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Figure 1: Synthesis of facial detail. (a) We begin with a low-resolution mesh obtained from a commercial scanner. (b) Then, we synthesize detail on it using

statistics extracted from high-resolution meshes in our database. (c) Finally, we age the face by adjusting the statistics to match those of an elderly man. Note

that all figures in this paper use Exaggerated Shading [Rusinkiewicz et al. 2006] to emphasize small geometric details.

Abstract

Detailed surface geometry contributes greatly to the visual realism
of 3D face models. However, acquiring high-resolution face geom-
etry is often tedious and expensive. Consequently, most face mod-
els used in games, virtual reality, or computer vision look unrealisti-
cally smooth. In this paper, we introduce a new statistical technique
for the analysis and synthesis of small three-dimensional facial fea-
tures, such as wrinkles and pores. We acquire high-resolution face
geometry for people across a wide range of ages, genders, and
races. For each scan, we separate the skin surface details from a
smooth base mesh using displaced subdivision surfaces. Then, we
analyze the resulting displacement maps using the texture analy-
sis/synthesis framework of Heeger and Bergen, adapted to capture
statistics that vary spatially across a face. Finally, we use the ex-
tracted statistics to synthesize plausible detail on face meshes of
arbitrary subjects. We demonstrate the effectiveness of this method
in several applications, including analysis of facial texture in sub-
jects with different ages and genders, interpolation between high-
resolution face scans, adding detail to low-resolution face scans,
and adjusting the apparent age of faces. In all cases, we are able to
re-produce fine geometric details consistent with those observed in
high resolution scans.
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1 Introduction

Creating realistic models of human faces is an important problem
in computer graphics. Face models are widely used in computer
games, commercials, movies, and for avatars in virtual reality ap-
plications. The goal is to capture all aspects of a person’s face in
a digital model – i.e., “Digital Face Cloning” [Pighin and Lewis
2005].

Ideally, a face model should be indistinguishable from a real
face, easy to acquire, and intuitive to edit. However, digital face
cloning remains a difficult task for several reasons. First, humans
are very accustomed to looking at real faces and can easily spot ar-
tifacts in computer generated models. Second, capturing the high
resolution geometry of a face is difficult and expensive. Finally,
editing face models is still a time consuming and largely manual
task, especially if changes to fine-scale details are required.

In this work we focus on a small but important source of realism
in faces: geometry of small facial features, such as wrinkles and
pores. As mentioned in Igarashi et al. [2005], wrinkles are folds of
skin formed through the process of skin deformation, whereas pores
are widely dilated orifices of glands that appear on the surface of
skin. They are visible to the naked eye, and their appearance is very
familiar to us. Small-scale variations in skin color and reflectance,
typically caused by freckles and moles, are not the topic of this
work.

Acquiring high-resolution face geometry with small features is a
difficult, expensive, and time-consuming task. Commercial active
or passive photometric stereo systems (e.g., EyeTronics, 3QTech)
have fast acquisition times (in seconds) and have become afford-
able. However, they only capture large wrinkles and none of the im-
portant small geometric details that make skin look realistic. Laser
scanning systems (e.g., CyberWare) may be able to capture the de-
tails, but they are expensive and require the subject to sit still for



tens of seconds, which is impractical for many applications. More-
over, the resulting 3D geometry has to be filtered and smoothed
due to noise and motion artifacts. The most accurate method is to
make a plaster mold of a face and to scan this mold using a pre-
cise laser range system (e.g., XYZRGB). However, not everybody
can afford the considerable time and expense this process requires.
In addition, the molding compound may lead to sagging of facial
features [Pighin and Lewis 2005].

In this paper we present a statistical face model that makes it
possible to extract, transfer, and synthesize small facial features.
Our approach is based on the analysis of high-resolution face scans.
Using a commercial 3D face scanner and a custom-built face scan-
ning dome, we acquire high-resolution 3D face geometry. We use
displaced subdivision surfaces [Lee et al. 2000] to separate facial
detail (the displacement map) from the smooth underlying mesh
(the subdivision surface). We then apply a novel tile-based exten-
sion of parametric texture analysis/synthesis [Heeger and Bergen
1995] to compile a spatially-varying statistical model for the dis-
placement map. The model is used to synthesize fine geometric
details (e.g., new wrinkles and pores) on the same or another base
mesh. Our method of generating facial detail can be used in con-
junction with methods such as the PCA-based analysis of Blanz
and Vetter [1999], which are well suited for modeling coarse facial
deformations.

