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Abstract

Methods for triangle mesh decimation are common; however, most
existing techniques operate only on static geometry. In this pa-
per, we present a view- and pose-independent method for the auto-
matic simplification of skeletally articulated meshes. Such meshes
have associated kinematic skeletons that are used to control their
deformation, with the position of each vertex influenced by a lin-
ear combination of bone transformations. Our method extends the
commonly-used quadric error metric by incorporating knowledge
of potential poses into a probability function. We minimize the av-
erage error of the deforming mesh over all possible configurations,
weighted by the probability. This is possible by transforming the
quadrics from each configuration into a common coordinate sys-
tem. Our simplification algorithm runs as a preprocess, and the re-
sulting meshes can be seamlessly integrated into existing systems.
We demonstrate the effectiveness of this approach for generating
highly-simplified models while preserving necessary detail in de-
forming regions near joints.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Algorithms

Keywords: mesh simplification, level of detail, kinematic skele-
tons, articulated meshes

1 Introduction

The problem of mesh simplification – reducing the number of poly-
gons in a mesh while preserving visual and geometric detail – has
been studied extensively. Most researchers, however, have consid-
ered the input mesh to be rigid. In this paper, we present an algo-
rithm that addresses the additional considerations that are required
to allow for automatic simplification of meshes deformed using an
articulated skeleton, which are commonly referred to as skinned
meshes. Most commercial games make extensive use of such mod-
els, and they are frequently used in feature animation.

A key observation that lays the foundation for our algorithm is
that given the advances in GPU speed, it is not practical to spend ex-
tensive time during execution to chose an optimal view-dependent
level of detail. In many cases, it is preferable to pass additional,
unnecessary polygons to the graphics card, in favor of spending
less work on the CPU. In line with this observation, we look to
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Figure 1: A full resolution model of a police officer is shown on the left,
with its simplified counterpart on the right. Faces are randomly colored,
in order to clearly show the triangulation. Note that the simplified model
maintains high detail around joints, such as the elbows, while detail in the
rest of the model is reduced.

find a view-independent simplification method that shifts as much
work as possible into the precomputation stage. However, as we
will see, nothing in our method prevents its incorporation into a
view-dependent system, in much the same way that other view-
independent simplification techniques have been used as the initial
simplification phase for view-dependent refinement.

A key challenge of simplifying deforming models is that, by def-
inition, they change configurations at runtime. If a mesh can be de-
formed arbitrarily, it will be impossible to pre-construct any mesh
that will be acceptable in all deformations. Our solution is to limit
the class of deformable meshes to those that are skeletally articu-
lated - a reasonable assumption given the large number of figures
that are animated in this manner, especially in interactive applica-
tions. The technique we use is often referred to as linear blend
skinning, and we discuss this in further detail in Section 3.1. Fur-
ther, we associate a probability function with the skeleton that pro-
vides the relative likelihood of each possible configuration. This
provides enough limitations on deformation to allow our algorithm
to find a single mesh approximation that minimizes the geometric
error over the corresponding probability distribution. In this paper



Figure 2: Edge Collapse. The edge (u, v) is contracted to w. The mesh
now has one fewer vertex, and two fewer faces.

we propose a pose-independent metric for simplification of articu-
lated meshes, and will demonstrate its use in a view-independent
simplification framework, although the metric itself is not tied to
any particular framework. We define the error to be minimized
as the root mean squared error of a model over all configurations
of the skeleton. This algorithm extends the QSlim algorithm of
[Garland and Heckbert 1997] by adding additional information on
possible configurations, which constrains simplification in deform-
ing areas, even when those areas are ideal for simplification in the
initial pose. Our main contribution is to show that given a linear
deformation model, we can encapsulate knowledge of all poses in
a single pose-independent quadric. Like QSlim, we approximate
model-to-model error by minimizing point-to-plane distance over
all edge contractions. Figure 1 shows an example of a posed police
officer model that has been simplified using our method. As can be
seen in the simplified version on the right, the deforming regions at
the joints have been preserved in higher detail than the surrounding
areas, resulting in a smooth bend in those areas.

2 Background and Related Work

Our work is based on the QSlim algorithm, which utilizes the
quadric error metric (QEM). This was introduced in [Garland and
Heckbert 1997], and analyzed in greater detail in [Garland 1998],
and our algorithm will be presented as a modification of QSlim.
Many other simplification methods exist, such as [Schroeder et al.
1992] and [Hoppe et al. 1993].

