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Abstract
Perfect, partial, and approximate symmetries are pervasive in 3D
surface meshes of real-world objects. However, current digital ge-
ometry processing algorithms generally ignore them, instead focus-
ing on local shape features and differential surface properties. This
paper investigates how detection of large-scale symmetries can be
used to guide processing of 3D meshes. It investigates a frame-
work for mesh processing that includes steps for symmetrization
(applying a warp to make a surface more symmetric) and symmetric
remeshing (approximating a surface with a mesh having symmetric
topology). These steps can be used to enhance the symmetries of a
mesh, to decompose a mesh into its symmetric parts and asymmet-
ric residuals, and to establish correspondences between symmetric
mesh features. Applications are demonstrated for modeling, beau-
tification, and simplification of nearly symmetric surfaces.

1 Introduction
Symmetry is ubiquitous in our world. Almost all man-made objects
are composed exclusively of symmetric parts, and many organic
structures are nearly symmetric (e.g., bodies of animals, leaves of
trees, etc.). It is almost impossible to find a real-world object that
does not have at least one nearly perfect symmetry and/or is not
composed of symmetric parts. Moreover, symmetry is an impor-
tant cue for shape recognition [Fer00], as humans readily notice
departures from perfect symmetry.

For decades, however, mesh reconstruction and processing al-
gorithms in computer graphics have largely ignored symmetries.
Most algorithms operate as sequences of mesh processing opera-
tions based on local shape features and/or differential surface prop-
erties. As a result, they have difficulty reproducing and preserving
global shape properties, such as symmetry.

Consider simplification, for example – when presented with an
input mesh for a nearly symmetric object (e.g., a face), a simplifica-
tion algorithm should produce a nearly symmetric mesh. However,
to our knowledge, there is no current algorithm that satisfies this
basic requirement. Certainly, if the input is perfectly symmetric,
then the problem is trivial – simply process half of the mesh and
then copy the result. However, if the underlying surface is sym-
metric but the mesh topology is not, or if the underlying surface is
only approximately symmetric, then standard simplification algo-
rithms fail to preserve symmetries present in the underlying object
(Figure 10c). The result is potential artifacts in physical simula-
tions, manufacturing processes, animations, and rendered images
(e.g., asymmetric specular highlights).

Recently, researchers have introduced several methods for de-
tecting and characterizing the symmetries in 3D data. For example,
Zabrodsky et al. [ZPA95] provided a measure of approximate sym-
metry with respect to any transformation, and Mitra et al. [MGP06]
and Podolak et al. [PSG∗06] have described algorithms for extract-
ing the most significant approximate and partial symmetries of a 3D
mesh. While symmetry analysis methods like these have been used
to guide high-level geometric processing operations, such as regis-
tration, matching, segmentation, reconstruction, reverse engineer-
ing, editing, and completion, they have not yet been incorporated
into low-level mesh processing algorithms.
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The main goal of this paper is to investigate ways in which
symmetry analysis can guide the representation and processing of
3D surface meshes. To support this goal, we make the follow-
ing contributions. First, we describe an algorithm for geometric
symmetrization – i.e., deforming a surface to respect a given set
of symmetries while retaining its shape as best as possible. Sec-
ond, we describe an algorithm for topological symmetrization – i.e.,
remeshing a surface so that symmetric regions have consistent mesh
topology. Third, we propose a “symmetry-aware” mesh processing
framework in which geometric and/or topological symmetrization
algorithms provide high-level shape information (symmetric cor-
respondences and asymmetric residuals) that can guide mesh pro-
cessing applications to produce more symmetric results for approx-
imately symmetric inputs. Finally, we demonstrate applications of
this framework for surface beautification, symmetry enhancement,
attribute transfer, and simplification.