This statistical model of facial detail, combined with our data-
base of statistics for 149 subjects, opens ground for new applica-
tions. Chief among these is adding detail to a low resolution face
(Figure 1b). This application allows anybody to create plausible,
detailed face meshes from low resolution scans by synthesizing
detailed displacement maps from statistics that we make publicly
available. Second, users can interpolate between multiple faces
without blurring high resolution details. Finally, they can age or
de-age a face using statistics of older or younger subjects in the
database (Figure 1c).

The main contributions of this work are:

• a statistical model of fine geometric facial features based on an
analysis of high-resolution face scans;

• an extension of parametric texture analysis and synthesis meth-
ods to spatially-varying geometric detail;

• a database of detailed face statistics for a sample population that
is made available to the research community;

• new applications, including introducing plausible detail to low-
resolution face models and adjusting face scans according to
age and gender.

1.1 Previous Work

There has been a wealth of research in capturing and modeling faces
in computer graphics and computer vision. In this overview, we
focus on the relevant work in statistical modeling and synthesis of
face geometry.

Morphable Face Models: DeCarlo et al. [1998] used variational
techniques to synthesize faces with some characteristic distances
consistent with measured data. Because of the sparseness of the
measured data compared to the high dimensionality of possible
faces, the synthesized faces are not as plausible as those produced
using a database of scans.

Blanz and Vetter [1999] were the first to study the space of faces.
They use Principal Component Analysis (PCA) to generate a linear
morphable face model from a database of face scans. This was
extended by Vlasic et al. [2005], who used multi-linear face models
to study and synthesize variations in faces along several axes, such
as identity and expression. Morphable models have also been used
in 3D face reconstruction from photographs [Blanz and Vetter 1999;
Fuchs et al. 2005] or video [Vlasic et al. 2005]. These methods
synthesize a range of plausible meshes.

However, current linear or locally-linear morphable models can-
not be directly applied to analyzing and synthesizing high-resolution
face models. The dimensionality (i.e., length of an eigenvector)
of high-resolution face models is very large, and an unreasonable
amount of data (i.e., number of eigenvectors) would be required to
capture small facial details. In addition, during construction of the
model, it would be difficult or impossible to find exact correspon-
dences between high resolution details of all the input faces. With-
out correct correspondence, the weighted linear blending performed
by these methods would blend small facial features, making the re-
sult implausibly smooth (see Figure 7a). We address the shortcom-
ings of morphable models on meshes that are more than an order of
magnitude larger than those used in Blanz and Vetter [1999].

Physical/Geometric Wrinkle Modeling: Some work has focused
on directly modeling skin folding and physics [Wu et al. 1995; Wu
et al. 1997; Boissieux et al. 2000]. However, these models are not
easy to control, and do not produce results that can match high-
resolution scans in plausibility.

Other work suggested modeling wrinkles geometrically [Bando
et al. 2002; Larboulette and Cani 2004]. Such methods generally
proceed by having the user draw a wrinkle field and select a mod-
ulating (cross-sectional) function. The wrinkle depth is then mod-
ulated as the base mesh deforms to conserve length. This allows
user control, and is well-suited for long, deep wrinkles (e.g., across
the forehead). However, it is difficult for the user to realistic sets
of wrinkles, and these methods do not create pores and other fine
scale skin features.

As such, these methods are well suited to complement our tech-
nique. They can be used to create long-range (and in some cases
user-specified) wrinkle structures, and our technique can be used to
adjust the results to match face detail statistics, adding pores and
other fine-scale facial detail to the models.

1.2 Texture Synthesis

To analyze and synthesize skin detail we apply texture synthesis
methods to 3D geometry displacements. The two main classes of
texture synthesis methods are Markovian and parametric texture
synthesis.

