Real-time Mesh Simplification Using the GPU

Christopher DeCoro*

3D Application Research Group, AMD / Princeton University

Abstract

Recent advances in real-time rendering have allowed the GPU im-
plementation of traditionally CPU-restricted algorithms, often with
performance increases of an order of magnitude or greater. Such
gains are achieved by leveraging the large-scale parallelism of the
GPU towards applications that are well-suited for these streaming
architectures. By contrast, mesh simplification has traditionally
been viewed as a non-interactive process not readily amenable to
GPU acceleration. We demonstrate how it becomes practical for
real-time use through our method, and that the use of the GPU
even for offline simplification leads to significant increases in per-
formance. Our approach for mesh decimation adopts a vertex-
clustering method to the GPU by taking advantage of a new ad-
dition to the rendering pipeline - the geometry shader stage. We
present a novel general-purpose data structure designed for stream-
ing architectures called the probabilistic octree, which allows for
much of the flexibility of offline implementations, including sparse
encoding and variable level-of-detail. We demonstrate successful
use of this data structure in our GPU implementation of mesh sim-
plification. We can generate adaptive levels of detail by applying
non-linear warping functions to the cluster map in order to improve
resulting simplification quality. Our GPU-accelerated approach en-
ables simultaneous construction of multiple levels of detail and out-
of-core simplification of extremely large polygonal meshes.

Keywords: mesh decimation, mesh simplification, level-of-detail,
real-time rendering, GPU programming

1 Introduction

Advances in data acquisition (eg. [Levoy et al. 2000]) have resulted
in the wide availability of massive polygonal datasets. Popularity of
content authoring tools such as ZBrush® [Pixologic 2006] provide
easy methods for creating extremely detailed art content with poly-
gon counts in excess of several hundred million triangles. However,
despite the tremendous leaps in GPU performance, interactive ren-
dering of such massive geometry in computer games or other appli-
cations is still impractical due to the performance penalty for vertex
throughput and the associated large memory storage requirements.

As a result, mesh simplification algorithms have been an active
area of research for nearly a decade. Simplification of massive
datasets demands computational efficiency as well as effective use
of available memory. Current methods developed for mesh simpli-
fication and decimation ([Garland and Heckbert 1997], [Lindstrom
and Turk 2000]) are designed with the CPU architecture in mind,
and to this date polygonal simplification has not been adapted for
the GPU compute model.

However, recent methods for interactive visualization of large
multiresolution geometric models at interactive rates (such as

*e-mail:cdecoro@cs.princeton.edu
fe-mail:natalya.tatarchuk @amd.com

Natalya Tatarchuk
3D Application Research Group, AMD

1K faces

Figure 1: Using our GPU-based mesh decimation algorithm we are able to
generate all of these multiple levels of detail for this high resolution model
of David’s head an order of magnitude faster than producing even a single
simplified level of detail on the CPU.

[Sander and Mitchell 2005]) perform geomorphing on the GPU
to render the objects. These methods require building hierarchi-
cal level-of-detail structures, which would benefit from dynamic
mesh simplification algorithms. Games have been increasing the
complexity of their massive worlds as well as employing a wider
variety of lighting and shading techniques. Often, these interac-
tive environments require multiple renderings of the same objects
from different viewpoints in a single frame. The most common ap-
plications include rendering low-resolution versions of objects into
a dynamic environment map for reflective or refractive effects; as
well as shadow map rendering for multiple shadowing lights or cas-
cading or omnidirectional shadow maps ([Gerasimov 2004]). Addi-
tionally, the introduction of streaming computational models such
as [Buck et al. 2004] and [Peercy and Derstmann 2006] enables
physics computations for in-game objects directly on the GPU. Low-
resolution meshes and level-of-detail computations provide conve-
nient optimization for GPU-based collision detection.

Traditionally, mesh simplification has been a slow, CPU-limited
operation performed as a pre-process on static meshes. With in-
creasing programmability in modern graphics processors, especially
with the introduction of the latest GPU pipeline with geometry
shaders ([Blythe 2006]), mesh simplification becomes amenable to
the GPU compute model. In this paper we describe a method for
mesh simplification in real-time including the following contribu-
tions:

* Reformulation of mesh simplification based on the vertex clus-
tering algorithm of [Lindstrom 2000] adopted to the novel GPU
pipeline.