2 Background and Previous Work
Understanding the symmetries of shapes is a well studied problem
with applications in many disciplines. Perfect symmetries are com-
mon in CAD models and used to guide compression, editing, and
instancing [MSHS05]. However, only considering perfect symme-
tries is of limited use in geometric processing, in general. First, the
presence of noise, numerical round-off error, or small differences in
tessellation can cause models of objects that are in fact symmetric to
lack perfect symmetry. Second, many asymmetric objects are com-
posed of connected parts with different symmetries. Finally, most
organic objects exhibit near, but imperfect, symmetries (leaves of
trees, human bodies, etc.), and understanding those types of sym-
metry is important, too. Thus, it is useful to have methods to detect
and utilize partial and approximate symmetries.

Towards this end, Zabrodsky et al. [ZPA95] defined the symme-
try distance of a shape with respect to a transformation as the dis-
tance from the given shape to the closest shape that is perfectly
symmetric with respect to that transformation. They provide an
algorithm to find the symmetry distance for a set of connected
points for any given reflective or rotational transformation. Mitra
et al. [MGP06] and Podolak et al. [PSG∗06] find a set of prominent
symmetries by having points on a mesh vote for symmetries in a
process similar to a Hough transform.

Measures for partial and approximate symmetry of this type have
been used in a variety of computer vision applications. Perhaps the
earliest example is by [TWK87], who used deformable models with
symmetry-seeking forces to reconstruct 3D surfaces from 2D im-
ages. Zabrodsky et al. used a continuous measure of symmetry for
completing the outline of partially-occluded 2D contours [ZPA93],
for locating faces in an image, determining the orientation of a 3D
shape [ZPA95], for reconstructing 3D models from images, and for
symmetrizing 3D surfaces [ZW97].

More recently, symmetry analysis has received attention in com-
puter graphics. Kazhdan et al. [KCD∗03] constructed a symmetry
descriptor and used it for registration and matching. Podolak et
al. [PSG∗06] used a symmetry transform for surface registration,
shape matching, mesh segmentation, and viewpoint selection. Mi-
tra et al. [MGP06] described a method to extract a discrete set of
significant symmetries and used them for segmentation and edit-
ing. Thrun et al. [TW05] used local symmetries and used them for
completion. Gal et al. [GCO05] developed local shape descriptors
to look for approximate symmetries in 3D surfaces and used them
for visualization and matching. Mills et al. [MLMM01] utilized ap-
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Figure 1: Symmetry-aware mesh processing framework.

proximate symmetries to guide reverse engineering of CAD struc-
tures from range scans. Simari et al. [SKS06] decomposed meshes
into a hierarchical tree of symmetric parts to be used for compres-
sion and segmentation. Finally, Martinet et al. [MSHS05] has de-
tected perfect symmetries in parts of scenes and used them to build
instancing hierarchies.

owever, methods that take explicit advantage of large-scale, ap-
proximate, and partial symmetries are rare in low-level digital geo-
metric processing of 3D surface meshes.

3 Overview
The goal of our work is to provide tools for symmetry-aware pro-
cessing of 3D surface meshes. We propose a multi-step process-
ing framework, in which approximate and partial symmetries are
detected, preserved, exploited, and sometimes even enhanced as
meshes are processed. To support this framework, we provide the
following tools, which typically will be used in the sequence of
steps shown in Figure 1:
1. Symmetry analysis: the mesh is analyzed to detect perfect,

approximate, and partial symmetries. The output of this step is
a set of transformations (e.g., planes of reflection), each with
a list of vertices indicating the subset of the surface mapped
approximately onto itself by the transformation. For this step,
which is not a focus of this paper, we use methods previously
described in [PSG∗06] and [MGP06].

2. Geometric symmetrization: the surface is warped to make it
symmetric with respect to a given set of transformations. The
primary output of this step is a “symmetrized” mesh having the
same topology as the original, but with geometry that is per-
fectly symmetric up to the resolution of its tessellation. A sec-
ondary output is a set of asymmetric residuals storing the vec-
tor difference between the original and symmetrized position
of every vertex, which can be used to compute an inverse to the
symmetrizing warp.

3. Symmetric mapping: correspondences are established be-
tween vertices and their images across every symmetry trans-
formation. The output of this step is a dense set of point pairs,
where one point is associated with a vertex and the other is as-
sociated with a face and its barycentric coordinates. These point
pairs provide a mapping between symmetric surface patches.