Markovian texture synthesis methods treat the texture image as
a Markov random field. They typically build up an image patch
by patch (or pixel by pixel) by searching the sample texture for a
region whose neighborhood matches the neighborhood of the patch
or pixel to be synthesized. This method was first proposed by Efros
and Leung [1999]. Hertzmann et al. [2001] extended it for a number
of applications, including a super-resolution filter, which created a
higher-resolution image from a low-resolution one using a sample
pair of low and high resolution images. Liu et al. [2001] applied
similar ideas to the specific task of hallucinating detail on a lower-
resolution facial image. Markovian methods have also been used
for generation of facial geometry by Haro et al. [2001] to grow
fine-scale normal maps from nickel-sized samples taken at different
areas of the face.

Parametric methods extract a set of statistics from the sample
texture. Synthesis starts with a noise image, and coerces it to match
the statistics. The original method was proposed by Heeger and
Bergen [1995], where the chosen statistics were histograms of a
steerable pyramid of the image. Portilla and Simoncelli [2000] used
a larger and more complex set of statistics to generate a greater va-
riety of textures, but we found the simpler approach of Heeger and
Bergen to be sufficient for our application. Matusik et al. [2005]
interpolated between textures while preserving sharpness, similarly
to how we interpolate between high-resolution face meshes. We
augment this method with spatially varying texture statistics, as
has been previously explored in the context of image segmentation
(e.g., [Brox and Weickert 2006]).
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Figure 2: System overview. Faces are separated into smooth base meshes and detailed displacement images. Statistics are extracted from the displacement

images. The image to be synthesized is coerced to match the desired statistics, and added back to the base mesh to create the new face mesh.

A key decision in designing our system was whether to use para-
metric or Markovian techniques. Markovian techniques have re-
cently produced more impressive images, and have been shown to
synthesize a larger range of textures. Instead, we chose to use a
parametric texture model for the following reasons:

• A parametric model yields statistics for study. We can perform
analysis, compare the statistics of groups, and gain some under-
standing of the detail we are synthesizing. This also allows for
easier and more direct manipulation of statistics: it is simple to
take mean statistics of a group of faces, use PCA, etc.

• Our parametric method respects detail existing at the start of
synthesis and automatically adjusts to the resolution of the given
target mesh. In contrast, example-based synthesis overwrites
the image at whatever resolution it is being used.

• A parametric model allows for compression of data. The sta-
tistics we use are several orders of magnitude smaller than the
original images. Example-based synthesis would require the
images to be available in their entirety.

• The meshes and images used for this paper are restricted from
being disseminated in their full resolution because of privacy
concerns. A parametric model allows us to share statistics with
other researchers to allow the synthesis and further study of
high resolution faces. Markovian techniques, which require the
full images, do not permit this.

We modified the method of Heeger and Bergen to the case of
spatially-varying statistics, and reduced these statistics to a smaller
set without sacrificing the quality of synthesized faces. We found
this choice to strike a good balance between compactness and ease
of use on the one hand, and quality of the synthesized meshes on
the other.

2 System

Our system consists of an analysis stage, executed once for each
scan in our database, and a number of application-driven synthesis

stages (Figure 2). Analysis begins with a high-resolution (500k
polygons) scan of a face. This is reparameterized, and separated
into a base mesh and a displacement image. The latter is broken into
tiles, and statistics are computed separately for each tile. Synthesis
uses these statistics to adjust a different face’s displacement image,
and the result is combined with a base mesh to form a new face.
Depending on the application, this sharpens high-frequency data
lost due to interpolation, adds detail missing because of the low
resolution of the scan, or adjusts detail to change the age of a face.

2.1 Data Acquisition

The first step of our process is to acquire high resolution face scans
for a number of subjects. Each subject sits in a chair with a head
rest to keep the head still during acquisition. We capture the com-
plete face geometry using the commercial face-scanning system
from 3QTech (www.3dmd.com). The output mesh contains 40k
vertices and is manually cropped and cleaned. We then refine the
mesh to about 700k vertices using Loop subdivision [Loop 1987].

The resulting mesh is too smooth to resolve fine facial details,
and we capture these details using photometric stereo. The sub-
ject is surrounded by a geodesic dome with multiple cameras and
LED lights, similar to the LightStage of Debevec et al. [Debevec
et al. 2000; Debevec et al. 2002]. The system sequentially turns
on each light while simultaneously capturing images from different
viewpoints with 16 cameras. Using the image data, we refine the
geometry and compute a high-resolution normal map using photo-
metric stereo [Barsky and Petrou 2001]. Finally, we use the method
of Nehab et al. [2005] to combine the high-resolution normals with
the low-resolution geometry, accounting for any bias in the normal
field. The result is a high-resolution (500k polygons) face mesh
with approximately 0.5 mm. sample spacing and low noise (below
0.05 mm.), which accurately captures fine geometric details. We
report the details about the acquisition system and its calibration
procedure in [Weyrich et al. 2005].
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Figure 3: (a) The displacement image is divided into tiles. Filter responses

and histograms of the outlined 2× 2 section are shown in (b). All orien-

tations and two scales are shown; tiles with more content have wider his-

tograms.