These basic simplification approaches have been applied to
a wide range of runtime applications, including both view-
independent (see [Hoppe 1996]) and view-dependent (see [Hoppe
1997]) dynamic simplification. This, in turn, has led to such appli-
cations as external-memory simplification [Lindstrom 2000]. The
quadric metric we use has also been adapted to a wider range of in-
put data, such as meshes with material properties (see [Garland and
Heckbert 1998] and [Hoppe 1999]). The user-guided simplification
of [Kho and Garland 2003] allows for greater control over detail in
user-specified areas. Other methods, such as [Lindstrom and Turk
2000] have looked to visual metrics for determining error, rather
than the geometric error used in previous simplification systems.

2.1 Quadric Error Metric

In the QSlim algorithm, simplification is performed by building an
error function defined on a vertex and an associated set of planes.
The algorithm then iteratively contracts (or collapses) the edges
with lowest error by selecting candidates from a priority queue.
Each collapse will decrease the number of vertices in the mesh by
one, and will usually remove two faces, as in Figure 2.

QSlim minimizes the function d(v), which gives the squared
distance of a vertex v from a set of planes adjacent to v, where

each plane p through point a with normal n is represented as
[nx, ny, nz,−n · a]′.
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p∈planes(v)
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We then define the vertex quadric Qv as the sum of the outer
product of the planes adjacent to v, and use this to represent d(v)
for a vertex v and its associated quadric.

Qv =
∑

p∈planes(v)

ppT (4)

d(v) = vT Qvv (5)

For the initial vertices in the mesh, d(v) will be zero, as is in-
tuitive. However, when two vertices u and v are considered for
contraction to a new vertex w, the error quadric follows the addi-
tive rule Qw = Qu +Qv , and error is computed as wT Qww. Note
that it is possible under certain conditions to directly solve for the
optimal value of w, as discussed in [Garland and Heckbert 1997].

Thus, the overall algorithm is as follows:

1. Compute the quadric corresponding to each vertex

2. Determine the contraction cost for each edge

3. Place the edges in a min priority queue sorted on contraction
cost

4. Remove the edge (u, v) with the lowest contraction cost from
the priority queue

5. Use the quadric to determine the optimal contraction target of
(u, v)

6. Contract u and v, and update the cost of all edges adjacent to
u and v.

7. Repeat steps 4 through 6 until the desired mesh resolution is
reached.

As will be explained in Section 3, our algorithm makes modi-
fications to the initial quadric computation of Step 1, and makes
additional changes in the iterative contraction stage of Step 6.

2.2 Deformation Sensitive Decimation

The previous work closest to our method is the Deformation Sensi-
tive Decimation algorithm proposed in [Mohr and Gleicher 2003].
The system is presented with a model to be simplified in k differ-
ent example poses, where each pose has the same connectivity, and
there exists a one-to-one mapping between vertices of each exam-
ple.

In the initial quadric computation phase, a vertex quadric Qi,v is
generated for each vertex v in each pose i, using the same method
as as QSlim, resulting in a total of kv quadrics.

During iterative contraction, the collapse cost of an edge (v1, v2)
is equal to the sum of contraction errors in all poses:

k
∑

i=1

ṽT
i (Qi,v1

+ Qi,v2
)ṽi (6)



where ṽi is the contracted position of the vertices v1 and v2. This
will have the effect of penalizing contractions that are unfavorable
in certain configurations. Contractions that are favorable in all con-
figurations will be performed first.

We analyze the running time of iterative contraction as follows:
for each contraction, O(log v) operations are required to select the
minimum contraction candidate, followed by O(k) operations to
recompute contraction error in the neighborhood of the contracted
pair. As the number of contractions is bounded by the total number
of vertices v, the running time of the iterative contraction phase is
O(vk + v log v).

Deformation Sensitive Decimation is shown to be a useful and
robust algorithm for simplification of animated models. It is im-
portant to distinguish the trade-offs between this method and the
method we are about to propose. First, DSD is more general in that
is supports arbitrarily deformation methods. Our system is limited
to linear-blend skinned models (see Section 3.1); however, given
the ubiquitous nature of such models, this is a reasonable constraint
for many application areas, especially those of an interactive nature,
such as computer games.

