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Figure 1: Multiple photo series, each sampled from one category in our dataset (Figure 3a: water, object, interior, selfie, ...). The starred photo in each series is the one preferred by
the majority of people, while the percentage below each other photo indicates what fraction of people would prefer that photo over the starred one in the same series.

Abstract

People often take a series of nearly redundant pictures to capture
a moment or scene. However, selecting photos to keep or share
from a large collection is a painful chore. To address this problem,
we seek a relative quality measure within a series of photos taken
of the same scene, which can be used for automatic photo triage.
Towards this end, we gather a large dataset comprised of photo
series distilled from personal photo albums. The dataset contains
15, 545 unedited photos organized in 5, 953 series. By augment-
ing this dataset with ground truth human preferences among photos
within each series, we establish a benchmark for measuring the ef-
fectiveness of algorithmic models of how people select photos. We
introduce several new approaches for modeling human preference
based on machine learning. We also describe applications for the
dataset and predictor, including a smart album viewer, automatic
photo enhancement, and providing overviews of video clips.
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1 Introduction

The ease and ubiquity of digital cameras has led to an ever-
increasing size of personal photo collections. To capture a vacation,
party or other event, people often take a series of shots of a particu-
lar scene with varied camera parameters and content arrangement,
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in the hope of later being able to pick a few good photos to edit, post
or share (Figure 1). However, sifting through and managing a huge
collection of photos – grouping similar photos and deciding which
are the “keepers” and which ones to omit – is cumbersome and
time consuming. There are currently several commercial tools that
facilitate this photo triage process. Photo browsers such as iPhoto
and Picasa allow consumers to hierarchically organize and navigate
through photo groups based on time or geographic information,
while several online photo-sharing social networks like Facebook
and Google Photos extract faces and higher level content for label-
ing purposes. While these tools improve album organization, none
of them provide a way to automatically filter out the bad images or
find the best images among a series of similar shots. To know which
ones are worth keeping or sharing, users still need to sift through
the entire album by hand, which is tedious. Our goal is to facilitate
this process of finding the best images, by providing an automatic
estimator of their relative ranking.

There has been extensive effort on assessing photo quality or
aesthetics that gauges each image independently on an absolute
scale (from “bad” to “good”). In contrast our goal is to establish
a relative ranking for “better” or “worse” photos from among a
series of similar shots (Figure 2). Existing methods that produce
absolute scores tend to yield similar scores for similar images, and
therefore perform poorly for our problem. There are also methods
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Figure 2: Above: Previous work evaluates photo quality on an absolute scale (bad to
good). Below: Our goal is to find relative ranking among a series shots of the same
scene (for which previous methods would typically provide similar absolute scores).
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for selecting the best among a photo “burst” (typically based only
on low-level features like blurriness or closed eyes) but in our
case the composition usually varies substantially more and requires
higher-level features for effective comparison.

To address this problem, we collected a new dataset that contains
15, 545 personal photos, organized in 5, 953 series. The dataset
consists of unedited photos from personal photo collections. The
contributors are photographers of varying ability, and the vast ma-
jority of the photos are “casual” – characteristic of typical con-
sumer photo albums. We conducted a study on Amazon Mechanical
Turk in which subjects were asked for preferences (and comments)
among 98, 780 pairs of photos, each pair from within a series, from
which we extract a ground truth ranking of human preference across
each series (F and % in Figure 1). With this data we also establish
a benchmark – training, validation and test sets, as well as a set
of criteria for evaluating new models for human preference against
the data. We believe this is the first large public dataset of unedited
personal photos designed to address the photo triage problem.

To model human preference, we experimented with several ma-
chine learning approaches based on hand-crafted features as well
as features established in the object recognition literature. Among
pairs of images where human preference is reasonably consistent
(�70% agreement), our best-performing model (based on a vari-
ant of the Siamese network prototyping from the VGG model) is
able to predict human preference 73% of the time. Comparing with
several baseline methods from previous research, we find the best-
performing one (from Khosla et al. [2015]) achieves 57% accuracy.

In addition to modeling human preference for automatic triage, we
also introduce two new applications for this kind of data. First, we
show that new images can be automatically enhanced by analogy
to other pairs of images in the dataset. Second we show that our
learner can be used to select “good” frames from video to provide
an overview of a shot.

2 Related Work

Photo Triage. With the ever-increasing size of personal photo
collections, photo triage has drawn the attention of both researchers
and developers in recent years. Drucker et al. [2003] design a user
interface which enhances viewing experience and eases the control
for users during photo triage. Jacobs et al. [2010] introduce the
notion of “cosaliency” – local structural changes between image
pairs – which facilitates the manual triage process by helping
the viewer easily see the differences between images. Both of
them aim at expediting the process of photo triage interactively,
while we propose a fully automatic approach for triage among
photo series. Zhu et al. [2014] focus on selecting more attractive
portraits from large photo collections based on facial features. In
addition to considering facial expressions, our paper addresses the
general (more difficult) problem, including natural scenes, urban
environments, interior scenes, cluttered scenes, and lone objects.