2.2 Remeshing

The second stage of our process is to put the faces into per-vertex
correspondence. To identify facial features, we have defined 21 fea-
ture points, which must be manually located on each face. With pre-
defined connectivity, these form a “marker” mesh. Following the
approach of Guskov et al. [2000], the marker mesh is subdivided
and re-projected in the direction of its normals onto the original
face scan several times, yielding successively more refined approx-
imations of the original scan. Because the face meshes are smooth
relative to the marker mesh, self-intersections do not occur.

A subtle issue is choosing the right subdivision strategy. If we
use an interpolating subdivision scheme, marker vertices remain in
place and the resulting meshes have relatively accurate per vertex
correspondences. However, butterfly subdivision [Dyn et al. 1990]
tends to pinch the mesh, and linear subdivision produces a parame-
terization that has discontinuities in its derivative. An approximat-
ing method, such as Loop subdivision, produces smoother parame-
terizations at the cost of moving vertices and making the correspon-
dences worse. The choice of subdivision scheme then offers the
tradeoff between a smooth parameterizations and better correspon-
dences. Since the first several rounds of subdivision would move
vertices the furthest under approximating schemes, we choose two
linear subdivisions followed by two Loop subdivisions (projecting
onto the original face after each subdivision).

This gives us a coarse control mesh using which we can define
a scalar displacement image that captures the remaining face detail
following Lee et al. [2000]. Specifically, we subdivide this mesh
three times with Loop subdivision (without re-projecting). This
yields a smooth, fine mesh we refer to as the base mesh. We project
the base mesh onto the original face along the normals of the base
mesh, and define the displacement image by the length of the dis-
placement at each vertex. To map this to an image, we start with
the marker mesh mapped in a pre-defined manner to a rectangle,
and follow the sequence of subdivisions in the rectangle. We chose
to represent the displacement images with 1024 x 1024 samples.
One such displacement image is shown in Figure 3a.

2.3 Extraction of Statistics

In our next step, we aim to build a statistical model of the fine de-
tail in the facial displacement maps. Our goal is to represent the
displacements with enough accuracy to retain wrinkles and pores
in a compact model suitable for synthesis of details on new faces.

Our method is an extension of texture synthesis techniques com-
monly used for images. Following Heeger and Bergen [1995], we
extract histograms of a sample texture’s steerable pyramid [Simon-
celli and Freeman 1995] to collect the texture’s statistics at sev-
eral scales and orientations. Direct application of previous methods
would define a set of global statistics for each face, which are not
immediately useful for our problem since the statistics of facial de-
tail vary spatially. We make the intuitive modification of taking
statistics of image tiles to capture the spatial variation. Specifically,
we decompose the images into 256 tiles in a 16× 16 grid and build

Figure 4: Visualization of statistics of an old face for one scale: circles

at each tile center are expanded in each filter direction by the standard

deviation of the filter response within the tile. These statistics capture the

spatially local directionality and amount of detail at a given scale.

steerable pyramids with 4 scales and 4 orientations for each tile. We
also consider the high-pass residue, but not the low-pass residue,
which we take to be part of the base mesh. This produces 17 fil-
ter outputs. Sample histograms and filter outputs for two scales are
shown in Figure 3b.

Storing, analyzing, interpolating, and visualizing these histograms
is cumbersome, since they contain a lot of data. However, we ob-
serve that the main difference between the histograms in the same
tile for different faces is their width. Following this observation,
we approximate each histogram by the standard deviation of the
pixels in the tile. This approximation allows significant compres-
sion of the data. The reduced statistics of a face then contain a
scalar for each tile in each filter response: 17× 16× 16 = 4,352
scalars, compared with 128× 17× 16× 16 = 557,056 scalars in
the histograms (if we use 128 bins), and 1024×1024 = 1,048,576
scalars in the original image. We have confirmed empirically that
faces synthesized from these reduced statistics are visually indistin-
guishable from those synthesized with the full set of histograms.