Additionally, as we will see in Section 3.2, the iterative contrac-
tion phase of our algorithm runs in time independent of the number
of sample poses, or only O(v log v). Also, our method differs from
DSD in that we propose a method for automated sampling of exam-
ple configurations, and only ask the user to provide an approximate
probability distribution, rather than requiring the user to explicitly
provide examples. Finally, we also propose a method for updating
influence weight values after an edge has been collapsed to a new
vertex that was not present in the original mesh.

2.3 Skeletally Articulated Simplification

Other researchers have developed user-assisted methods for simpli-
fication of skeletally articulated meshes. In contrast to these meth-
ods, our approach determines the amount of deformation directly,
without requiring manual marking, which not only saves artist time
but also allows greater simplification in regions around a joint that
are not significantly deformed, such as the sides of a knee.

In [Houle and Poulin 2001], the authors propose simplifying a
static pose of the articulated figure. A method is developed for
propagating the simplification changes, which are in world space,
back into bone space (the local coordinate system of each bone).
During iterative contraction, this method assumes that the influence
weights (used to control deformation of the model, as explained in
Section 3.1) will remain constant throughout simplification, which
may or may not be an acceptable approximation.

Another method, which requires the user to manually divide the
object into deformable and non-deformable regions, is presented
in [Schmalstieg and Fuhrmann 1999]. The deformable regions are
preserved to a greater extent than the non-deformable regions. Un-
like the previous paper, the authors do not make the assumption
that influence weights remain constant throughout simplification.
Rather, they provide a method to update the weights based on a
shortest-path graph traversal from a deformable node to adjacent
non-deformable regions, and assumes that the closer a vertex lies to
a bone, the stronger the influence will be. This approach has accept-
able results for many models. However, we consider the influence
weights to be an essential artistic product of modeling and content
creation. Weights determine the shape and size of creases and the
overall look of deforming bodies, and automated methods for reas-
signing weights may not preserve the artist’s intent. Thus we have
developed an approach that approximates the original weights in-
stead of computing new weights.

Others such as [Shamir et al. 2000] and [Shamir and Pascucci
2001] have proposed simplification of meshes that undergo arbi-

trary deformation as a function of time. Generally, these are speci-
fied as a sequence of frames, and are not subject to constraints such
as a skeletal framework. This is similar in principle to our problem;
however, those methods have the benefit of being provided all pos-
sible frames up front, while our algorithm is capable of handling ar-
bitrary skeleton configurations. Additionally, these methods focus
on runtime simplification, with an auxiliary set of data structures
such as the T-DAG of [Shamir et al. 2000] precomputed offline.
This is required due to the problem of arbitrary deformations, and
thus differs significantly from our approach.

Finally, a number of methods have been presented for Skeletal
Level of Detail, such as that presented in [Teichmann and Teller
1998]. This is in fact a different problem than the one we are ad-
dressing: the skeleton itself is simplified, so as to reduce the amount
of skinning computation, but the skin may or may not be simplified.
Our system directly addresses the simplification of the skin, not the
skeleton. However, an indirect benefit of our system is that as ver-
tices are contracted, certain bones will lose influence over skin tri-
angles. A natural extension would therefore be to perform Skeletal
LOD by removing bones, fusing them with their parent once the
number of influenced skin triangles has dropped below a certain
threshold.

3 Algorithm Specification

Our algorithm can be conceptualized as a set of modifications to
the QEM algorithm, and this section will provide the details of
those changes. First, in Section 3.1, we will formally specify the
input to our algorithm and state relevant assumptions, including the
skinning model. Then, we introduce our alternative initial quadric
computation step in Section 3.2. In Section 3.3, we discuss the
characterization of joints. We then detail our modifications to the
iterative contraction step, in Section 3.4.

3.1 Problem Domain

We define our problem as follows. We are given a skeletally articu-
lated mesh M = (V, F, B). V is a set of vertices v ∈ R

3, each of
which has an associated weight vector [wv,1, · · · , wv,|B|] ∈ R

|B|

that represents the bone influence weights on v. The set of faces
F ⊂ V × V × V , constitutes the triangle faces that make up the
mesh surface of the model.

B is the set of bones in the model skeleton. Each bone b ∈ B is
defined as b = (Mb, ρb(Mb), pb). The matrix Mb ∈ R3×4 is the
affine transformation induced by the bone, relative to the coordinate
system of its parent, pb ∈ B∪{∅}, where pb = ∅ indicates that b is
the root bone in the system. This can also be thought of as defining
a local coordinate system of b.