Image Summarization. Researchers have worked on summariz-
ing image collections The primary goal of this line of research is
to select a few representative images from a collection by jointly
considering photo quality, event coverage and scene diversity.
Sinha et al. [2011] propose content- and context-based optimiza-
tion functions for summarizing large personal photo collections.
Simon et al. [2007] propose a summarization approach that is more
tailored towards 3D scenes. The triage problem we address can be
viewed as a sub-problem of image summarization, as it focuses only
on finding good images from photo series, but does not consider the
representativeness of these images to the whole album, an essential
consideration in summarization. Our approach thus can be used as
a component to improve existing summarization systems.

Quality Assessment. An alternative way to deal with photo triage
is selecting by assessing quality for each photo in series. Re-
searchers have studied aesthetics or quality evaluation for photos,
and such methods can be used to determine a ranking among pho-
tos. Early efforts employ handcrafted features to evaluate visual
aesthetics and adhere to principles of photography. The features in-
volve both low-level features such as lighting [Luo and Tang 2008;
Bychkovsky et al. 2011; Kaufman et al. 2012; Yuan and Sun 2012],
texture [Datta et al. 2006; Tang et al. 2011] and color [Datta et al.
2006; Nishiyama et al. 2011], as well as high-level features such
as composition [Luo and Tang 2008; Bhattacharya et al. 2010; Liu
et al. 2010; Dhar et al. 2011; Guo et al. 2012; Park et al. 2012;
Zhang et al. 2013] and content [Dhar et al. 2011; Luo et al. 2011;
Kaufman et al. 2012]. Such approaches achieve good results by
using joint features to predict image aesthetics, but they are typi-
cally limited to heuristics inspired by the photographic guidelines
(e.g., the rule of thirds, golden ratio, and simplicity). Because
generic visual features are effective to represent semantic image
descriptors, methods like that of Marchesotti et al. [2011] and Mur-
ray et al. [2012] attempt to rate visual properties using features such
as SIFT [Lowe 2004], GIST [Oliva and Torralba 2001], and the
Fisher Vector [Marchesotti et al. 2011]. Ye et al. [2012] borrows
the idea of code book representations and automatically predicts
human perceived image quality without a reference image. Re-
cently, Lu et al. [2014] applied deep neural network approaches
and outperformed handcrafted and generic visual features on an
aesthetic dataset. For the benchmark introduced in this paper, the
best existing method we have found is the “memorability” score of
Khosla et al. [2015], which is out-performed for this task by new
approaches we introduce. The general strategy of establishing an
absolute assessment across the range of images found in a typical
photo album is more difficult than finding a relative ranking among
a series of similar photos (Figure 2), and existing methods for find-
ing absolute scores tend to provide similar scores across a series.

Datasets for Aesthetics Assessment. Prior datasets for aesthetic
analysis of photos have been obtained from online photo sharing
communities. Photography enthusiasts, including both amateur
and professional photographers, share photos and rate those taken
by peers in these communities. Datta et al. [2006] compiled a
dataset containing more than 3,000 images from Photo.net, with
scores ranging between 1 (ugly) and 7 (beautiful). The CUHK
dataset of Ke et al. [2006] contains 60,000 images from DPChal-
lenge.com, with binary labels (good or bad). The AVA dataset of
Murray et al. [2012] compiles aesthetic judgments from on-line
communities of photography amateurs to obtain 250,000 images
with human rated aesthetic scores. It has been used for evaluation
in the most recent aesthetic assessment research. The dataset pre-
sented in this paper complements these prior efforts in three ways.
First, our data are collected from raw photo albums (rather than har-
vested from online sharing communities) so the photos themselves
are characteristic of personal albums – they have not been pre-
filtered for quality by the owners, nor have the photos themselves
been edited. Second, our photos are organized into a collection of
photo series. Third, our images are complemented by crowdsourced
human judgements that allow us to rank photos within a series.
These three attributes uniquely tailor our dataset to the problem of
triage among photo series.

3 The Dataset

To understand how human beings evaluate similar photos, we first
collect 5, 953 photo series from a large group of contributors,
containing 15, 545 personal photos. We then conduct a crowd-
sourced user study on people’s responses in these series that con-
tains 98, 780 preferences and rationales in total. In this section, we



first describe the methods and apparatuses of our data collection
and user study process in more detail, then provide an analysis of
the user study results.

3.1 Collecting Personal Photo Series

Since there’s no public dataset to address the problem of photo
triage for a series of shots, we describe in this section how we
build a dataset specially targeted at this problem. But there are
strong restrictions concerning the availability of data imposed by
our goals. For example, we intend to collect unedited, complete
photo series from personal albums. Such data is hard to harvest
online, since most online public photo sharing sites (e.g. Flickr)
only contain images that the users have selected to submit, and most
users only select a small number of good photos from their photo
series to share. Furthermore, a large portion of images submitted
to these sites have already been edited or enhanced. Other cloud
storage services such as Apple iCloud do store users’ raw photo
series, but their data is inaccessible. In order to collect a large
scale personal photo series dataset for open academic research,
we designed and ran a contest that was open to college students,
faculty, and staff. In the contest, we asked participants to submit
unedited or slightly edited personal photo albums, where image
sizes are larger than 600 ⇥ 800 pixels. The contest lasted for two
weeks, and we have collected over 350 album submissions from 96

contributors.