This reduced set of statistics not only decreases the cost of stor-
age and analysis, but also allows for easier visualization and better
understanding of how the statistics vary across a face and across
populations of faces. For example, for each scale and tile, we can
draw the standard deviations for all filter directions as a circle ex-
panded in each direction by the standard deviation computed for
that direction. Figure 4 shows such a visualization for the second
scale of the pyramid (512×512 pixels) for the face in Figure 5a.

2.4 Synthesis

The final step is to use these statistics to synthesize facial detail.
Heeger and Bergen [1995] accomplish this as follows. The sample
texture is expanded into its steerable pyramid. The texture to be
synthesized is initialized with noise, and is also expanded. Then,
the histograms of each filter of the synthesized texture are matched
to those of the sample texture, and the pyramid of the synthesized
texture is collapsed, and expanded again. Since the steerable pyra-
mid forms an overcomplete basis, collapsing and expanding the
pyramid will change the filter outputs if they have been adjusted
independently. However, repeating the procedure for several itera-
tions has been found to lead to convergence.

This procedure needs to be modified to use our reduced set of
spatially varying statistics. The histogram-matching step is replaced
with matching standard deviations by scaling the range of values in
each tile. Each tile is grown to the centers of its neighboring tiles,
so that each pixel is covered by its four neighboring tiles (except on
the perimeter, where pixels are covered by one tile at the corners
and by two tiles elsewhere). The matching of standard deviations



(a) Original (b) Smoothed (c) Synthesized

Figure 5: To evaluate the plausibility of our analysis/synthesis methods, we begin with a high-resolution face (a) and apply smoothing (b). We then re-synthesize

a face by using only the statistics from (a). Though the synthesized details differ from the original face, they appear qualitatively similar.

is done separately for each (expanded) tile, using its own statistics,
resulting in several synthesis results available at each pixel. The fi-
nal image is assembled from the individually synthesized tiles, with
bilinear weighting used to control the interpolation.

Note that adjusting standard deviations in this manner does not
end with the synthesized tiles having the same standard deviation as
the target tiles. If, however, this step is repeated several times, the
deviation of the synthesized tiles converges to the desired deviation.
In practice, performing this matching iteratively does not result in a
mesh visually distinguishable from that synthesized with only one
matching step per iteration.

Parametric texture synthesis usually begins with a noise image.
Instead, for our applications, we begin synthesis with an existing
displacement image. In this case, iterative matching of statistics
does not add new detail, but modifies existing detail with prop-
erly oriented and scaled sharpening and blurring. If the starting
image has insufficient detail, we add noise to it. We use Gaussian
noise, and our experiences suggest that similarly simple noise mod-
els (e.g., Perlin noise [Perlin 1985]) lead to the same results. We
must be careful to add enough noise to cover possible scanner noise
and meshing artifacts, but not so much that the amount of noise
overwhelms existing detail.

As an empirical validation of this approach, and to illustrate its
strengths and limitations, we attempt to re-create the details of a
high resolution face that has been smoothed by coercing it to match
its original statistics. We show the result in Figure 5. Note that the
synthesized wrinkles at corners of the eyes, and the forehead, are
oriented correctly. Moreover, the eyelids and crease of the mouth
have been sharpened. The synthesis is faithful to detail existing in
the starting mesh: it sharpens existing wrinkles. But, the newly
created wrinkles are not as elongated or correlated as they are on
the original mesh.

These observations point to several limitations of the synthesis
process, which become less prominent with increasing resolution
of the starting mesh. Completely new detail created in this process
can only come from the added noise. As such, it is limited by the
noise model and basis functions of the filters. With white noise and
a steerable pyramid, this does not produce long, correlated struc-
tures. Also, in the absence of detail, this method struggles with

deterministic facial details, such as creases on the mouth or eye-
lids. When such a crease is insufficiently sharp, the synthesis may
instead sharpen a similarly oriented indentation that happens to be
in the same tile. Despite these drawbacks, we find that our method
creates plausible faces for several applications, as shown in the fol-
lowing section.