4. Symmetric remeshing: the surface is remeshed so that every
vertex, edge, and face has a one-to-one correspondence with

(a) (c)(b)

Figure 2: Schematic of one iteration in our symmetrization process (in 2D).
(a) Given a curve (red) and a symmetry transformation (reflection across the
dotted line), (b) we find correspondences between vertices and the closest to
point on the reflected curve (green), and (c) solve for new vertex positions
that minimize an error function based on those correspondences.

another across every symmetry. The output of this step is a new
mesh with perfectly symmetric topology, along with a list of
topological correspondences.

5. Restoring deformation: the inverse of the symmetrizing warp
is applied to the symmetrically remeshed surface to restore the
original geometry. The output of this step is a mesh that is topo-
logically symmetric, but geometrically approximates the input
mesh.

The motivating idea behind this framework to provide tools that
can help mesh processing algorithms to preserve large-scale sym-
metries present in 3D objects. Our general strategy is to factor a
3D surface into a symmetric mesh and its asymmetric residual and
then to perform analysis on the symmetric mesh to gain insight into
its symmetric structure. We transfer knowledge about symmetric
structure back onto the original geometry so that it can be preserved
and exploited as the surface is processed.

In the following sections, we investigate algorithms to support
this symmetry-aware mesh processing framework, focusing on the
most challenging steps: geometric symmetrization (Section 4) and
symmetric remeshing (Section 5). Thereafter, in Section 6, we de-
scribe potential applications and present prototype results. Finally,
we conclude with a discussion of limitations and topics for future
work.

4 Geometric Symmetrization
Our first objective is to provide an algorithm that can take a given
surface mesh and output a new mesh with similar shape that is sym-
metric with respect to a given set of transformations. More for-
mally, given a mesh M and a set of symmetry transformations, each
having a possibly local region of support on the mesh, our goal is to
find the most shape-preserving warp W that produces a new mesh
M′ with the same topology as M, but where every vertex of M′ is
mapped onto corresponding points on the surface of M′ by all of its
symmetry transformations.

This objective is similar to classical problems in non-rigid align-
ment for morphing of 3D surfaces, medical imaging, surface recon-
struction, and several other fields. The challenge is finding both
symmetric point correspondences and the warp that aligns them si-
multaneously. Following traditional iterative approaches [BM92],
we greedily minimize alignment error while allowing increasingly
non-rigid deformation [ACP03; SP04; PMG∗05]. At each iteration,
we first propose correspondences from every vertex in the mesh M
to its closest compatible point on the transformed surface for every
symmetry. Then, given these correspondences, we solve for new
vertex positions that minimize a symmetrizing error function (Fig-
ure 2). These two steps are iterated until the mesh is fully symmet-
ric (i.e., every vertex transformed by all its symmetries produces a
point directly on a face of the mesh).

Our symmetrizing error function balances the primary goal of
making the surface more symmetric with the secondary goals of
retaining its original shape and position with three error terms:

E(M) = αEsym(M)+(1−α)(Eshape(M)+βEdisp(M))



The first two error terms are the important ones, as they balance
the trade-off between deviations from perfect symmetry and de-
formations of the surface. The first term, Esym, measures the sum
of squared distances between vertices of the mesh and the closest
point on the transformed surface. For the second term, Eshape, we
use the shape preservation function proposed by [PMG∗05], which
minimizes a measure of warp distortion. Any deformation error
function would work, but this choice has the advantage of being
quadratic in vertex positions. This deformation error is not rota-
tionally invariant, but the symmetrizations performed in our experi-
ments do not have large rotational components. The last term, Edisp,
measures overall displacement using the sum of squared distances
between current and original vertex positions. It is required to pe-
nalize global translations because Eshape is translationally invariant
and because the surface is being warped onto itself (in contrast to
traditional alignment problems where either the source or target is
fixed in space). We set the weight of this error term very low rela-
tive to the others (β = 1/100), and so it has very little influence on
the output surface’s shape. Since all three terms of the error func-
tion are quadratic in the positions of the vertices, we can solve for
the minimal error at each iteration with a least-squares solution to a
linear system.