To identify photo series from all the submitted images, we first
discard redundant shots, e.g. those captured in a burst session,
as the differences among them are too subtle to be treated as
a series. We achieve this by sorting images according to the
dates in their metadata, and computing the Root Mean Square
(RMS) color difference between neighboring images downsampled
to 128

2. Duplicates are identified when the RMS difference is
smaller than a threshold (0.06 for normalized colors in [0, 1], found
by experimentation).
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(d) Benchmark statistics

Figure 3: Dataset properties. (a) Distribution of categories is consistent with
personal photo collections. (b) Turkers generally agree with the photo contributors’
favorite photo in a series. (c) MAP error declines with increasing number of human
comparisons, converging by ten times the group size. (d) Distribution of group sizes
and labeled pairs within the training, validation and testing sets of our benchmark.

To find photo series from remaining images, we extract SIFT de-
scriptors and build scene correspondences based on SIFT match-
ing [Lowe 2004] between neighboring images. If two neighboring
images have good scene matching, we group them together into a
series. However, local feature matching cannot handle special cases
such as one of the two images having severe camera motion blur. To
handle such cases, we also check the color similarity between two
images as another metric to merge images into series, measured by
the earth moving distance of the color histograms. Finally, since
a large portion of user photos contain human faces, we apply face
verification using the Face++ Toolkit [Megvii Inc. 2013; Zhou et al.
2013] in all the merged photo series. For semantic consistency, we
expect each series contain the same group of people. If a series
contain different groups in different images, we split it into smaller
ones based on face identity. We also do not allow a series to have
more than 8 images. If a series contains more than 8, we split it
by using variant k-means on the 116-dimension global features as
depicted in [Wang et al. 2013], where the center is a representative
photo instead of a mean. After gathering all the clusters automati-
cally using the process described above, we manually checked the
resulting series to filter clusters with terrible image quality or pri-
vacy concerns (such as credit cards).

This data collection and selection process yields 5, 953 photo
series: a few examples are shown in Figure 1. Together with
Figure 3(a), they show that our dataset contains a wide variety of
photography subjects, including portraits, group and family photos,
selfies, urban scenes, objects and food, interiors, natural landscapes,
animals and water scenery. They also show that images in our
dataset contain large variations in composition, human pose, color
and lighting characteristics, etc.

3.2 Crowdsourced Ranking

To obtain human preference on images in each photo series, we
employ the Amazon Mechanical Turk (MTurk) [Kittur et al. 2008]
for a crowd-sourced user study. Given that our goal is to develop
a relative photo quality metric instead of an absolute one, we ask
participants to perform pairwise comparisons on images from the
same series. For each comparison, a pair of photos are randomly
selected from a series and are shown side-by-side, each fitted into
a 640x640 frame with the original aspect ratio. The question we
ask for each pair is: “Imagine you take these two photos, and
can only keep one. Which one will you choose, and why?” We
used a forced-choice methodology in order to better measure small
differences. Participants are also required to fill out at least one of
the two forms: one describes the reason(s) why a particular photo
is preferred (positive attributes); the other describes the reason(s)
why the other photo is not preferred (negative attributes). The
purpose of asking for written explanation is two-fold: (1) it forces
the participants to make justifiable decisions, thus the quality of
gathered user data is higher; (2) the user comments carry insightful
information that can guide us on feature extraction.

The pairwise comparison results are used to obtain a global ranking
for each image in a series. Denote the pairwise comparison
annotations as a count matrix S = {si,j}, where si,j is the number
of times that the ith photo Ii is preferred over the jth photo Ij .
We use the Bradley-Terry model [1952] for obtaining the global
ranking, which describes the probability of choosing Ii over Ij
as a sigmoid function of the score difference between two photos
�i,j = ci � cj , i.e.

P (Ii > Ij) = F (�i,j) =
e�i,j

1 + e�i,j
(1)



The score parameter c can be estimated by solving a maximum a-
posteriori (MAP) problem. Since we assume the prior is a uniform
distribution, the objective is to maximize

logPr(S|c) =
X

i,j

si,jF (�i,j) (2)

which could be solved by using gradient descent.

Previous work [Zhu et al. 2014] shows that the convergence of the
MAP estimation typically occurs in a linear rather than a quadratic
number of pairwise comparisons. We thus conduct a pilot user
study to determine the linear coefficient k, i.e. k(n � 1) pairwise
comparisons need to be collected when the size of the series is
n. In the pilot user study, we evaluated the MAP estimation on
15 photo series of different sizes with varying numbers for the
linear coefficient. As illustrated in Figure 3(c), all MAP averages in
different series converge by k = 10. Thus in our subsequent study,
we gather d20/ne responses per pair in a series of n photos.