* A general-purpose GPU octree structure

* Adaptive mesh simplification with constant memory requirements
* Importance-based detail preservation using non-linear warping

With our mesh simplification method we achieve equivalent qual-
ity to the CPU-based mesh decimation algorithms. We demonstrate
that the use of our novel probabilistic octree data structure on the
GPU effectively increases the grid resolution during simplification
and thus yields resulting quality improvements while maintaining
an identical memory footprint. Our application of mesh simplifi-
cation enables processing of massive data sets directly on the GPU
with over an order of magnitude increase in performance.

We discuss the existing work on mesh decimation in Section 2.1,
and describe the new GPU programmable pipeline in section Sec-
tion 2.2. Section 3 contains the details of the GPU-friendly mesh
simplification algorithm, including the description of data struc-
tures. We present quantitative results of our algorithm (Section 4),
and conclude with a discussion of potential future work (Section 5).

2 Background

2.1 Mesh Simplification

A wide range of algorithms have been presented to decimate a tri-
angle mesh (introduced in [Schroeder et al. 1992]); that is, given an
input mesh containing some number of triangles, produce a mesh
with fewer triangles that well-approximates the original. Some of
the earliest algorithms fall under the classification of vertex clus-
tering [Rossignac and Borrel 1993]. In these, the bounding box of
the mesh is divided into a grid (in the simplest case a rectilinear
lattice of cubes), and all of the vertices in a given cell are replaced
with a single representative vertex (“clustered”). Faces that become
degenerate are removed from the resulting simplified mesh.

Other algorithms take an iterative approach, in which a series
of primitive simplification operations are applied to an input mesh
through intermediate simplification stages. The operations are usu-
ally chosen so as to minimize the incremental error incurred by the
operation, though this is not always the case. An overview of mesh
decimation algorithms can be found in [Luebke et al. 2002].

Perhaps one of the most commonly applied iterative decimation
techniques is the QSlim algorithm [Garland and Heckbert 1997].
This algorithm iteratively applies the pair collapse operator, which
replaces two vertices with one, causing neighboring faces to be-
come degenerate. In order to select a collapsed pair of vertices
from the potential candidates, QSlim defines the quadric error met-
ric, which for a vertex v is defined as the point-plane distance from
v to a set of associated planes:

[=X 0? M
péEplanes(v)
= vT(Y pr>v)
peplanes(v)
= Vo 3)

Initially, planes(v) consists of the triangle faces adjacent to v in
the original mesh. Applying the pair collapse (a,b) — ¢, we assign
planes(c) = planes(a) U planes(b). We can remove the need for
explicit representation of the set of associated planes by the use of
the symmetric 4 x 4 matrix Q,, known as the error quadric. The
set-union operator then reduces to quadric addition.

In [Lindstrom 2000], the author observes that the vertex clus-
tering operation is equivalent to performing the pair collapse op-
eration of QSlim to each vertex in a cluster simultaneously. Thus,
the quadric error metric can be used as a measure of mesh quality
for such algorithms and, more importantly, can be used to directly
compute the representative vertex of a cluster that minimizes the
quadric error. The authors showed how this can be used to generate
higher quality results then previously shown in a vertex clustering
framework. The algorithm is as follows. For each triangle F',

1. Compute the face quadric Qf
2. For each vertex veF
(a) Compute the cluster C containing v
(b) Add Qf to the cluster quadric Q¢
3. If F will be non-degenerate, output F

The algorithm acts on each face independently, and stores only
the cluster grid as a representation of the intermediate mesh. Im-
portantly, each vertex will access a single location in the grid. This
locality and data-independence allows the algorithm to be efficient
in the context of out-of-core simplification. For the same reasons,
such algorithms are also ideal for the stream computing architecture
of the GPU, and our work implements this approach.

While a uniform grid enforces uniform level-of-detail across the
output mesh, later work has relaxed this restriction in favor of adap-
tive approaches using octrees [Schaefer and Warren 2003] and BSP
trees [Shaffer and Garland 2001]. While such data structures are
not directly suitable for GPU implementation due to their require-
ments of dynamic memory and sequential writes, we demonstrate a
similar GPU structure that maintains much of their advantages.

