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ABSTRACT

We introduce a perceptually motivated approach to bandwidth
expansion for speech. Our method pairs a new 3-way split
variant of the FFTNet neural vocoder structure with a percep-
tual loss function, combining objectives from both the time
and frequency domains. Mean opinion score tests show that
it outperforms baseline methods from both domains, even for
extreme bandwidth expansion.

Index Terms— Bandwidth expansion, bandwidth exten-
sion, audio super resolution, deep learning.

1. INTRODUCTION

This paper introduces a deep learning-based method for band-
width expansion of human speech. The goal of the band-
width expansion (BWE) problem, also called “bandwidth ex-
tension” and “audio super-resolution,” is to expand the fre-
quency range of an input audio signal. Its traditional appli-
cations are in telephony, where the bandwidth of telephone
speech may be limited to below 4 kHz, thus aiming to render
muffled speech more intelligible [1].

In the context of newer audio synthesis tasks, such as text-
to-speech (TTS) and consumer digital media creation, there
arises a need for more extreme BWE, such as to 44.1 kHz or
48 kHz. In WaveNet-like applications, for example, speech is
synthesized at a low sampling rate for efficiency reasons [2].
BWE may be applied to synthesized audio to improve the
listening experience. In another use case, many consumers
record speech on low-bandwidth devices, such as a consumer-
grade microphone, and would like higher-resolution versions
of their recordings for podcasts or other artistic purposes. In
these applications, the input bandwidth might not be as low
as that of telephone transmission, but rather around 8 kHz.

Our objective is to super-resolve speech to high-definition
audio – in our experiments, we convert 8 kHz to 44.1 kHz, al-
though these are just parameters of the method. By expanding
beyond 16 kHz, we emphasize not intelligibility as in tradi-
tional BWE, but high perceptual quality and sense of presence
in the recording, since the extreme upper bands offer informa-
tion beyond just speech content, including the finer details of
the speaker’s voice and environment.

Previous methods for BWE have focused on expanding
up to 16 kHz, and most operate in the frequency domain.

With the introduction of WaveNet [2] and SampleRNN [3],
two waveform generation models that operate directly on the
input waveform, recent work has explored BWE directly in
the time domain.

In this paper, we propose a method for BWE that is both
waveform-based and perceptually motivated. We introduce
the three-way split summation FFTNet architecture for band-
width expansion as well as a perceptual loss to encourage
realistic-sounding output. In subjective and objective com-
parisons, our approach outperforms state-of-the-art baseline
methods that work in the time and frequency domains.

2. RELATED WORK

Recent work in this area has focused on deep learning-based
approaches for artificial BWE [4, 5, 6, 7, 8, 9, 10]. In this
section, we review the two broad approaches to BWE and
highlight recent deep learning-based work.

2.1. Frequency domain

Most approaches to speech BWE are based on the source-
filter model of human speech [1, 11, 12]. By the source-filter
model, human speech is first produced as a periodic signal by
the larynx, or voice box. The larynx signal is then shaped
by the vocal tract, and this shaping defines the distinctions
between human voices. Approaches based on this model esti-
mate (1) the upper-band (UB) residual signal and (2) the UB
spectral envelope (more challenging). Classical methods gen-
erate the spectral envelope by codebook mapping [10], Gaus-
sian mixture models, and hidden Markov models. More re-
cent approaches use deep neural networks to classify among
pre-trained UB envelopes or directly estimate the UB enve-
lope by regression [4, 5, 6, 7, 8, 9].

Schmidt et al. [13] follow the source-filter model in the
upsampling process of the narrowband (NB) signal. They
transform the NB waveform to the frequency domain by
FFT and then zero-pad the signal to their target bandwidth.
They generate the higher frequency content via Intelligent
Gap Filling [14], and the resulting magnitude spectrum is fed
into a deep neural network (DNN), consisting of a series of
convolutional layers followed by LSTM layers. The DNN
estimates the energies of the wideband (WB) signal.