3.3 Analysis of Crowdsource Data

We have received 98, 780 responses from MTurk in total. We
briefly report some interesting findings from the results here.

Preferences

It is clear that people have different levels of consistency on eval-
uating different image pairs. In Figure 7, we show example pairs
of different levels of agreement. For pairs that have clear human
preferences, the compared images often differ significantly in some
image features, making automatic prediction easier to succeed. For
examples with more diverse options, it is a harder job for an au-
tomatic algorithm to make a decision that is consistent with the
majority. Therefore, the problem of automatically predicting hu-
man preference becomes easier as the level of agreement increases
(Figure 7b-f). Difficulties are well balanced across our dataset (top
of bars).

One may argue that evaluating personal photos can be subjective,
depending on whether or not the viewer has prior knowledge
about the scene/people in the photos. We conducted an additional
experiment to investigate whether MTurk reviewers’ preferences
are consistent with those of the photograph owners. We selected
551 sampled series from 10 owners, and asked the album owners
to select the ones they like most from their own photo series.
The results are shown in Figure 3(b). In 358 out of 551 series,
the owners made exactly the same decisions with the collected
intelligence of MTurk reviewers. In addition, in 69.5% of the
series in which album owners made different choices, the MTurk
reviewers also had relatively low consistency among themselves.
We thus conclude that MTurk responses offer a reasonable proxy
not just for generic human preferences but also for photo owners,
on our dataset.

Comments

To better understand the determining factors when people compare
similar images, we extract the most frequent double-word phrases
from the comments, including both positive and negative one, as
visualized in Figure 4.

For negative reasons, blur, dark lighting, washed colors, and dis-
tracting foregrounds or backgrounds were the primary topics of dis-
cussion. For positive reasons, less blurry, clearer and closer photos
showing more detail, and brighter colors were highlighted. People
also liked wide angle shots often. These findings provide a useful
guidance for defining features for an automatic recommendation
system.

(a) Reasons for preferred photos (b) Reasons for rejected photos

Figure 4: Word clouds visualizing most frequent rationales for photo preference.

3.4 Benchmark

To facilitate future research, we set up an online benchmark for
photo triage which may be found together with our dataset and
models at our project webpage phototriage.cs.princeton.edu.
We divide the whole dataset into three subsets. Out of the 5,953
series, 4560 are randomly sampled for training, 195 for validation,
and the remaining 967 for testing. Figure 3(d) shows a detailed
breakdown for each set. Upon the acceptance of the paper, we will
release all of the images but only the human labels for the training
and validation sets will be publicly available. New results on the
testing set can be submitted through an online interface, and will be
evaluated by two metrics: log likelihood and accuracy, which will
be explained in more detail in Section 5.

4 Modeling Preferences

Based on our dataset, we propose a variety of methods for learn-
ing and predicting human preference in evaluating photo series,
including both feature-based approaches (Section 4.1) and end-to-
end deep learning (Section 4.2). In Section 5, we quantitatively
compare these methods with previous approaches in the literature.

4.1 Feature-based Learning

Extensive work has been done on extracting or learning features
for photo aesthetics assessment [Nishiyama et al. 2011; Kaufman
et al. 2012; Zhang et al. 2013]. To address the new problem
of learning human preference between a pair of similar images,
we first explore assorted features motivated from either heuristics
or prior work, including color and lighting statistics, clarity, face
factor, composition, and content.

Hand-tuned Features

Color and Lighting As revealed by our user study results, people
are usually sensitive to color and lighting differences between two
photos of the same scene. For measuring them we compute a
standard color histogram feature of 16 bins in L*, a*, and b*
channels in CIELAB color space.

Face. From the MTurkers’ comments on portrait photos, the
dominant facial features are “smiling face”, “closer face”, “face
angle”, and “eyes”. We detect face position, areas, angle, smileness
and eye openness using existing methods [Cootes et al. 1998; Cao
et al. 2014], and normalize them to [0, 1]. Since multiple faces
could be detected, we extract the median of all face positions,
both the median and max of face areas, angle, smileness, and eye
openness as the face feature.

Composition. In previous work, general composition rules such as
the rule of third and the rule of diagonals are widely used for photo
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aesthetics evaluation [Liu et al. 2010; Dhar et al. 2011]. These
approaches detect the salient objects as foreground regions in an
image, and use their locations for evaluating composition. In our
problem, aside from detecting salient regions in a single image, we
need to further discover the common salient region that appears in
both images, and explore its composition difference. To achieve
this, we first segment both images into 600 superpixels using
Ren et al.’s method [2003]. We then compute pixelwise saliency
maps using the method proposed by Judd et al. [2009], and compute
the average saliency for each superpixel. Next, we build non-
rigid dense correspondence between two photos [HaCohen et al.
2011], and select the common foreground region as a set of salient
superpixels that appear in both images. We encode the foreground
saliency map as a 900 dimension vector by downsampling to
30⇥ 30, and use it as the composition feature.