2.2 GPU Programmable Pipeline

The programmable vertex and pixel engines found in recent GPUs
execute shader programs, containing arithmetic and texturing com-
putations, in parallel. The vertex shader is traditionally used to per-
form vertex transformations along with per-vertex computations.
Once the rasterizer has converted the transformed primitives to pix-
els, the pixel shader can compute each fragment’s color.

This pipeline is further extended in the upcoming generation
of DirectX®10 hardware, introducing an additional programmable
geometry shader stage. This stage accepts vertices generated by
the vertex shader as input and, unlike the previous stage, has ac-
cess to the entire primitive information as well as its adjacency in-
formation. This enables the per-face computation of face quadrics
required by the vertex clustering algorithm of [Lindstrom 2000].

The geometry shader also has the ability to cull input triangles
from the rendering stream and prevent their rasterization, clearly a
necessary component for mesh decimation. Finally, the DirectX 10
stream-out option allows reuse of the result of geometry processing
by storing output triangles in a GPU buffer. This buffer may be
reused arbitrarily in later rendering stages, or even read back to
the host CPU. Our method implements the simplification algorithm
taking advantage of the novel geometry shader stage functionality
for computation of the quadric map for each face, and using the
stream-out feature for storing and later rendering of the simplified
geometry.

3 Algorithm

We will first present the basic structure of our GPU simplification
system (Section 3.1). However, this leaves flexibility in several
components, most notably the structure of the clustering grid. The
most straightforward implementation will use a uniform rectangu-
lar grid; however, there are advantages to both using a grid with
non-uniform geometry, as deformed using a warping function (Sec-
tion 3.2) and a non-uniform connectivity as specified with a proba-
bilistic octree structure (Section 3.3).

3.1 GPU Mesh Simplification Pipeline

Our algorithm proceeds in 3 passes and requires the input mesh
to be submitted twice through the rendering pipeline. We encode
the mapping from cluster-cell index to cluster quadric in a render
target (an off-screen buffer), used as a large 2-dimensional array
which we will refer to as the cluster-quadric map. The quadric

Clustered Input Mesh

Quadric Map (4 RTs)

Position Map (1 RT) Decimated Output Mesh

Figure 2: GPU Simplification Pipeline. The original mesh (left) is subdivided into clusters according to a 9 x 9 X 9 grid. In Pass 1, we compute the cluster
quadrics for each grid cell; the output (shown) is a set of render targets that contain the quadrics in the pixel values. Pass 2 minimizes the quadric error
function to compute the optimal representative positions for each cluster. Finally, Pass 3 uses this to output the final, decimated mesh.

accumulation operation (Equation 2) can be mapped to the highly
efficient additive blend. Because the algorithm accesses each mesh
triangle only once per pass, it is not necessary to store the entire
input mesh in GPU-resident memory (the storage requirements are
a function of the output mesh size only), allowing our algorithm
to efficiently process meshes of arbitrary size. The passes are as
follows, as illustrated in Figure 2:

(Pass 1) Cluster-quadric map generation. Given the source mesh
and its bounding box as input, as well as a user-specified number
of subdivisions along each dimension, we render the input mesh as
points. We then assign a unique ID to each cluster cell, and we treat
the render target as a large array that is indexed by cluster ID. Each
array location stores the current sum of the error quadric for that
cell (10 floats for the 4x4 symmetric matrix), the average vertex
position within that cell (3 floats) and the vertex count.

The vertex shader computes the corresponding cluster for each
vertex, and its implied position in the render target. The geome-
try shader, which has access to all vertices in the triangle, uses the
world positions to compute the face quadric for the triangle, and
assigns that value to each output vertex to be accumulated in the
texture map by the pixel shader, which simply propagates the com-
puted colors, with additive blending enabled.

(Pass 2) Computation of optimal representative positions. Us-
ing the cluster-quadric map from Pass 1, we compute the optimal
representative vertex position for each cluster. Note that we could
do this on the next pass (generation of the decimated mesh) but we
choose to do this in a separate pass so that the relatively expensive
computation can be performed exactly once per cluster with higher
parallelism.