3 Applications

Our statistical model of detailed face geometry is useful for a range
of applications. The statistics allow analysis of facial detail, for
example, to track changes between groups of faces. They also
allow synthesis of new faces for applications such as sharpness-
preserving interpolation, adding detail to a low resolution mesh,
and aging.

3.1 Analysis of Facial Detail

As a first application, we consider analysis and visualization of fa-
cial detail. This may be useful, for example, for classification of
face scans. We wish to gain insight into how facial detail changes
with personal characteristics by comparing statistics between groups
of faces. To visualize the differences between groups, we normalize
the statistics of each group to the group with the smallest amount of
content, and compare the mean statistics on a tile-by-tile basis. We
follow this approach to study the effects of age and gender.

Age To study the effect of age, we compare three groups of males
aged 20-30 (21 subjects), 35-45 (17 subjects), and 50-60 (5 sub-
jects). The group statistics are shown in Figure 6a, colored with
black, red, and blue respectively. We see that wrinkles develop
more from the second age group to the third than from the first
to the second. This suggests that after the age of 45, the amount
of roughness on skin increases more rapidly. These images also
suggest that around that age, more directional, permanent wrinkles
develop around the corners of the eyes, the mouth, and some areas
on the cheeks and forehead.

Gender To investigate how facial detail changes with gender, we
compare in Figure 6b 20-30 year-old women (10 subjects, in black)
to males of the same age group (21 subjects, in red). The change of



(a) Variation across age (b) Variation across gender

Figure 6: Comparison of statistics between groups, normalized to the first group. (a) Age (black, red and blue for groups of increasing age). (b) Gender

(females in black and males in red).

high frequency content from females to males is different in charac-
ter from that of the change between varying age groups. Males have
more high frequency content, but the change, for this age group, is
relatively uniform and not as directional. In addition, males have
much more content around the chin and lower cheeks. Although
none of the scanned subjects had facial hair, this is likely indicative
of stubble and hair pores on the male subjects.

3.2 Interpolation

There are a number of scenarios in which it may be useful to inter-
polate between faces. A user interface for synthesizing new faces,
for example, may present the user with faces from a data set, have
her define a set of weights, and return a face interpolated from the
input faces with the given weights. Alternatively, linear models
(e.g., [Blanz and Vetter 1999]) could synthesize a face as a weighted
sum of a large number of input faces. However, interpolation be-

(a) Average face (b) Adjusted statistics

Figure 7: Interpolation between 14 faces aged 30 to 35. (a) The arithmetic

average looks implausibly smooth. (b) The average with adjusted statistics

has sharper creases on mouth and eyelids, and pores on cheeks, chin, and

forehead.

tween a large number of faces blurs detail, leading to implausibly
smooth faces. For example, Figure 7a shows an average of 14 faces
produced with a linear model. Note that the fine details of the skin
geometry are not visible.

Representing our statistics for each face as a vector of numbers,
we can define algebraic operations such as interpolation on them.
To prevent the blurring of detail that occurs with interpolation, we
would like to synthesize a face with statistics matching the interpo-
lation of the input face statistics, which we call the target statistics.
We augment algebraic interpolation of mesh vertices with a detail-
adjustment step that coerces the result to match the target statistics.

Each of the input faces is remeshed to yield a base mesh and a
displacement image from which statistics are calculated. The base
mesh of the output face comes from the interpolation of the base
meshes of input faces, and remains unchanged. The displacement
image of the output face is initialized with the interpolation of the
input displacement images. The initial image does not match the
target statistics, and we coerce it to match them, resulting in the
output displacement image. Applying the output displacement im-
age to the base mesh yields the synthesized face.

Figure 7b uses this method to sharpen the result of Figure 7a.
This sharpens the creases of the mouth, lips, and eyelids. It adds
slight vertical indentations to the lips, without smoothing them hor-
izontally. It also creates pores on the cheeks, chin, and forehead.

3.3 Adding Detail

Low-resolution meshes can be produced from a variety of sources.
Such meshes can come from a commercial scanner (as in Figure 8a),
can be created manually, or can be synthesized using a linear model
from a set of input meshes. On the other hand, high resolution
meshes are difficult and expensive to obtain. It is useful to be able
to add plausible high-resolution detail to a low-resolution face with-
out having to obtain high-resolution meshes. One might wish, given
a database of face images, to select a face to which to adjust statis-
tics. Alternatively, it may be convenient to adjust the low-resolution
mesh to the mean statistics of an age group.