Clarity. Having motion blur or being out of focus is a common
problem in casual photographs. For blur detection, we compute the
clarity score using the CORNIA metric [Ye et al. 2012], in both
the entire image and the extracted shared foreground region. This
is motivated by the observation that a sharp foreground against a
blurry background is often visually pleasing, although its overall
clarity score could be low.

Deep Features

Content. Convolutional networks (ConvNet) have been shown to
produce high quality image representations. Deep features trained
for object classification have been successfully applied to a variety
of content-related computer vision tasks such as object recognition,
object detection [Girshick et al. 2014; Ren et al. 2015b], and
recognizing image styles [Karayev et al. 2013]. We take features
pre-trained on the ImageNet dataset via AlexNet [Krizhevsky et al.
2012] and the 16-Layer VGGNet [Simonyan and Zisserman 2014],
and extract the response of the second-to-last fully connected layer
as our content features. Both feature sets have 4096 dimensions and
are computed from center crops of images resized to 256

2.

Combining Features

We concatenate the hand-crafted features with deep features de-
scribed above from a given photo pair, and preprocess the fea-
ture vectors by a whitening transformation. We then train a Ran-
dom Forest classifier [Breiman 2001] and Support Vector Machines
(SVM) with Ridge normalization to learn which image in the pair
is more preferable as a binary label. In the Ridge SVM experiment,
we set alpha to 1.0 and use the LSQR solver [1982]. In the Random
Forest method, we fit 100 trees on the sub-samples of the dataset.
We evaluate the performance of hand-tuned features, deep features,
and the fusion of both in the Section 5.

4.2 End-to-End Learning

In this section, we explore using ConvNet to design an end-to-
end prediction model. Recent success on image representation
learning illustrates the power of learning image features directly.

Figure 5: Siamese architecture: Features are first extracted from each of the pair of
images by two ConvNets with shared weights. Then the difference of the features are
passed through two levels of hidden layers, with 128 channels activated by tanh.
Finally a two-way softmax decides which image is preferred.

Since AlexNet was used in ImageNet image classification chal-
lenge, convolutional neuron networks have dominated the chal-
lenge leaderboard and been constantly improved [Szegedy et al.
2014; Simonyan and Zisserman 2014; Szegedy et al. 2015; He et al.
2015]. The main benefit of using convolutional neuron networks is
that they can learn the image representation and prediction model
directly (end-to-end learning). The success of convolution net-
works demonstrate that the learned representation can outperform
the hand crafted features in the classification task.

A natural question is how we can learn image representation for our
task. The main difficulty is lack of data. Although we have more
than 10,000 images in our dataset, it is still far less than the number
of images used to successfully train a deep convolutional network
from scratch. Because the network for learning natural image
representation usually requires millions of parameters, network
training without large amount of data can easily get stuck in bad
local minimum. This problem also exists for most of the computer
vision tasks. While there are millions of images available for
classification, there are fewer images for the other tasks such as
object detection and segmentation, since it is much harder to obtain
accurate ground truth annotations. One way to solve the training
problem is to have good initialization. To achieve this, researchers
have tried to adopt the network designed for image classification
together with the model trained on the millions of images to new
tasks such as object detection [Girshick 2015; Ren et al. 2015a],
semantic segmentation [Long et al. 2014; Yu and Koltun 2015],
memorability [Khosla et al. 2015] and so on. The adoption involves
two steps. The network is first extended to a new domain by adding
new components [Long et al. 2014; Hariharan et al. 2014; Yu et al.
2015]. For example, for semantic segmentation in [Long et al.
2014], instead of predicting a single label for the whole image, the
classification network can be extended to predict a label for each
pixel by adding upsampling layers. Then in training, the extended
network is initialized by the model parameters pretrained on the
image classification task, and then it is fine-tuned with the data
for the new task. This fine-tuning scheme is working very well
and the resulting algorithms can achieve better performance than
those using hand-crafted features. Furthermore, it is found [Yu
and Koltun 2015] that even if the original network is slightly
modified, the pretrained model parameters can still act as effective
initialization. Therefore, we try to design a network based on
existing architecture and fine-tune the network parameters on our
dataset.

To extend the image classification network, we have to consider
several differences of our problem. Firstly, the networks for
image classification only take one image as input and make the
prediction, while our prediction depends on a pair of images. Also,
the features for an image should be the same no matter whether
the image is the first or second in the pair. This leads us to
consider Siamese architecture to learn extracting image features.
In Siamese architecture [Bromley et al. 1993], two inputs are sent
into two identical sub-networks independently, which share the
same network parameters in both training and prediction phases.
As shown in [Bromley et al. 1993; Chopra et al. 2005; Bell and
Bala 2015], Siamese network can learn image embedding when the
supervision is the distance between two inputs. However, in our
problem, we only have a binary label for which input is preferred.
Also, if we swap the two inputs, the label is supposed to be flipped.
This motivates us to design a new cost function based on Siamese
architecture.