Our implementation contains several simple features that help
provide stability and speed as the optimization proceeds. First, it
uses multiresolution surface approximations to accelerate conver-
gence and avoid local minima. Prior to the optimization, the input
mesh is decimated with Qslim [GH97] to several nested levels of
detail. Then, coarser levels are fully symmetrized and used to seed
the initial vertex placements for finer levels (new vertices added
at each finer level are positioned relative to the current ones using
thin-plate splines). Within each level, further stability is gained by
slowly shifting emphasis of the error function from shape preser-
vation (α = 0) to full symmetrization (α = 1). Finally, for each
vertex, we use a k-d tree to help find the closest point on the trans-
formed surface, and only retain correspondences to a closest point
whose transformed normal does not point in the opposite direction.
Overall, compute times on a 3Ghz processor range from 4 seconds
for the 1,166 vertex model of the dragon in Figure 8 to 10 minutes
for a 240,153 vertex face scan.

For instance, consider Figure 3, which shows the result of sym-
metrizing a bust of Max Plank with respect to reflection across a
single vertical left-right plane. Note that the original input mesh
(Figure 3a) is quite asymmetric, as seen by the misalignment of the
surface (red) and its reflection (green) in the bottom images of Fig-
ure 3a – i.e., significant shape features (eyes and ears) do not map
onto their symmetric counterparts when reflected across the plane.
However, we are able to find a non-rigid warp that aligns those fea-
tures while producing a symmetric mesh with a small amount of
shape distortion. The symmetrized mesh, shown Figure 3b, is per-
fectly symmetric up to the resolution of the mesh, as indicated by
the high-frequency interleaving of the original surface (red) with its
reflection (green) in the bottom images of Figure 3b.

A more complicated example demonstrates symmetrization across
partial, approximate planes of symmetry in the Stanford Bunny
(Figure 4). Using the method of [PSG∗06], the bunny was automat-
ically segmented into two symmetric parts (the head and the body),
each supporting a plane of partial symmetry. Of course, both of
these parts are highly asymmetric, as can be seen from top-right im-
age in Figure 4, where each part of the bunny (red) is shown along
with its reflection (green and blue) over its symmetry plane. Note
how poorly the ears and feet align with their reflections. However,
our geometric symmetrization algorithm is able to warp both parts
into alignment with their reflections simultaneously while retaining
significant shape features (e.g., ears, feet) and blending symmetries
across the intermediate region of the neck. Note that the crease be-
tween the feet is preserved although the symmetry plane does not

Figure 3: Symmetrizing Max Planck. The model of a bust of Max Planck
(a) asymetric, as can be seen by overlaying the mesh (red) with its reflection
(green) in the bottom images. Our method symmetrizes its geometry (b),
while retaining and aligning sharp features like eyes, mouth, and ears.)

.

Figure 4: Symmetrizing the bunny. The top row shows the original bunny,
while the bottom row shows the symmetrized result. The bunny contains
partial symmetries with respect to planes through the body and through the
head. Our method symmetrizes both parts of the bunny while performing
a shape-preserving blend in between, preserving features such as the eyes
and feet. The right pair of images show the asymmetry of the original model
and the accurate alignment of symmetric parts in our result.



run through it on the original model, as the surface was warped to
align with the plane.

The output of the process is not only a symmetrized mesh, but
also a symmetric map, a set of point correspondences where every
vertex is associated with a point on the surface across every symme-
try transformation. We store the corresponding points in barycen-
tric coordinates with respect to triangles of the mesh so that they
deform with the surface (e.g., when we apply the inverse of the
symmetrizing deformation to restore the original geometry). This is
a key point, since it allows us to transfer the symmetric map learned
from the perfectly symmetric surface back to the asymmetric one.

5 Symmetric Remeshing

Our second objective is to develop an algorithm that can take a geo-
metrically symmetrized mesh with arbitrary topology and remesh it
so that every vertex, edge, and face has a direct correspondence with
another with respect to every symmetry transformation. Our moti-
vation is to provide a topology that not only reflects the symmetric
structures of the object, but also can provides efficiency in repre-
sentation and manipulation due to topological redundancies (e.g.,
compression), cues for preservation of symmetries during topolog-
ical modifications (e.g., simplification), and symmetric sampling to
avoid assymetric artifacts in photorealistic renderings and physical
simulations (e.g., boundary element methods).