Li et al. [15] encourage even more realistic sounding
output by training their model with an adversarial loss. They
propose a four-layer DNN that generates UB energies and line
spectral frequencies (LSFs), which further shape the periodic
signal. Their network is pre-trained with a MSE loss and then
trained against an adversarial network.

Other methods directly estimate the UB magnitudes in the
frequency domain and recover the phase from the input signal.
Li et al. [16] propose a DNN that maps input log spectrum
power to output log spectrum power and suggest correct
phase recovery as future work. Addressing the redundancy
of generating magnitude and phase information directly from
the NB spectrogram, Abel et al. [17] propose first estimating
a lower-dimensional cepstral representation.

Previous methods were designed for traditional BWE,
expanding to 16 kHz at most. Our method was designed for
more extreme BWE, and our experiments expand from 8 kHz
to 44.1 kHz. Our method offers an alternative to spectrogram-
based approaches for traditional and extreme BWE.

2.2. Time domain

WaveNet [2] introduced a fully autoregressive way of gener-
ating raw audio waveforms, encouraging BWE methods that
operate directly on the input waveform. Kuleshov et al. [18]
propose a simple encoder-decoder-type convolutional neural
network (CNN) that takes as input the NB waveform and out-
puts the WB waveform prediction. Their method uses a series
of downsampling blocks, followed by a series of upsampling
blocks, and it produces results that are intelligible but not nec-
essarily of the best perceptual quality.

SampleRNN [3], the recurrent version of WaveNet for
audio waveform generation, inspired Ling et al. [19] to ap-
ply hierarchical recurrent neural networks (RNNs) to BWE.
They implement a hierarchical network, where the highest-
level RNN (LSTM/GRU) takes as input eight samples at a
time, the mid-level RNN four samples, and the low-level
multilayer perceptron (MLP) one sample. By stacking RNNs
with various perceptive fields, they allow the network to
process short-term and long-term information from the in-
put signal. As with any LSTM-based approach, however,
their method encounters the problem of oversmoothing, es-
pecially in noised parts of speech (i.e., rather than learning
a phoneme-dependent distribution of the UB energies during
noised parts, the network predicts a uniform distribution of
energy across the UB frequency bins).

Aiming to merge the time and frequency domains, Lim
et al. [20] propose the Time-Frequency Network (TFNet).
Our work introduces a simple network that operates in the
time domain and is supervised with a perceptual loss calcu-
lated in the frequency domain. Our network builds on the
FFTNet architecture introduced by Jin et al. [21], which of-
fers a simple yet powerful model for audio generation and
vocoding.

3. METHOD

3.1. FFTNet

Offering an alternative to WaveNet for audio synthesis,
FFTNet conditions the prediction of sample xn on samples
(x0, x1, ..., xn−1) in a neural network architecture inspired
by the Cooley-Tukey Fast Fourier Transform (FFT). Similar
to WaveNet, it predicts one sample at a time based on N pre-
viously generated samples. Given N input samples, FFTNet
splits them into two halves, each of size N/2. Then each half
is transformed using a different 1x1 convolution and activa-
tion and then added together to form a vector of size N/2.
The resulting vector is processed using another 1x1 convolu-
tion and then goes through the same split, transformation, and
summation to produce a vector of size N/4. Iteratively, we
will end up with an output of size 1, which predicts the value
for the next sample following the N input samples. Because
of this repeated split and summation, we can call it a two-way
split summation network.

3.2. Three-way split summation FFTNet

For autoregressive waveform generation (where one sample
in the input does not directly correspond to one sample in
the output), the originally proposed two-way split summation
architecture of FFTNet suffices. In our task, however, each
input sample should correspond to one output sample (since
we upsample the NB signal to be the same length as the WB
signal for training). We propose a three-way split summation
FFTNet architecture, such that the splits are symmetric about
the input sample. Fig. 1 shows a diagram of the architecture.