The probability of a bone b assuming a particular configura-
tion of Mb is given by the bone probability function ρb(Mb),
ρb : R12 → R

+, which is defined . The function ρb will be non-
zero for affine transformation matrices representing valid configu-
rations for b. Frequently, ρb can be as simple as a box function
indicating minimum and maximum values along each dimension,
though greater control can be achieved when a more accurate prob-
ability function is used, such as one obtained using motion capture
(see Section 3.3).

Although most general, it will rarely be intuitive to consider
specification of ρ as a function of R12. For the purpose of user
specification of probability functions, we find it useful to perform a
change of variables, and represent ρb(Mb) instead as ρ(tb, θb, sb).
Each of tb, θb, and sb are vectors in R

3, and represent respectively
the translation, rotation, and scale of the bone b about each of the
three canonical axes in the coordinate system of its parent, pb. This



corresponds closer to the intuitive notion of a bone, in which an
artist will conceptualize a bone as rotating a certain number of de-
grees, or translating to a given position. Using these parameters, we
can represent Mb as a product of standard translation, rotation, and
scaling matrices.

Mb = T (tb)R(θb)S(sb)

Our method is not limited to this choice of reparameterization,
though it has been shown to be useful and intuitive, and could easily
be extended to a more general form, such as one that includes shear
parameters.

The mesh will deform according to the configurations of the
bones and the corresponding influence weights of each vertex. We
can define a pose P as representing a particular configuration of
the skeleton, including all bone parameters, and denote the initial
pose P0. For any bone, we can perform a preordered traversal of
the skeleton tree to generate a matrix Mparent(b)(P ) that represents
the coordinate system of the parent of b, using pose P . Note that
for the root bone, this matrix is the identity.

The vertices in V are specified in the world coordinate system.
To perform skinning, a vertex v is transformed into the coordi-
nate system of a bone in the initial pose, by applying the matrix
Nb = (Mparent(b)(P0)Mb(P0))

−1, as computed for the initial
pose of the model. From this coordinate system, we can then trans-
form the vertex into the transformed coordinate system of a bone by
the application of Mparent(b)(P )Mb(P ), as evaluated in the current
pose P .

We combine, or blend, the influences of all bones in the sys-
tem by taking a linear combination of transforms, where each bone
transform is weighted by its corresponding vertex influence weight.
This allows for smooth creases and bends in the surface of the mesh.
Thus, the transformation of a vertex from initial world position to
the skinned world coordinates of a particular pose P is:

Mv(P ) =
∑

b∈B

wv,bMparent(b)(P )Mb(P )Nb. (7)

3.2 Initial Quadric Computation

In QSlim, the first phase is to compute the initial vertex quadrics,
Qv for each vertex v. In our algorithm, we modify this to define a
pose-independent quadric, which encapsulates knowledge of defor-
mations over all poses, in addition to the configuration of the static
initial mesh.

Consider the “leg” model in Figure 3. When the joint is rotated
90 degrees, the bottom of the knee will be deformed sharply. How-
ever, an ideal result would allow for drastic simplification away
from the knee, while preserving detail at the knee itself. In addi-
tion, if the knee can only bend 90 degrees down but cannot bend up-
wards, the bottom of the knee will be more significantly deformed
than the top, which is rounded rather than creased, and thus we
desire greater preservation of detail on the lower side.

To accomplish this, we must incorporate the planes of the de-
formed configurations into the vertex quadrics. For a vertex v and
a pose P , we can define the quadric-valued function Qv(P ), which
gives the quadric of v when the skeleton is put into the configuration
defined by P . We compute this by recomputing all the Mb matri-
ces accordingly, skinning the mesh, then computing the quadric of
v using the deformed coordinates rather than the reference coordi-
nates.

In QSlim, additional constraint planes are introduced by adding
quadrics. After joint deformation, however, we must not simply add
together the vertex quadrics from each of the resultant deformed
meshes. Vertex quadrics are variant under affine transformation,

Figure 3: Leg model, in the reference configuration and a deformed config-
uration. The black dotted line indicates the range of motion (i.e, the range
for which ρb is nonzero). We can see intuitively that the sections highlighted
in green should have the highest amount of simplification, the yellow section
above the knee should retain more detail, and the red section below the knee
requires the greatest level of detail.