We now put forth the idea more concretely. The input of our model
is a pair of images (I1, I2) 2 I⇥ I, where I is the space of images.
We aim at learning a function p : I⇥ I 7! {�1, 1}, where 1 means
the first image is better and �1 means the opposite. The definition
requires p be skew-symmetric, that is, p(I1, I2) = �p(I2, I1).



To achieve this, we decompose the prediction function into two
stages s : I ⇥ I 7! Rn and f : Rn 7! {�1, 1} so that p(I1, I2) =
f(s(I1, I2)). Conceptually, s is the n-dimension feature extraction
function learned from the input image pairs and f classifies the
features computed by s. We observe that if s is skew-symmetric
and f is odd, p is skew-symmetric. We use a Siamese architecture
to learn s, and use a multi-layer proceptron to learn f . The details
of the two stages are explained in the following two paragraphs.

At the first stage of learning s, two input images are first passed
to two identical sub-networks with shared weights (parameters).
The final output of the first stage is the difference of the outputs
of the two identical sub-networks with different inputs. Different
from most of the other uses of the Siamese architecture, we don’t
compute the distance of the outputs from the identical networks,
because our label for the input image pair doesn’t tell us how similar
or dissimilar they are. Instead, we pass the difference to the second
stage to classify which image is better. In our implementation,
we try both AlexNet and 16-layer VGGNet as the sub-networks
and initialize them with the weights trained on ImageNet dataset.
However, the last fully connected (FC-1000) and soft-max layers
are removed. So the output dimension of each sub-network is 4096.
To guarantee that the sub-network can produce the same results
when they take the same inputs, Dropout layers are also removed.
We find this is helpful for training the network.

At the second stage of learning f , a multi-layer perceptron classifies
the features of the image pairs. In our perceptron, there are two
hidden layers, each of which has a 128-dimension output. Each
hidden layer comprises a linear fully connected layer and a non-
linear activation layer. Because f is supposed to be odd, we use
tanh in activation layers. The outputs of the second hidden layer
are fed to a two-way Softmax. The outputs of Softmax indicate
which of the two input images is better. We do not use Dropout for
regularization because we find that Dropout can prevent the training
from reaching convergence in our experiments.

We concatenate these two stages of network and train them together.
AlexNet and VGGNet take input images of size 227

2 and 224

2,
respectively. Therefore, we resize each image so that its larger
dimension is the required size, while maintaining the original aspect
ratio and padding with the mean pixel color in the training set.
Stochastic gradient decent (SGD) is used to optimize the network
with L2 regularization. The learning rate is 0.001. The momentum
is 0.9 and weight decay is 0.0005.

5 Results

We evaluated different methods at two levels: series-level and pair-
level, both visualized in the pair of bar charts in Figure 6. The
series-level evaluation measures the log likelihood orderings over
all series as follows. For a series k, given the human preferences
on each image, we identify the one most preferred by humans as
winner(k). For a method M , we apply it to all image pairs that
include winner(k) and another image in that series. Next we
compute the logarithm of the joint probability of the decisions of
method M on all such pairs.

logLk(M) =

X

i 6=winner(k)

logP (M,winner(k), i),

where

P (M, i, j) =

(
Pr(Ii > Ij),M predicts photo i better than j
Pr(Ij > Ii), otherwise

Pr(Ii > Ij) is calculated according to Bradley-Terry model (see
Section 3.2). The resulting log-likelihood value is negative, and
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Figure 6: Benchmark performance of various methods, where further to the right
indicates better performance in all cases: (a) Log likelihood of predictions made
by each method, based on human preferences in the testing set, where values are
normalized such that random guessing has value -1. (b) Each method’s accuracy
in predicting human preference among pairs where humans agree at least 70% of
the time. Overall, VGG Siamese is our best performing method, beating our other
proposed approaches as well as baseline methods from previous work.

visualized in Figure 6 relative to a naive baseline of random
guessing. The reason we use the log-likelihood measurement
instead of the frequency with which a particular method selects the
best image is that series of different sizes have different levels of
difficulty – it is harder to choose the best one from larger series
than smaller ones.

On the pair level, considering that some pairs have a clear human
preference while others do not (Figure 7), we only choose pairs
where the majority agreements is over 70% calculated by Bradley-
Terry model as test pairs, and compute the accuracy of different
methods on these high-consistency pairs.

In both results shown in Figure 6, the “oracle” predictor selects
the majority of human votes, while “average human” selects each
photo with the probability proportional to the human votes, which
represents the average performance of a single person.

We also identify several previous approaches for comparison.
CORNIA [Ye et al. 2012] is a codebook-based approach for non-
reference image quality assessment. This work deals with general
low-level quality attributes such as noise and blur. Given a photo
pair, CORNIA provides a distortion score for each photo and the
one with the lower score is considered to be better. Although it uses
only low-level features, it performs reasonably well on our dataset,
given that image sharpness is a main factor for comparing similar
images, according to the user study results.

