aware of which condition was the control.

Each participant was given written instructions and photo-
graphic examples of the types of objects to be labeled (copies
are in the supplemental materials). Then, he/she executed a
short interactive tutorial by labeling 163 objects covering all
18 object categories within a completely different area of Ot-
tawa. During this tutorial, the participant was given immedi-
ate feedback if any label was assigned incorrectly and could
proceed only after providing the correct label for every object.

Once the tutorial was completed, the participant proceeded to
provide or confirm the label for all 1,224 objects in the evalu-
ation area without any feedback or guidance using either the
one-by-one or group annotation interface. Once done label-
ing all objects, he/she completed an exit questionnaire.

Experimental Results. During each user session, we logged
all interactions and recorded times required to complete the
task of providing/confirming labels for all objects in the eval-
uation set. Our hypothesis is that labeling all objects with the
group annotation interface is faster.

Figure 3 shows a comparison of the results averaged across
all five participants using each of the two interfaces. The hor-
izontal axis represents the F-measure of the object labels pre-
dicted by the system with a nearest-neighbor classifier from
the set of labels confirmed by the user, and the vertical axis in-
dicates the earliest wall-clock time (in seconds) since the start
of the test session for the system to achieve that F-measure.
At the beginning, the system starts with no objects labeled,
and so the curve starts at the origin. As it proceeds, the par-
ticipant provides or confirms labels for more and more exam-
ples, which are fed into the training set, and so the nearest-
neighbor classifier predicts larger numbers of objects cor-
rectly, and the F-measure rises. At the end (right side of the
plot), every object has been confirmed by the participant ex-
plicitly, and so the F-measure is very close to 1.0 (deviations
from 1.0 represent labeling mistakes by the participants).

We can make several interesting observations from this plot.
First and foremost, they suggest that the group annotation in-
terface (GA) provides faster times to task completion than the
one-by-one interface (IA) – i.e., the group annotation curve
is lower in the plot. In particular, the average time to com-
pletion is 2281+/-561 seconds with the group annotation in-
terface and 3855+/-837 seconds with one-by-one labeling, a
difference that is statistically significant at the 1% confidence
level according to an independent two-sample two-tailed t-
test. This result confirms our main hypothesis.

Second, the results suggest that the average number of label-
ing mistakes made by users of the group annotation interface
(GA) is approximately the same as made with the one-by-one
interface (IA). This can be seen by the fact that the f-measure

Figure 3: Comparison of average time to achieve F measure
when labeling with group annotation (green) and 1-by-1 an-
notation (red) interfaces.

of the rightmost point in both curves is almost the same in
both plots (95% + /− 1% versus 95% + /− 2%).

Finally, we see that it is possible for novice users to label
1,224 objects with 95% accuracy in approximately 40 min-
utes with group annotation – that’s approximately one object
every 2 seconds after a few minutes of training. This is much
faster than alternative 3D labeling interfaces tested during pi-
lot studies that require the user to interactively find and se-
lect mislabeled objects because the computer automatically
moves the camera and selects objects, the operations that are
very expensive for people to do.

Further Analysis. It is possible to analyze the activity logs
and exit surveys to investigate further how people used the
group annotation interface. For example, we can ask ques-
tions like: “how many groups were contracted by a user?,”
“what types of groups were contracted?,” “were mistakes
made more commonly in large groups of objects?,” etc.

We first ask “how does the size of a group affect the prob-
ability that a person will provide a label for it?” Figure 4
addresses this question by showing a breakdown of what type
of command users provided when presented groups of dif-
ferent sizes. The horizontal axis lists of the sizes of groups
shown to the user. The vertical axis represents average num-
bers of objects in groups that were labeled/confirmed (green),
contracted (red), or expanded (blue) for each group size. The
plot shows that users labeled objects in groups as large as a
few hundred objects at a time. For smaller groups the results
show comparable frequencies of both labeling and contrac-
tion, and closer to the lower sizes of groups users prefer la-
beling to contraction. According to exit surveys, the main
reasons for group contraction was impurity of the group, only
1 user mentioned that it was due to inability to see the en-
tire group in the field of view. In the left-most bar, we see
that ∼20% of objects were labeled on their own, which is not
surprising, since some object categories in this data set (e.g.,
mailboxes, garbage cans, fire hydrants, etc.) have instances
scattered throughout the city, and thus are not conveniently
labeled in a large group.
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Figure 4: Average number of objects labeled (green), con-
tracted (red), or expanded (blue) in groups of different sizes.

The second question we ask is “how does the size of a group
affect the probability that a person will make a mistake when
labeling it?” Figure 5 addresses this question by showing
a breakdown of correct versus incorrect labels provided by
users for groups of different sizes. Again, the horizontal axis
lists of the sizes of groups shown to the user. The vertical axis
represents average numbers of objects in groups that were
labeled correctly (green) or incorrectly (red) for each group
size. The plot indicates that the fraction of mistakes is larger
for smaller groups. We have two explanations for this obser-
vation. First, some objects are very difficult to recognize –
so the user probably contracts groups containing them before
providing a label, and then sometimes still makes a mistake.
Second, large groups appearing in regular patterns are eas-
ier to recognize than individual objects – the pattern provides
context that aids recognition.

Overall, we conclude that the group annotation interface
helps users label objects in less time and with as much ac-
curacy as alternative interfaces based on one-by-one labeling.

Figure 5: Average number of objects labeled correctly (green)
or incorrectly (red) in groups of different sizes.

CONCLUSION AND FUTURE WORK
This paper investigates a group annotation approach to label-
ing 3D data. Besides the introduction of this idea, our re-
search contributions include an active learning algorithm to
construct groups of objects that minimize the expected time to

label remaining objects, a perceptual model based on Gestalt
principles to estimate the amount of time required for a user
to recognize the label for a group of objects, and design of an
interactive system that incorporates visualization of 3D point
clouds with interactive labeling commands into an interface
that can be learned by novices in a few minutes.

This paper provides an initial investigation and thus has many
limitations. So far, we have focused only on pre-segmented
data. This choice is appropriate for LiDAR scans of cities be-
cause automatic segmentation algorithms can achieve 90+%
precision and recall for this type of data [12]. However,
for other types of data (e.g., Kinect scans of interior envi-
ronments), integration of segmentation into the labeling pro-
cess provides an exta challenge that must be addressed. Sec-
ond, we consider models of human recognition based only
on shape similarities and spatial patterns, but of course other
factors (e.g., color) are important as well and should be con-
sidered in further studies.

An interesting question for future work is to investigate “what
other types of group annotation are most helpful?” We ask a
user to provide a single label for all objects in a group or
to indicate that none is possible. Previous work has asked
users to provide a single label for any object in a group [8]
or to explicitly select outliers before providing a label [7].
Different alternatives provide different levels of information
and require different amounts of time for a user. We believe
that the method proposed in this paper is one interesting point
in this design space, but investigating other alternatives is an
important topic for future work.
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