Figure 4: Combining Quadrics. In the left column, the left joint is rotated
30° from the initial pose, while the area around the middle vertex has not
changed. Simply adding the quadrics at the middle joint gives the wrong
result, so the quadric from the rotated pose must be rotated back to the
initial pose. In the right column, both the left and middle joints have been
rotated, causing a deformation. The deformed quadric must be corrected to
remove the effect of rotation by the left joint, then combined with that of the
initial pose.

as will occur when the bones are placed into a new configuration,
even without deformation of the surrounding neighborhood. As an
example, consider the vertices at the right end of the leg in Fig-
ure 3. Their quadrics in the deformed pose will be at an angle to the
quadrics in the original pose, which when summed together would
result in a quadric with a high collapse penalty. However, these
triangles are in fact good candidates for simplification, as the lo-
cal curvature of the surface does not deform and the triangles are
coplanar.

Instead, we map the vertices into a common configuration, that
of the original pose, which we will call the reference coordinate sys-
tem. Because a vertex vi in pose Pi is known to be transformed by
Mv(Pi), the inverse M−1

v (Pi) will transform vi to v in reference
coordinates.

We can then write the error of a single vertex v over all poses
in our notation, substitute vi = Mv(Pi)v, then factor v out of the



summation.

d(v) =
k
∑

i=1

vT
i Qv(Pi)vi (8)

=
k
∑

i=1

vT Mv(Pi)
T Qv(Pi)Mv(Pi)v (9)

= vT

(

k
∑

i=1

Mv(Pi)
T Qv(Pi)Mv(Pi)

)

v (10)

The summation term of Equation 10 is a quadric, which we refer
to as the pose-independent quadric Qv . This can be computed at
initial quadric computation time, and then used as with quadrics in
standard QSlim. This derivation has a natural geometric interpreta-
tion as shown in Figure 4. In general, to transform a quadric Q into
Q′ through a transformation M , we have from [Garland 1998] the
rule:

Q′ ← (M−1)T Q(M−1) (11)

When we transform v by M−1
v (Pi), the corresponding transfor-

mation of the quadric Qv(Pi) becomes

Qv = (Mv(P ))T Qv(P )Mv(P ) (12)

as in Equation 10. We can then consider the application of
M−1

v (Pi) as removing the effect of bone transformation on the
quadric Qv(Pi), and isolating the effect due to deformation of the
surface. This transforms Qv(Pi) to the reference coordinate sys-
tem, where the quadrics can be combined. Because the bone trans-
formation is linear, it is easily invertible. This may not be possible
with more general, non-linear animation.

Because Qv(P ) is a continuous function, the sum of quadrics
for all valid poses is equivalent to integration over the domain.

Qv =

∫

valid P

ρ(P )Mv(P )T Qv(P )Mv(P )dP (13)

The function ρ(P ) =
∏

b∈B
ρb(P ), which is the probability

of the current pose, is written as the product of individual bone
probabilities. We now have an integral with dimensionality up to
12|B|. Clearly, direct quadrature methods are not applicable in this
situation. Instead, we apply a Monte Carlo integration technique,
which consists of replacing the evaluation of the integral with a
sum over random configurations. To reduce variance, we use the
Recursive Stratified Sampling technique as discussed in [Press et al.
2002]. In this method, we consider the domain to be sampled with
N samples as a rectangular parallelepiped R = (xa, xb), which is
specified by two opposite corners of the region. We then bisect R
along the longest dimension i, producing two subregions of equal
size.

Rai = (xa, xb −
1

2
ei · (xb − xa)ei)

Rbi = (xa +
1

2
ei · (xb − xa)ei, xb)

The vector ei is the unit vector in the i-th coordinate direction. Each
region is then allocated N/2 samples. When the number of samples
allocated to a region falls below some threshold N0, we uniformly
sample in the region. We then use the samples to compute a Monte
Carlo approximation to the integral for Qv .

Note that given the reparameterization from R12 into translation,
rotation and scale, the variables are no longer independent, as the
rotational parameters θb sample a spherical function. The sampling
pattern is required to take this into account, as in [Arvo 1995] so as
to avoid an unbiased estimator.