We render a single full-screen quad the size of the cluster map
render targets into another render target of equal size. In the pixel
shader, we retrieve the values of the error quadric from the render
target textures, and compute the optimal position by solving the
quadric error equation with a matrix inversion ([Garland and Heck-
bert 1997]). If the matrix determinant is below a user-specified
threshold (currently 1e—10) we assume that the quadric is singu-
lar and fall back to using the average vertex position. The position
is saved into a render target, and used in the next pass.

(Pass 3) Decimated mesh generation. We send the original mesh
through the pipeline a second time, in order to remap vertices to
their simplified positions, and cull those triangles that become de-
generate. The vertex shader again computes the corresponding clus-
ter for each vertex, and the geometry shader determines if the three
vertices are in different clusters, culling the triangle if they are not.
Otherwise, the geometry shader retrieves the simplified positions
from the output of Pass 2, using these as the target positions of the
new triangle, which is streamed out to a GPU buffer for later use.

Multiple Levels-of-Detail. We can compute multiple levels of de-
tail for the same mesh without repeating all three passes. When
the resolution of the sampling grid is reduced by half, we can omit
Pass 1, and instead create the quadric cluster map by appropriate
downsampling of the higher-resolution quadric cluster map. Pass 2

operates as before; however Pass 3 can use the previously simpli-
fied mesh as its input (rather than the full resolution input mesh)
as the connectivity will be the same. This allows the construction
of a sequence of LODs significantly faster than incurring the full
simplification cost for each LOD independently.

3.2 Non-Uniform Clustering Using Warping Functions

We can achieve a higher level of adaptivity in the simplification
process using a smooth, non-rigid warping function to deform the
cluster grid. Applying such function during cluster map generation
leads to a higher sampling rate in the desired regions. We can apply
arbitrary non-linear functions as the warping guide during decima-
tion. For practical purposes, we in fact apply the inverse warp func-
tion to the vertices themselves when computing cluster coordinates,
which is equivalent. The only change in our simplification pipeline
is the computation of cluster ID from vertex position. The positions
used for the computation of error quadrics need not be altered, nor
the storage of the grid.

One application of this approach is for view-dependent simpli-
fication, whereby the algorithm preserves greater detail in regions
of the mesh closer to the viewer, as defined by the provided warp-
ing function. The simplest and most efficient function we can ap-
ply is the current frame’s world-view-projection transformation into
screen space. This is equivalent to performing a projective warp
on the underlying cluster grid. We show a comparison of view-
dependent and view-independent simplification in Figure 3. Appli-
cation of this warping function can be meaningful for simplification
on animated meshes in real-time scenarios.

Another application is for region-of-interest simplification, where
the user (such as an artist) selects regions to be preserved in higher
detail (as in the user-guided simplification approach of [Kho and
Garland 2003]). In Figure 5, the model is simplified using both a
uniform and adaptive grid. In order to preserve detail around a par-
ticular region (for our example, the head), we simplify a warped
version of the mesh, which provides higher sampling around the
region of interest.

In order to guide the region of interest simplification, we use
a Gaussian weighting function f(x) centered at the point of inter-
est. We are seeking to derive a warping function which respects
the weights specified by f(x). Thus we would intuitively prefer a
function F (x) such that points with larger values of f(x) are spaced
farther from their neighbors. Additionally, F(x) is one-to-one, and
spans the range (0,1). We can derive functions as follows, and
show examples of varying parameters in Figure 4:

fu,c,h(x) = (1 _b)G/J,G(X) +b 4

Fuolx) = [1 Gu,o()dr (5)
_ X H

= 2<l+erfo_ 2> (6)

Fuoplx) = M(l —b)+bx @)

Fuo(1) = Fuc(0)

Uniform Simplification

View-dependent Simplification
(Camera from left)

Figure 3: View-independent vs. View-dependent Simplification. The
dragon model is simplified using both methods, with the camera position
to the left of the object in the view-dependent case. Note that regions closer
to the camera are preserved in higher detail; note especially the detail pre-

served on the face in the callout.

Weight Function f(x)y 6 5 Warp Function F (x) 4 ¢ 5

—

0.9

Tooa

PN
w
s o

0
0 1 0 01 02 03 04 05 06 07 08 09 1

Figure 4: Warping Functions. We show example weighting functions at
various parameters, and their corresponding warping functions. An input
vertex coordinate (x-axis) will be mapped to a location in the warped mesh
(y-axis). Note how values near the mean (L = 0.5) are mapped to a wider
range in the output than those points farther away.