RAPID [Lu et al. 2014] uses a deep neural network to evaluate the
aesthetic quality of a given image. Taking cropped and resized
photos as features, it produces a probability of whether a given
image is high-quality. We use this probability to make the decision
when comparing an image pair. While their approach works well
on the AVA dataset [Murray et al. 2012], its performance in our task
is close to random guess, which implies that their neural network
is incapable of differentiating images that are in similar aesthetic
levels and image styles. Liu et al. [2010] proposed OPC, which
uses several aesthetic guidelines for evaluating photo composition.
We use this score as a criteria to compare the aesthetics quality of an
image pair. The performance of this method on our dataset is also
close to random guess. This is because composition is only one
factor among many others when people evaluate similar images,
and a few photography rules are not comprehensive enough for
describing the subtle composition differences among casual photos.
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Figure 7: Photo pairs in validation and testing sets that have greater human agreement tend to be easier to predict. (a) The performance of our best predictor (Siamese) relative to
increasing deciles of human agreement. (b-f) Examples of prediction failures and successes from these deciles, where the upper photo is preferred by the majority of humans.

MemNet [Khosla et al. 2015] computes a global memorability
score for each image. It is trained on the largest annotated image
memorability dataset (LaMem) that contains 60,000 images. The
network architecture is based on AlexNet. The model is pre-trained
on scene and object images and then fine-tuned on LaMem. It is
shown that MemNet can reach human consistency in predicting
memorability. Intuitively, the preferred image in a series may be
the most memorable one, so we also evaluate this model on our
dataset. Our results show that MemNet outperforms other previous
methods, indicating that memorability has a strong connection with
how people choose images in photo series.

Figure 6 shows that both our feature-based methods and end-to-
end learning approaches outperform previous methods by both
measures. The methods only using ConvNet features perform better
than only using handcrafted features, which implies that mid-level
features are important in the photo triage problem. Combining
both features further improves the performance. While the hybrid
method that combines handcrafted features with VGG performs
slightly worse than the AlexNet counterpart, the VGG Siamese
method achieves the best performance overall – highest likelihood
with 73% accuracy.

In Figure 7, we further analyze the performance of the end-to-end
model on subsets of data with different levels of human agreement.
It shows that as human opinions become more consistent, the
performance of our model on both validation and testing sets also
increases. We pick five examples of photo pairs, each from one
human agreement level, to illustrate some success and failure cases.
For Figure 7(b), our predictor does not pick the slightly better one,
but human decisions are also widely divided. For pair (d), people
prefer the upper one, perhaps due to a small back-facing person
in the lower photo; but our method fails to recognize it given the
current Siamese network takes low resolution images as input. For
pair (f), the upper scene is heavily occluded, but people prefer
it because it shows that the game is well-attended. Our model
cannot capture this high level, semantic image interpretation. The
successful predictions of our model on pairs (c) and (e) show that
our model can make correct decisions based on different factors
such as composition and color in each specific case.

6 Applications

A direct application of our work is to develop smart album viewers.
In addition to providing faster photo triaging, a smarter viewer
could automatically identify photo series, and show only the top
images for each series instead of presenting all images in it to the
user at once. This allows a more efficient interface to manage
photo albums and the photo series in them. Beside triage, here we
describe a few other photo and video editing applications that can
benefit from the proposed dataset and methods.

Automatic Photo Enhancement

We have discovered that in our dataset, there are plenty of im-
age pairs where one photo is strongly preferred over the other for
only one major reason, such as composition, color, or exposure.
Such pairs are valuable examples to learn not only human prefer-
ence in each aspect, but also the corresponding transformation for
improving human preference that can be applied to a new photo.
We present a new example-based photo enhancement framework
similar in spirit to Image Analogy [Hertzmann et al. 2001]. We
demonstrate two applications of this framework: auto crop and
color correction.

We first build a dataset of photo pairs for each application. We col-
lect photo pairs such that for each pair after applying a transforma-
tion (color or crop), the less favored photo (Bi for “bad”) becomes
visually similar to the preferred one (Gi for “good”). Next, given
a new photo N , we search through all pairs in the dataset and find
the pair i for which Bi is most similar to N (by L2). Then we can
automatically apply a transformation to make an enhanced image
E by the analogy Bi : Gi :: N : E.

The search for the nearest Bi depends on the operation. For color
correction, we concatenate L*a*b* color histogram and content
features introduced in Section 4.1. For auto crop, we only consider
images Bi that have roughly the same aspect ratio as N , and extract
GIST features with 8 blocks (images resized to 256

2) for finding
the nearest neighbor. (We also tried content features as we did
for color correction, but in our experiments found GIST features
perform better for describing the geometry for cropping purposes.)