This quadric Qv now encapsulates the deformation of vertex v,
and can be used in the quadric error metric as usual. The overall
method for computing the initial quadrics is expressed in the fol-
lowing pseudocode.

function ComputeQuadrics()
{

for 1 to k
{

P = generate-configuration()
reskin-mesh(P)
ρtotal = ρtotal + ρ(P )
foreach(v ∈ V )

Qv = Qv + ρ(P )Mv(P )T Qv(P )Mv(P )
}

foreach(v ∈ V )
Qv = Qv/ρtotal

}

3.3 Constructing Joint Probability Functions

Box Function: For simplicity, in some cases a simple box function
will suffice. This can be defined as a function that takes the value
1/(b− a) in the range [a, b], and is zero everywhere else. It defines
a joint that has no preferred angle, position or scale, and can move
easily anywhere in its allowable range.
Gaussian Distribution: We may also add a “preferred angle” and
a “stiffness” factor to each joint, as is common in certain modeling
products for inverse kinematics animation. This will give a greater
priority to configurations near the preferred angle, and allows the
user to have greater control over the final simplified output. As an
artist may already set these values, this does not impose an extra
burden on content creators. For a preferred angle µ and a stiffness
σ, this probability function is represented as a Gaussian distribution
with µ and σ as the mean and standard deviation, respectively.
Predefined Animations and Motion Capture: In many cases, the
poses of animations will be known in advance. This may be the case
either due to manual animation of frames, or the result of motion
capture data. In the known examples, some bones may have imper-
ceptible movement, and it may be visually acceptable to simplify
their skin polygons as if they did not deform. From the examples
given, we can compute the probability distribution of the configura-
tions directly, and use this information to guide our simplification.

3.4 Iterative Contraction

Iterative contraction of edges in our system is mostly identical to
that of QSlim. Note that we maintain the desirable property of er-
ror quadrics that we may directly solve for the optimal position to
minimize error. However an additional consideration must be taken
for assigning influence weights to the newly-created vertex.

Each influence weight might be thought of as a continuous ver-
tex attribute, such as color, which would seem to lend the problem
to the attribute-preserving simplification of [Garland and Heckbert
1998] and [Hoppe 1999]. However, in our context, an influence
weight is not a property of the mesh distinct from geometry, but in
fact directly influences the final skinned geometry of the mesh.

We use the following method for updating weights after a vertex
collapse. We first compute the distances from the original vertices
v1 and v2 to the new vertex vcollapsed, which we refer to as d1 and
d2 (see Figure 5). We then use the expression t = d1/(d1 + d2)
as an interpolant for the linear interpolation between w1 and w2,
the weight vectors associated with v1 and v2, whereby the weight
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Figure 5: Weight Update Rule. The vertices v1 and v2 with an edge between
them (black line) are to be contracted to vertex vcollapsed. The distances
d1 and d2 are used to interpolate the weight vectors of the two vertices to
compute the influence weights of vcollapsed.

vector of the newly created vertex is wcollapsed = w1(1− t) + w2t.
Empirical validation for this method is given in Section 4.

During iterative contraction, there is a possibility that geometry
may “foldover,” that is, flip the orientation of a triangle, which pro-
duces visually unpleasant artifacts. We address this by disallowing
collapses where the normal of any triangle in the neighborhood of
the collapse would be rotated by more than 90 degrees in the refer-
ence pose. This proved to be reasonable, but a more comprehensive
solution might compute an average normal over all poses, or find
normal cones.

4 Experiments and Results

We tested our algorithm on several models, including a scanned
human leg, a police officer, and a horse. Our primary focus in the
results was on correctness and resulting mesh quality, rather than
speed, as our method is intended for use in a preprocess, yet sim-
plification times are shown to be closely comparable to standard
QSlim.

To show the amount of simplification across a model, we color
each face of the model based on its size, using a logarithmic scale.
The areas with the most simplification are red, and progressively
become blue in areas of less simplification. We have found this
to be a useful tool in analyzing simplification, though it is most
expressive when the original triangles are relatively uniform in size,
so that simplified regions stand out clearly.

The leg model, which was taken and modified from a Nvidia
skinning demo [Nvidia 2000], is a tapered cylinder that becomes
slightly smaller at one end, and bends up to 90° down in the mid-
dle. As can be seen in Figure 6, once the mesh is simplified, the
regions away from the joint are simplified dramatically, due to their
near-coplanarity. In the views of the simplified, undeformed models
(bottom row) we see how the region around the joint is preserved in
greater detail. Note that the bottom of the knee maintains higher de-
tail over a wider area than the top, due to the greater deformation of
the triangles. This is as was expected from Figure 3. Finally, note
how the side of knee is simplified more than the top and bottom,
as the vertices on the side are limited to positions in the plane of
their adjacent triangles in the original mesh. This would not occur
in systems that preserve detail based on distance to joints. When
the knee deforms, we see that the shape of the crease in the original
model is preserved in the simplified versions.