Original Input Mesh Warped Input Mesh

Warp

Simplify Simplify

Uniform Simplification Adaptive Simplification

Figure 5: Area-of-interest Simplification. We adaptively simplify the model
to preserve detail around the head, which is performed by warping the mesh
appropriately, and clustering the result.

In this definition, Gy s (x) is the standard normal distribution,
and erf(+) is the Gauss error function. We define a bias parameter b,
which sets a minimum weighting for regions outside the area of in-
terest; setting b = 1 is equivalent to uniform sampling. Note that £
can be viewed as the cumulative distribution function correspond-
ing to f (see [Ross 2003] for an overview), which we then translate
and scale to the unit square to produce the warping function F (x).
Note that the function in Equation 7 is currently limited to warps
that are separable in x, y and z. However the method supports more
general warps, such as those defined by arbitrary splines or radial
basis functions.

3.3 Probabilistic Octrees

The use of a uniform grid requires that the user fix the resolution
before simplification, and does not easily allow for uneven levels
of detail across the resulting simplified mesh (notwithstanding the
previously discussed use of warping functions). Additionally, be-
cause of the need for direct, constant-time access to the grid, the
data is stored in a large fixed-allocation array so that the address
can be computed directly, regardless of the number of clusters that
are actually occupied.

We propose to address these concerns using a multi-resolution
grid with multiple levels, from lowest to finest resolution, where
each level has twice the detail of the previous in each dimension
(“octree subdivision”). Adaptive octrees were introduced for vertex
clustering mesh simplification in [Schaefer and Warren 2003], in
the context of out-of-core simplification. Each grid cell will then
store the estimate of the error quadric for a cluster of a certain scale.
When mapping an input vertex to a cluster in the decimation pass,
the representation allows the algorithm to use finer scales in areas
with greater detail.

Additionally, rather than allocating all of the potential grid cells
for a given level, we allocate a fixed amount of storage, and use a
spatial hash function to access the elements in constant time. This
implies that not all clusters will be stored, but that there is only a
probability of storage, which is expected to be the ratio of stored
clusters to allocated space. However, the hierarchical structure al-
lows for a graceful degradation by maintaining a lower resolution
estimate.

As this is similar to the commonly-used octree, we will refer to
our structure as a probabilistic octree. This structure avoids the
sequential read-modify-write access and dynamic memory used in
traditional octrees, and is well-suited for the GPU. Note that this
general-purpose structure is not limited to our application of vertex
clustering, as we discuss in Section 5.

Operations. The octree defines the high-level ADDVERTEX(v)
and FINDCLUSTER(v) operations, used in Pass 1 and 3, respec-
tively, which act on vertex positions. These use the low-level op-
erations WRITE(k,d) and d = READ(k) to write or read the data
value d into the array render-target at location k. We write to the
render targets with additive blending enabled, so as to accumulate
the quadric values in a cluster.

Probabilistic Construction. When creating the tree (Pass 1), we

use the ADDVERTEX operation on each vertex v to insert its quadric
into the octree. In a tree with maximum depth /,;,4x, a vertex has /qx

potential levels in which it can be placed. One implementation of

ADDVERTEX (v) makes /4y passes to assign v to each possible

level, resulting in the most accurate construction of the entire tree.

However, the decimation time will grow proportionally.

Instead, we can think of the cluster quadric Q¢ as being the re-
sult of integrating the quadrics Qy at each point x on the surface
contained in C, scaled by the differential area dA. In performing
the vertex clustering algorithm on a finitely tessellated mesh, we
approximate this quantity by taking a sum of the vertex quadrics

0, contained in C, which themselves are computed from their ad-
jacent face quadrics Q and corresponding areas A ;.