Next we compute a transformation from the selected photo pair
and apply it to N to produce E. For cropping, we (1) use SIFT
matching [Lowe 2004] to find a perspective transformation from
Bi to Gi; and (2) if this is nearly a similarity transformation, we
choose the crop that best approximates it. For color correction, we
use the NRDC approach [HaCohen et al. 2011] to find a global
color mapping from Bi to Gi. Figure 8 shows two examples of
enhancements made by this method, and more examples may be
found on our project webpage phototriage.cs.princeton.edu.

Original Commercial Ours
Auto Crop 22% 29% 49%

Auto Color 9% 48% 43%

Table 1: Comparison of our proposed automatic cropping method with AutoCrop
feature in Photoshop Elements, and our automatic color enhancement with AutoTone
in Lightroom. Humans compared the original and two automatically enhanced photos.
Percentages are fraction of photos where a particular variant was most preferred of
the three options. Our cropping method performs best. Even though humans prefer the
Lightroom enhancement most often, ours is still preferred in many cases.

http://phototriage.cs.princeton.edu
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Figure 8: Automatic enhancement. The original (a) is improved either by a commercial product (b) or our proposed method (c). In the proposed method, a nearest neighbor (d) is
found in the dataset where a better alternative (e) from the same series implies a transformation (f) that can be applied to the original (by analogy) to improve it.

To objectively evaluate the proposed editing framework, we apply
it on two new test datasets: one with 468 images for cropping;
the other with 556 images for color correction. We conduct
additional MTurk user studies to compare our results against the
originals, as well as the automatic enhancement results produced
by Adobe “Auto Crop” and “Auto Color” features. The results are
reported in Table 1, suggesting that our results are in general quite
comparable to those produced by existing commercial tools that are
dedicated for these tasks. Although the nearest image Bi found in
this relatively small dataset often has very different content than
the input N , they share similar characteristics in either color or
composition. Thus the computed transformation can often produce
reasonable results. Nevertheless, we expect the performance of this
approach to improve with a larger dataset.

Video Filmstrips

A number of applications rely on a “filmstrip” that summarizes
a video clip. These are often shown in video browsing and
editing software as well as browsers for video on smart phones.
Uniformly sampling frames from the video sometimes chooses
good frames and sometimes bad ones, essentially by luck. A line
of research seeks to summarize video by various approaches, for
example modeling human attention [Ma et al. 2002]. We propose a
simple alternative approach based on our learned model of human
preference among a series of photos. We extract sequential groups
of keyframes from the video, uniformly sampled in time, and
choose the “best” from each series using our learned model for
preference. This approach is compared with uniform sampling in

Figure 9: Video Filmstrips. Uniformly sampling in time (first and third rows) gets a
mix of good and bad frames. Our approach (second and fourth row) uses our learner
to pick the “best” frame from a region around each uniformly sampled frame. Video
frames courtesy of the Flickr users Oleg Sidorenko (upper) and Juhan Sonin (lower).

Figure 9. These examples are about 80 sec, so each frame of the
filmstrip represents about 16 secs or 480 raw frames of video (from
which our method chose the “best” of around 30 keyframes). In one
case the same frame is chosen, but more often than not we find the
frames selected from our video are indeed better than the uniformly
sampled ones.

7 Discussion and Future work

We study the problem of evaluating relative image quality in a series
of photos capturing roughly the same scene, a key step towards
automatic, intelligent triage of personal photos. Our contributions
include the first large-scale photo series dataset collected from
personal photo albums, with quantitative human preference for each
image obtained through a massive user study. We propose several
learning approaches that outperform previous methods on this task,
and further show how the proposed method can be used for other
applications such as image cropping and color adjustment.

Although significant progress has been made in this work, it is
worth noting that even our best result is still significantly lower
than the average human performance. However, we are optimistic
that in the foreseeable future, more advanced solutions can be
developed to achieve human performance on this task. Here we
discuss a few possible directions for future exploration. From the
user comments received from the user study, it is clear that people
use features at all levels for reasoning about the relative quality
when comparing similar images. When low-level and mid-level
features are similar, people tend to rely on high level ones such as
“interestingness” of the subjects to make a decision. Currently our
model only learns low-level and mid-level features, but does not
apply semantic level scene understanding, which is an open area for
future improvement. Moreover, our current model outputs a binary
decision for preference among a pair of photos. It would be useful
for many applications to train a regression model that indicates how
strongly one image would be preferred over another. However, this
problem is more challenging, and remains for future work.

We have also discovered from the user comments that people often
look at very different set of features when evaluating photos of dif-
ferent scene categories. For example, in photos that contain people,
their appearance strongly dominants the evaluation results. This
suggests that a better strategy may be to first classify images into a
few distinct categories, then learn a specific model in each category
for evaluation. Such categories may be automatically generated by
analyzing the user comments, and grouping photos that are associ-
ated with similar keywords. Furthermore, our current models only
include facial features, but the user comments suggest that other
human attributes, such as pose or gaze, are also important features.
Including these features may further improve the performance.
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