In Section 3.4, we give a method for updating the weight vector
after iterative contraction. We compared the results of this method
to the results of using a procedural weight function to recompute
vertex weights. Most models will not have a procedural specifica-
tion for influence weights, so the performance of the weight update
rule is critical. In our example, we found that for moderate simplifi-
cation (13 percent of original), the root mean squared difference in

weights is insignificant, being less than 1.45×10−3, and the maxi-
mum error is 0.021. Even for more drastic simplification (3 percent
of original), the root mean squared error is about 5.18× 10−3, the
maximum error is 0.028, and has an imperceptible effect on the
resulting skinned mesh.

Figure 7 shows the performance of our method, as compared to
two alternative algorithms. First, we compare to a method that pre-
serves detail near deformable areas by scaling the standard quadrics
by a weight that falls off away from the joints. For a vertex v with
quadric Qv , and the position of the nearest bone xb, we scale the
quadric by Q′

v = [αG(||v − xb||) + 1] Qv , where G is a Gaussian,
with µ = 0 and σ = 0.1. In our example, we also set α = 5, which
has the effect of giving quadrics near joints α + 1 = 6 times as
much weight as those far away from joints. The choice of µ and α
can be tuned as necessary. We also show the results of the standard
QSlim algorithm, run on the reference pose. All examples use our
method to update influence weights during iterative contraction.

In certain cases, the intuitive logic that the areas around the
pivot should be preserved in the highest detail is not always cor-
rect. When the joints in Figure 7 are deformed 90 degrees, the area
at the pivot itself is actually relatively flat. There are in fact two
creased regions adjacent to the pivot area, but the pivot area itself
does not form a crease. As can be seen in the example, our algo-
rithm recognizes the creases, and preserves them in higher detail, as
well as simplifying the flat regions at the joints. Also, greater sim-
plification is achieved on the outside of the tube, which does not
undergo significant deformation. The method of preserving detail
at the joint preserves a significant amount of unnecessary detail. Fi-
nally, the standard QSlim algorithm results in a relatively uniform
level of simplification across the surface of the object, and does not
preserve any additional detail at the joint, resulting in the expected
loss of quality.

Figure 7: A full resolution model, one simplified with our method, another
that the preserves detail near joints, and the last with standard QSlim. Influ-
ence weights have been updated using our method. Note that the area near
the pivot is flat, rather than creased. Our algorithm correctly provides more
simplification in this area. The method of preserving near joints incorrectly
preserves too much detail in this area, and QSlim has a uniform amount of
simplification across the model.

In Figure 8, we show an example of a scanned human leg pro-
vided by Cyberware. First, we see the full resolution model, fol-



Figure 6: Leg Model, at various levels of simplification, and colored randomly to show the triangulation. The top row shows the leg with the knee deformed at
a 45 degree angle. The bottom row shows the leg in the reference pose, but with faces colored based on area. This shows the preservation of detail around the
joint, with more detail on the lower side of the joint. From left to right, the meshes are shown after 1700, 2000, 2200, and 2250 collapses, respectively.

lowed by a model simplified with QSlim in the bent position, which
we expect would make a good approximation, but loses fidelity in
its approximation of the straight pose. The third model has been
simplified based on the straight pose, and simplification artifacts are
visible at the crease of the knee. Using our method with 4 poses,
we achieve a more accurate approximation.

Figure 8: Leg from the scanned female dataset, shown simplified to about
0.5% of the original number of triangles. Our method (using only 4 sam-
ples) correctly places additional detail in the deforming regions to better
preserve the shape. Note that the crease at the back of the knee in the result
produced by our method better approximates the original than the method
produced by QSlim from the straight pose.

To compare the effect of varying probability functions, we show
a close up of the back of the knees in the Cyberware Scanned Male
(Figure 9). The left knee has a 120°range of motion, while the knee
on the right has only at 30°range of motion. As a result, the left
knee preserves higher detail to allow for better approximation of all
possible deformations.

For quantitative evaluation of our approximation, we used the
Metro tool [Cignoni et al. 1998], which computes the Hausdorff
distance between two surfaces. As shown in Table 1, our method
produces a better result than either static method when considering
both poses.

For a more complicated example, with multiple bones and joints,
we show the police officer model in Figure 10. It can be seen that
the deformable regions, especially around the knees and elbows,
are preserved in higher detail. We can see from the rear simplified
view that the backs of the knees have a large area that is preserved
in high detail, as do the heels, elbows and wrists.