— ~ ﬂ
Qc—/xechdA~Z y o3 ®)

veC feadj(v

However, we can make this approximation with fewer samples
than the entire set of those available. In a highly tessellated mesh,
each cluster will have many samples with which to estimate the
cluster quadric; therefore, we propose to randomly select the level
of each vertex, and assign it to the array accordingly using WRITE.
Due to the hierarchical nature of the tree, the higher levels (larger
scales) contain more samples, and a better estimate of the cluster
quadric can be made with a smaller fraction of the total vertices
than for lower levels. Instead of a uniform random distribution,
we choose the level according to a probability mass function that
grows exponentially with increasing level. As there are exponen-
tially fewer nodes at lower levels, the sampling rate remains roughly
equal. As with any Monte Carlo approximation, more samples
(equating to more passes per vertex) will lead to a better approx-
imation, but this is not necessary for highly tessellated models, and
an octree can be constructed in a single pass.

Probabilistic Storage. As with the uniform grid, we store the
octree levels in render targets, using them as an array; we divide
the array into sections for each level. Once ADDVERTEX(v) has
selected the level in which to store v, it can compute the appro-
priate array index k as if the cluster was densely stored, invoking
WRITE(k, v) to store the value. To achieve sparse storage, we allo-
cate fewer nodes than would be necessary for storage of the entire
level. WRITE uses a uniformly distributing hash function to assign
a storage location to k. Therefore, the probability that WRITE(k,d)
will be successful is expected to be equal to the percentage of occu-
pied nodes in that level, and this probability can be a parameter to
the algorithm, with the allocation size adjusted accordingly. Note
that if the sparse storage property of the octree is not important for
the application, we can allocate the array such that the storage prob-
ability at each level is 1.

Accessing the tree. After the tree is created in Pass 1, we use
FINDCLUSTER (v) in Pass 3 to determine a corresponding cluster
and scale for v, which is then mapped to the representative vertex.
FINDCLUSTER uses a user-specified error tolerance to select a the
appropriate scale. We can implement this by performing a traver-
sal from the root of the tree (or from a node of user-specified depth
Lmin > 0, to avoid traversing very low detail regions of the tree). The
function must keeping in mind that a cluster at any given scale may
be unoccupied (no vertex was assigned; indicated by initializing the
render target to a flag value) or that there may be another cluster as-
signed to the same position as a result of a hash collision (discussed
shortly). By varying the error threshold, we can produce multiple
LODs without creating a new octree.

By using a multi-resolution structure, we mitigate the effect of
missing values. The probabilistic implementation of ADDVERTEX
maintains the property that each point in space is represented by a
node in the structure; only the scale is uncertain. If a node is ab-
sent at a particular scale, there is a high probability that the parent
node will be available, causing the algorithm only to fall back to a
slightly less detailed approximation of that point.

We can accelerate traversal by using a binary search across the
different scales. As the tree depth is O(logN¢), where N¢ is the
total number of clusters, a (probabilistic) binary search over the
depth reduces lookup time complexity to O(loglog N¢).

Detecting hash collisions. Because we implement each tree level
with a hash table, there exists the possibility of hash collisions,
where two nodes map to the same address in the array. A com-
mon solution is for the WRITE(k,d) operation to record the key

Octree, [;qr = 6

643 Uniform Grid

Figure 6: Uniform Grids vs. Adaptive Octrees The image on the right is
simplified with a uniform 643 grid, resulting in 13K triangles. The image
on the left is simplified using a probabilistic octree with a depth of up to 6
(equivalent to the 643 grid). Through adaptive simplification, we are able
to preserve the same detail as the uniform grid in critical regions, such as
around the edge of the leg, the ear, and the eye, while reducing the total
triangle count to 4K triangles, and using less memory at runtime. Green
areas in the right image are those in higher detail.

k along with the data in storage, allowing READ(k) to determine
whether or not it has encountered a collision by a comparison. In
our application, we are not able to use this direct approach due to
limitation on fixed function additive blending required to accumu-
late the quadrics. Therefore, we use the max blending mode for the
alpha component only and write k to one render target, and —k to
the other (effectively using the second render target to perform a
min operation). The READ(k) operation will check that the values
are equal to k and —k, respectively. We propose hardware exten-
sions to enable accurate hash collision processing in Section 5.

4 Results and Applications

The most significant contribution of our system, as opposed to in-
memory, CPU-based simplification, is the dramatic increase in speed.
We show the timing results on a set of input meshes for both the
CPU and GPU implementations of the algorithm in Table 1. Results
are shown for a PC with dual Intel®Pentium®4 CPUs (3.20GHz),
1GB of RAM and a preproduction ATT Radeon DirectX®10 gen-
eration GPU, collected on Windows Vista®. Note that the CPU
implementation was implemented in an efficient manner for opti-
mal performance. The results show that the GPU implementation
is able to produce simplification rates of nearly 6 million triangles
per second, as compared to a throughput of 300K triangles per sec-
ond on the CPU.