Our framework allows the synthesis of detail on a low resolution
mesh in a straightforward manner. We start with the displacement
image of the low-resolution mesh, adjust it to match target statistics,



(a) Low resolution (b) Adjusted detail (c) Source of statistics

Figure 8: Adding detail to a face. We start with a low-resolution face obtained from a scanner (a), and synthesize detail on it (b) to match the statistics of the

high-resolution face (c). Creases in the mouth and eyelids were sharpened, and pores of similar amplitude, distribution, and orientation as in the target face

were added.

and add it back to the base mesh. This process inherently takes
advantage of the available level of detail in the low resolution mesh;
therefore, a more accurate starting mesh will yield a more plausible
face.

Figure 8a shows a low resolution face acquired with a commer-
cial 3D scanner by 3QTech (www.3dmd.com). Figure 8b shows the
result of matching the statistics of this face to those of a high reso-
lution face shown in Figure 8c. The synthesis keeps the features of
the original subject, while matching the scale, amount, and orienta-
tion of high-resolution detail of the target subject. It also sharpens
the creases on the mouth and eyes, without introducing much noise.

3.4 Aging and De-aging

It may be desirable to change the perceived age of a face mesh. For
example, we may want to make an actor look older or younger. The
goal is to create a plausible older version of a young face, and vice-
versa. Because facial detail plays such a key role in our perception
of age, and because scans for the same individual taken at different
ages are not available, hallucinating aging is a challenging task.

Blanz and Vetter [1999] would perform aging by linear regres-
sion on the age of the meshes in the set, finding an “aging” vector.
However, this approach suffers from the same problem as interpo-
lation: wrinkles do not line up, and detail is blurred. It also does
not solve the problem of ghosting and disregards existing detail.
This approach has another problem that is highlighted by de-aging.
The “aging” vector captures large-scale features of aging, such as
sagging cheeks. However, a particular older face has more of these
“aged” features in some areas and less in others; therefore, subtract-
ing the aging vector to de-age often creates a strange-looking face
(e.g., “negative” sagging of cheeks).

Aging falls neatly into our framework. We select a young face
and an old face. To age, we start with the image of the young face,
and coerce it to match statistics of the old face. The resulting im-
age contains the detail of the young face, with wrinkles and pores
sharpened and elongated to adjust to the statistics of the old face.

To make the adjustment convincing, we also need to change the
underlying coarse facial structure. Our hierarchical decomposition
of face meshes suggests a way to make such deformations. Prior

to the displacement map, our remeshing scheme decomposes each
face into a marker mesh and four levels of detail. In this case, we
can take the marker mesh and lower levels of details from the young
mesh (since these coarse characteristics are individual and do not
change with age), and the higher levels of details from the old mesh.

An example of this process is shown in Figure 9 for the two male
subjects in Figures 9a and d. Adjustment of details is shown in Fig-
ures 9b and e, and adjustment of details along with coarse changes
in Figures 9c and f. Near corners of the eyes and the forehead, the
young face is adjusted to have the highly directional wrinkles of
the old face. The young face also acquires the creases below the
sides of the mouth. The de-aged face has its wrinkles smoothed
(for example, on the cheek), but retains sharpness in the creases of
the mouth and eyelids.

4 Comparison to Alternative Methods

In this section, we compare our approach to simple alternatives,
focusing only on aging because comparisons for other applications
are analogous.

Our comparison focuses on adding detail to a young face after
it has been warped to fit the coarse geometry of an old face, as
described in the previous section. A warped young face is shown in
Figure 10a, and the results of aging it to match the details of an old
face (Figure 10b) are shown for our method in Figure 10c and for
three alternative approaches in Figures 10d-f:

1. Noise: facial details could be simulated by adding noise. For
example, in Figure 10d, we show the result of adding Perlin
noise to the displacement image of Figure 10a. Clearly, the
face does not look realistic.

2. Sharpen: aging could be simulated by sharpening the warped
mesh of a young face, thereby deepening creases and enlarging
pores (Figure 10e). While sharpening approximates aging in
some areas, it does not respect the orientations of details in the
target old face (e.g., wrinkles near the corner of the eyes), and it
sharpens creases that should not get sharper with age (e.g., the
crease of the mouth).