For an input time series with size n, we split the input
sequence into thirds of size n/3 each. Just as in two-way
split summation FFTNet, we perform a 1x1 convolutional
transformation on each split and then sum the results.

z = WL ∗ xL +WC ∗ xC +WR ∗ xR

where WL, WC , and WR are the weights of the kernel
applied to the left, center, and right splits, respectively. The
output z is of size n/3 and can be further transformed with
1x1 convolution and activation before being fed into the
next layer. Using the same three-way split and summation
scheme, the next layer will reduce the output size to n/3/3
and so on for the following layers until we have a one-
sample prediction. To increase non-linearity, 1x1 convolution
may be replaced with Gated Linear Units [22]; one or more
1x1 convolutions may be introduced after the summation;
and skip layers may be added. In this work, we use the
aforementioned GLU and one additional 1x1 convolution
(both have 256 channels) after summation followed by ReLU
activation. The middle split xC is added to the input of the
next three-way split summation FFTNet layer to form skip
connections.



Fig. 1: Three-way split summation FFTNet. Starting from an
input NB waveform, we iteratively perform a 1x1 convolu-
tional transformation on each split and then sum the results,
producing an output WB waveform.

Similar to WaveNet [23], we can stack several FFTNets
into deeper networks. To do this, we can apply the same
FFTNet of input N for every consecutive N samples in a
(2N − 1)-sized sequence. This will produce N outputs. Then
these N outputs can be further processed using another three-
way FFTNet to produce one sample. This architecture can be
implemented using dilated convolution with 1x3 kernels and
dilation of N/3 to replace three-way split and summation.
Such a network has a smaller number of layers than feed-
forward WaveNet, as the receptive field is 3 to the number of
layers instead of 2.

3.3. Perceptual loss

The second contribution of our paper is the addition of a
perceptual loss to encourage perceptually motivated BWE.
Our perceptual loss LP is defined as the L1 loss of the log
mel-spectrogram bewteen the predicted waveform and that of
the WB waveform, similar to the loss function used in parallel
WaveNet [24]:

LP = | log(MELSPEC(ŷ))− log(MELSPEC(y))|

The intuition behind this loss is that the spectrogram
based on the mel scale is associated with human hearing.
Our final loss function consists of two parts: An L1 loss
between the predicted waveform and the WB waveform cap-
tures the overall shape of the waveform, making sure that

the lower frequencies are intact. The WB waveform and
the predicted waveform are both passed through STFT to
produce a spectrogram that is further transformed into log
mel-spectrogram based on triangular filters ranging from
2KHz and 22.05KHz. We choose this frequency range to
capture the missing higher band. The L1 distance between
these two log mel-spectrograms is the second part of the loss.

4. EVALUATION

For our experiments, we implemented a deep FFTNet ar-
chitecture and trained on the Device and Produced Speech
(DAPS) Dataset [25]. The model is composed of two stacks,
each of six consecutive FFTNet structures. For the single-
speaker case, we trained/tested on speaker F1 (female) and
separately on speaker M1 (male). We trained on scripts 1-4
of each speaker, holding out script 5 for testing. We also
ran experiments in multi-speaker settings, where we trained
a model on all speakers except F1 and M1 and then tested on
the held-out voices.

We compare our method to state-of-the-art baselines from
both time and frequency domains. For the time domain,
we implemented the waveform-based approach proposed by
Kuleshov et al. [18]. This baseline is a convolutional neu-
ral network that consists of a series of upsampling blocks
followed by a series of downsampling blocks. For the fre-
quency domain, we implemented the approach proposed by
Li et al. [16]. (described in Section 2). Listening samples and
experimental results can be found at our project website.1

4.1. Subjective evaluation

Following an experimental protocol similar to that of Jin et al. [21],
we conducted Mean Opinion Score (MOS) tests [26] com-
paring three methods:

1. OUR: deep three-way split summation FFTNet, trained
on L1 and perceptual loss

2. KUL: waveform-based DNN (Kuleshov et al. [18])

3. SPEC: spectrogram-based DNN (Li et al. [16])

F M cross-F cross-M
Real 4.54 4.68 4.47 4.36
OUR 3.39 3.74 3.04 3.70
KUL 2.95 3.29 2.86 3.06
SPEC 3.01 3.58 2.97 3.02

Table 1: MOS test results. OUR method is compared to
a waveform-based method (KUL) and a spectrogram-based
method (SPEC). Real is the ground-truth WB waveform.