[Model | Faces [CPU | GPU | CPU:GPU |

Bunny 70K 0.2s | 0.013s 15:1
Armadillo | 345K | 1.2s | 0.055s 22:1
Dragon 879K | 19s | 0.117s 16:1
Buddha IM 2.5s | 0.146s 17:1
David-head M 6.8s | 0.322s 21:1
Atlas 4.5M | 14.8s | 0.741s 20:1
St-Matthew | 7.4M | 24.6s | 1.18s 21:1

Table 1: Performance results for GPU real-time mesh simplification versus
CPU mesh simplification. Note that all but the largest results on the GPU
were rendered at highly interactive real-time rates, achieving a simplifica-
tion throughput of nearly 6M faces/second

In our experiments with probabilistic octrees, we have found that
there is a slight penalty to their use; running at about 80% of the
full speed. Collisions are not a major factor. For a tree with half

the total storage allocated, we found approximately 0.1% of the
clusters used with the bunny caused a hash collision. While this
does increase as the size of allocated memory decreases, it is not
highly significant. For about 8% of the total storage allocated, we
have less than 10% collisions.

We can mitigate the speed impact of octrees when creating mul-
tiple LODs. We have also found that the most significant overhead
in the simplification process is Pass 1, which tends to take 60% to
75% of the total simplification time. Once the octree has been cre-
ated, we have observed that the generation of a new mesh skips this
amount of time overhead (it also avoids recomputing the optimal
positions in Pass 2, but this does not use significant time; less than
10%). We note also that the implementation of octrees in our sys-
tem has not been as highly optimized as the regular grids, and we
expect that the performance could be nearly at parity.

5 Conclusions and Future Work

We have presented a method for mesh simplification on the novel
GPU programmable pipeline and demonstrated how mesh decima-
tion becomes practical for real-time use through out approach. We
have adopted a vertex-clustering method to the GPU and described
a novel GPU-friendly data structure designed for streaming archi-
tectures called the probabilistic octree. Our approach can be used
to simplify animated or dynamically (procedurally) generated ge-
ometry directly on the GPU, or as a load-time algorithm, in which
geometry is reduced to a level of detail suitable for display on the
current user’s hardware at the start of the program or change in
scene. Simplified meshes can be used for collision detection and
other purposes. Additionally, our technology allows an artist to
rapidly create multiple levels of detail and quickly select those ap-
propriate for the application.

The use of non-uniform grids has a much broader range of uses
than those presented here. One potential application is the use of
multi-pass simplification, such as that presented in [Shaffer and
Garland 2001], which first clusters vertices on a uniform grid to
make an estimate of surface complexity, then uses this estimate to
produce an adaptive grid (represented with a BSP tree). This same
approach could be used to generate the warping function for a non-
uniform grid, achieving adaptive simplification while remaining ap-
plicable to the streaming architecture.

We also expect that the probabilistic octree structure would be
useful in other applications. This would allow for dynamic octree
generation that could be used in the context of collision detection,
ray tracing, frustum and back-face culling, and other applications
for which octrees are commonly used. While we were unable to
provide more than a cursory overview of probabilistic octrees in this
paper, we plan on producing a more formal analysis of the structure
in future work.

Hardware extensions: geometry shader stage. Current design of
the geometry shader stage can only generate individual primitives
or lists via stream out. Once generated, there is no vertex reuse due
to lack of associated index buffers for GPU-generated data. This af-
fects performance for post-stream out rendering passes and triples
required resulting vertex memory footprint. Decimated mesh ren-
dering performance would be improved if the API were extended
to allow indexed stream out, i.e. the ability to stream out primi-
tives and their indices from each GS invocation. This can be ac-
complished by providing an additional mode for geometry shader
stage - indexed stream out which is fully orthogonal to the regular
stream out path. Each geometry shader will have to specify the ac-
tual number of output vertices at the beginning of each shader prior
to emitting. Thus the hardware would be able to allocate appropri-
ate storage for each invocation, as well as allocate the number of
indices generated by this invocation.