(a) Original face (b) Aged detail (c) Aged base geometry and detail

(d) Original face (e) De-aged detail (f) De-aged base geometry and detail

Figure 9: Adjusting detail. Top row contains a young face getting older, and bottom row contains an old face getting younger. The young face is adjusted using

the statistics and base mesh of the old face, and vice-versa. First column has original faces, second column has synthesized details, and third column has an

additional coarse adjustment.

3. Detail transfer: a face could be aged by replacing its displace-
ment image with one extracted from an old face (Figure 10f).
This approach amounts to simply warping the old face to coarsely
fit the young face. It completely overwrites existing high fre-
quency detail of the young face, which removes important in-
dividual features and creates new wrinkles without respecting
existing ones. For example, notice that eyes and lips in Fig-
ure 10f do not retain the individual characteristics of those in
Figure 10a.

Our method combines the strengths of these three approaches un-
der one framework: 1) added noise is scaled and oriented to match
the statistics of the aged face; 2) features are sharpened only where
the aged face contains sharp features; and 3) existing details (e.g.,
wrinkles) are modified rather than replaced.

5 Dissemination

As a final result, we make available to the public the statistics ex-
tracted from the high-resolution face geometry of 149 subjects of
various age, gender, and race. The ages of our subjects range be-
tween 15 and 83 years, and there are 114 male and 35 female sub-
jects. Most of the subjects are Caucasians (81), with Asians making
up the second largest group (63), and African-Americans the small-
est (5). For all faces, we make available both the Heeger-Bergen
statistics (full histograms at 4 orientations, 4 scales, and 16× 16
tiles) and the reduced statistics extracted from the high resolution
scan. These statistics should make it possible for other researchers
to add details to low-resolution scans of new faces and investigate
new applications beyond the ones considered in this paper.



(a) Young face after coarse warp (b) Target old face (c) Our aging result

(d) Adding Perlin noise (e) Sharpening (f) Transferring detail geometry

Figure 10: Comparison of our aging method with simple alternative approaches: (a) shows a young face after low-resolution deformation, but without any

detail adjustment, and (b) has the target old face. Our synthesized result is shown in (c), and the bottom row contains alternative approaches: adding noise

(d), sharpening (e), and direct geometry transfer (f). Each of these has deficiencies: (d) contains detail that is too uniform, (e) does not have oriented wrinkles

(e.g., eye corner) and overly sharpened features (e.g., mouth crease), and (f) loses some individual characteristics of (a) (e.g., eyes).

6 Conclusion and Future Work

We have presented a method for analyzing and synthesizing facial
geometry by separating face meshes into smooth base meshes and
displacement images, extracting statistics from the images, and syn-
thesizing new faces with fine details based on extracted statistics.
This work takes a small step towards more realistic facial models
and suggests several directions for further research.

Within the existing framework, several areas of improvement
may lead to more plausible facial synthesis. The statistical model
we use can be augmented to include correlations within and be-
tween steerable pyramid filter outputs [Portilla and Simoncelli 2000].
Moreover, the noise introduced at the first stage of synthesis could

be made more realistic by incorporating information about the ex-
isting overall geometry, the results of an explicit large-scale wrinkle
model, or even image-based information from photographs. These
refinements would improve the ability of our synthesis to capture
long, continuous features (e.g., long wrinkles across the forehead),
at the expense of additional processing and complexity in our sta-
tistical representation.

It would be interesting to expand this model into the larger con-
text of face synthesis, rendering, and animation. This involves ex-
tending our model to capture not only statistics of geometric de-
tail, but also the correlations between shape, appearance, and move-
ment. For example, we might capture the fact that pores appear in
both geometry and reflectance or that the shape of wrinkles depends



on expression, and use this information to produce compelling syn-
theses that are consistent with all available data.

Moving beyond the applications presented here, we would like
to explore the use of the statistical model for identifying or clas-
sifying faces. The results presented here suggest that the statistics
we use offer cues about the age and gender of an individual, and
represent a heretofore underutilized source of information that may
complement overall shape and appearance for the purposes of iden-
tification. More generally, the availability of high-resolution scans
of faces from a broad population may enable new classes of appli-
cations in comparative analysis and realistic rendering.
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