1https://pixl.cs.princeton.edu/pubs/Feng_2019_LBE/

https://pixl.cs.princeton.edu/pubs/Feng_2019_LBE/


(a) NB input (b) WB ground truth (c) OUR (d) KUL (e) SPEC

Fig. 2: Comparing log mel-spectrograms. Starting from (a) NB input, (b) WB ground truth can be compared with the generated
output of three methods: (c) our method, (d) a waveform-based CNN [18], and (e) a spectrogram-based DNN [16]. Our method
avoids oversmoothing the UB frequencies and most closely resembles the appearance of the ground truth spectrogram.

We trained and tested each method in single-speaker and
multi-speaker settings. In the single-speaker setting, we
trained and tested on F1 (F) and separately trained and tested
on M1 (M). In the multi-speaker setting, we trained on all
voices, except F1 and M1, and tested on F1 (cross-F) and
M1 (cross-M).

Our subjects were recruited via Amazon Mechanical
Turk, a micro-task platform shown to be as reliable for crowd-
sourcing experiments as for lab-based studies [27]. Subjects
rated the quality of example audio files on a Likert scale of
1-5, where each HIT (human intelligence task) corresponded
to one of the four setups and included results from all three
compared methods (plus reference and input waveforms, to
check if the HIT was valid). The presented MOS results are
based on 318 valid HITs for F, 186 valid HITs for M, 402 valid
HITs for cross-F, and 384 valid HITs for cross-M. Our
method outperformed baseline methods in all four scenarios
and performed better overall on the male voice.

In subjective evaluations of the generated spectrograms,

F M
LSD SNR LSD SNR

SPEC 4.80 11.53 3.92 13.93
KUL 9.24 22.65 7.91 19.40
OUR 6.32 20.40 4.40 16.33

(a) Results based on networks trained on a single-speaker and
tested on the same speaker.

cross-F cross-M
LSD SNR LSD SNR

SPEC 5.01 11.10 4.18 11.19
KUL 9.46 22.78 9.37 17.25
OUR 5.95 18.36 4.83 15.14

(b) Results based on network trained on multiple speakers and
tested on unseen speakers.

Table 2: Objective evaluation results.

we found that both baselines are prone to oversmoothing the
energy in the upper frequency bins. KUL also results in a
clear line between the NB frequency bins of the input and the
WB bins of the output, as there is a significant drop in energy
across this threshold. We found that our method produces
more realistic looking spectrograms.

4.2. Objective evaluation

We compare the output of each method to ground truth
based on objective metrics of audio quality: signal-to-noise
ratio (SNR) and log spectral distance (LSD). The waveform-
based baseline [18] should perform well by SNR, while the
spectrogram-based baseline [16] should optimize LSD. We
expect our method, which uses supervision in both domains,
to perform relatively well by both measures, since the L1
loss encourages waveform-level accuracy and the perceptual
loss encourages spectral accuracy. We find that KUL indeed
performs best by SNR, while SPEC performs best by LSD.
Our method consistently ranks in between both baselines
by both measures, demonstrating that it achieves a balance
between waveform-level optimization and spectrogram-level
optimization.

5. CONCLUSION

We introduce a waveform-based method for extreme band-
width expansion that uses a deep three-way split summation
FFTNet architecture. We train our network using a perceptu-
ally motivated loss, which encourages realistic output in the
spectral domain as well as time domain. Experiments demon-
strate that our method generates more perceptually convinc-
ing wideband speech than a state-of-the-art method that oper-
ates only in the frequency domain, and it beats the standard
waveform-based baseline. Future work may consider alter-
native approaches to designing a perceptual loss, such as an
adversarial loss. It may also consider other applications of
our method, such as spectral hole filling and other frequency
restoration tasks that arise from audio editing and synthesis.
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