Hardware extensions: Programmable blend stage. We utilize
fixed function additive blend for accumulating cluster quadrics dur-
ing quadric map computations. However, fixed function additive
blending prevents us from implementing accurate hash collision
handling for probabilistic octrees. We would like to see a pro-
grammable blend stage extending current functionality beyond sim-
ple fixed function stage, similar to simple pixel shader functionality.
With flow control and simple ALU computations we would be able
to handle hash collisions accurately. Thus, if the octree node being
stored has lesser priority than the node currently stored in the desti-
nation buffer, it could be culled by the blend shader. An octree node
with greater priority would overwrite the value already stored, and
an equal priority octree node would simply accumulate.

Acknowledgments

We would like to thank the Stanford Computer Graphics Lab for
providing geometry data, including models from the Digital Michae-
langelo project. We would also like to thank Szymon Rusinkiewicz
of Princeton University for providing useful feedback and advice on
early versions of this paper, as well as providing additional funding.

References

BLYTHE, D. 2006. The Direct3D 10 system. ACM Trans. Graph. 25, 3,
724-734.

Buck, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K., HOUS-
TON, M., AND HANRAHAN, P. 2004. Brook for GPUs: stream computing
on graphics hardware. ACM Trans. Graph. 23, 3, 777-786.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using
quadric error metrics. Proceedings of ACM SIGGRAPH 1997, 209-216.

GERASIMOV, P. 2004. Omnidirectional shadow mapping. In GPU
Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics,
R. Fernando, Ed., vol. 20. Addison-Wesley, ch. 12, 193-204.

KHO, Y., AND GARLAND, M. 2003. User-guided simplification. In SI3D
'03: Proceedings of the 2003 symposium on Interactive 3D graphics, ACM
Press, New York, NY, USA, 123-126.

LEvOY, M., PULLIL, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D.,
PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG,
J., SHADE, J., AND FULK, D. 2000. The Digital Michelangelo Project:
3D scanning of large statues. In Proceedings of ACM SIGGRAPH 2000,
131-144.

LINDSTROM, P., AND TURK, G. 2000. Image-driven simplification. ACM
Transactions on Graphics 19, 3, 204-241.

LINDSTROM, P. 2000. Out-of-core simplification of large polygonal models.
In Siggraph 20000, Computer Graphics Proceedings, ACM Press /| ACM
SIGGRAPH / Addison Wesley Longman, K. Akeley, Ed., 259-262.

LUEBKE, D., WATSON, B., COHEN, J. D., REDDY, M., AND VARSHNEY,
A. 2002. Level of Detail for 3D Graphics. Elsevier Science Inc., New
York, NY, USA.

PEERCY, M., S. M., AND DERSTMANN, D. 2006. A performance-oriented
data parallel virtual machine for gpus. In ACM SIGGRAPH sketches, ACM
Press, New York, NY, USA.

P1XoLOGIC, 2006. ZBrush. http://www.pixologic.com/zbrush/home/home.php.

Ross, D. 2003. Probability Models, 8th Edition. Elsevier Academic Press,
San Diego, CA USA.

ROSSIGNAC, J., AND BORREL, P. 1993. Multi-resolution 3D approximations
for rendering complex scenes. Modeling in Computer Graphics: Methods
and Applications (June), 455-465.

SANDER, P. V., AND MITCHELL, J. L. 2005. Progressive Buffers: View-
dependent geometry and texture for lod rendering. In Symposium on Ge-
ometry Processing, 129—138.

SCHAEFER, S., AND WARREN, J. 2003. Adaptive vertex clustering using oc-
trees. In Proceedings of SIAM Geometric Design and Computation 2003,
SIAM, New York, NY, USA, vol. 2, 491-500.

SCHROEDER, W. J., ZARGE, J. A., AND LORENSEN, W. E. 1992. Decima-
tion of triangle meshes. In SIGGRAPH ’92: Proceedings of the 19th an-
nual conference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 65-70.

SHAFFER, E., AND GARLAND, M. 2001. Efficient adaptive simplification of
massive meshes. In VIS ’01: Proceedings of the conference on Visualiza-
tion ’01, IEEE Computer Society, Washington, DC, USA, 127-134.