Table 2 shows the times required to simplify each of our test
models to 10% of the original number of triangles. Although the re-
sults prove to be quite fast, due to artifacts of our implementation,

Figure 9: Scanned Male. The left knee has a 120°range of motion, and so
preserves higher detail in the indicated region than the knee on the right,
which has a 30°range. Note that as in Figure 8, the surface at the crease is
flat under deformation and is therefore decimated.

Model Straight Pose Bent Pose Std. Dev.
QSlim/Straight Pose .01017 .01350 2.4e-3

QSlim/Bent Pose .01718 .01130 4.1e-3
Our Method .01122 .01207 6.0e-4

Table 1: Comparison of the results of static methods versus our method.
The scanned female leg model was simplified to 0.5% of original triangles,
and the Hausdorff distance to the original mesh was computed using Metro.
While our method gives a good approximation across poses, the approxima-
tion quality of the standard QSlim varies widely.

there is room for greater time efficiency. Our system was imple-
mented in a high-level interpreted language, and we expect that a
similar implementation in a more efficient language would provide
better performance. Also, increasing the number of samples will
increase the time in the initial quadric computation proportionally.
In the examples shown, 16 samples were used, but good quality re-
sults can be seen for 8 or even 4 samples, due in part to the use of
stratification to reduce variance. We can see that the overhead from
the initial quadric computation is a small part of the overall time,
contributing to around 25% of the total simplification time. As this
is the only phase of QSlim changed in any significant way by our
method, these results show that our method adds only a small over-
head, especially keeping in mind that this is intended for use in a
preprocess, and simplification is not performed at run-time. Addi-
tionally, as the size of the mesh increases, the running time of the
algorithm will consist mainly of the iterative contraction time, re-
ducing the relative time penalty of our method versus QSlim for a
single pose.

The majority of the time spent in each function evaluation is used
for standard linear algebra operations. An optimized linear alge-
bra package could potentially provide a large performance benefit.
However, we wish to stress that all work is spent in a preprocess be-



Figure 10: Rear view of a simplified police officer model with 10% of the
original triangles, colored based on triangle size. The model on the left is
simplified using QSlim in the original pose, while the model on the right is
simplified using our method. Note how our method correctly preserves more
detail about the joints, especially the knees, elbows, etc.

Model Vertices Quadric Time Total Time
Leg 2306 0.25s 0.77s

Human Leg 25158 5.1s 14.0s
Horse 48485 6.5s 26.1s
Police 63881 6.9s 29.3s

Scanned Male 146631 24.2s 95.36

Table 2: Simplification Times. Each model was simplified to 10% of the
original size. Times are given in seconds, using our C# implementation of
the algorithm. The Quadric Time is the time to compute the initial quadrics.

fore actual execution, and no work is performed during rendering
time.

5 Conclusions

In this paper, we presented a method for view- and pose-
independent simplification of skeletally articulated objects. We
have seen how pose independence is possible through the use of
the joint probability function ρ, which allows us to have a single
quadric that is applicable to many poses. Also, we showed how in-
tegration of the vertex quadrics over the domain of possible bone
configurations, and transforming quadrics back into the reference
coordinate system, allows for quadrics to be correctly combined,
then used to simplify the original mesh while taking deformations
into account. Finally, we saw how our method accurately preserves
creases and deforming regions at joints more effectively than static
methods of simplification.

It is important to understand the situations where our algorithm
does not provide a significant benefit. In models with significant
creases at the joints, the standard QSlim algorithm will preserve
additional detail in these regions, which in many cases may be suf-
ficient for animation. Also, in models with widely varying ranges of
motion, especially when the most extreme motions are uncommon
as defined by the probability function, the single pose-independent
model produced by our algorithm may be insufficient. In such
cases, it may be practical to consider performing the simplification
for each pre-defined animation sequence, rather than for all pos-
sible animations at once. For example, a model of a golfer may
have legs that remain stationary while making a putt, but naturally
move when walking between holes. Such a system might use our
method to generate a pose-independent model for each sequence,

and switch models as necessary. Additionally, for extreme poses
that are short-lived, and in which the focus is drawn to a single
model, such as a slam dunk pose, a system might need to assign ad-
ditional triangles to the model for the duration of the animation. It
would then be useful to use our algorithm with a progressive-mesh
type system for continuous level-of-detail, so that the exact number
of triangles could be specified. While it may be necessary to take
some of these considerations into account before integrating our al-
gorithm into a production system, our algorithm provides a useful
foundation on which to build.
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