This problem is a special case of compatible remeshing [ALS04;
KS04]. Given the symmetric map from every vertex to a point on
the surface for every symmetry transformation provided by the geo-
metric symmetrization algorithm, we aim to find the mesh with per-
fectly symmetric topology that has the least geometric error and/or
fewest extra vertices.

A strawman approach that may be appropriate for highly sym-
metric and/or oversampled meshes is to partition the mesh into
“asymmetric units” and then copy the topology from one instance
of others in correspondence and then stitch at the boundaries. For
a single planar reflection, this would entail cutting the mesh along
the plane, throwing away the mesh connectivity on one side (Mt ),
and then copying the connectivity over from the other side (Ms).
While this simple method would provide symmetric topology with
the same number of vertices as the original mesh, it would produce
an asymmetry in the quality of the geometric approximation (Ms
would have the quality of the original surface, but Mt would have
blurring where edges oriented appropriately for the geometry of Ms
are not appropriate for Mt ), and it would produce artifacts where
the topology of Ms provides a poor approximation for Mt .

There are many methods in the literature to overcome this prob-
lem, most of which introduce a large number of extra vertices to
capture the geometric variations of both Ms and Mt . For example,
one way is to create an overlay meta-mesh that contains the original
vertices of both Ms and Mt along with new vertices at all edge-edge
intersections [Ale00; LDSS99]. Another way is to map Ms and
Mt to a common base domain (e.g., a sphere [Ale00], or a simpli-
fied triangle mesh [LDSS99; PSS01]) and then remesh with semi-
regular connectivity until all geometric features are resolved. Alter-
natively, it is possible to create a meta-mesh Mst by inserting all the
vertices of Ms into Mt , and vice-versa, and then iteratively swap-
ping edges until a compatible mesh topology is achieved [ALS04].
These methods all produce compatible mesh topology and so could
be used for symmetric remeshing. However, the resulting mesh
would usually be significantly over-sampled.

We provide a simple method to address the problem: compatibility-
preserving mesh decimation (or, in our case, symmetry-preserving
mesh decimation). Our general approach is to use any of the above
methods to produce compatible mesh topology with vertices from
both Ms and Mt , and then to decimate the resulting meta-mesh with
a series of edge collapse operations that operate on correspond-
ing edges in lock-step. Specifically, we build clusters of edges
whose vertices are in symmetric correspondence and then follow
the same basic approach as the original Qslim algorithm [GH97],
however working on clusters rather than individual edges. We load
the clusters into a priority queue sorted by the Quadric Error Mea-
sure (QEM) of the edge with highest error in each cluster, and then
we iteratively collapse all edges in the cluster with minimal error
until a desired number of triangles or a maximum error has been
reached. Since all edges in the same cluster are processed atomi-
cally, the method is guaranteed to maintain topological symmetries
as it decimates the mesh. Yet, it still provides a good approxima-
tion of the original surface, as QEMs approximate deviation from
the original surface.

This method is similar in goal to the method of [KS04], which
copies the mesh topology of Ms onto Mt and then optimizes the
positions and number of vertices to match the geometry of both Ms
and Mt with a combination of smoothing and refinement operations.
The difference is that we first produce an over-sampled mesh with
vertices from both Ms and Mt , and then “optimize” it to minimize
the QEM by decimation. Since our process is seeded directly with
(a conservatively large set of) compatible vertices and edges from
both Ms and Mt , the optimization starts from an initial configuration
that encodes features from the entire mesh. So, our challenge is
mainly to decide which vertices and edges can be removed, rather
than discovering suitable places for new vertices from scratch. As
a result, it is easy to produce compatible mesh topologies for any
number of surface regions with any number of vertices.

We have experimented with this approach using an algorithm
based on the Connectivity Transformation technique of [ALS04]
to form an over-sampled mesh with symmetric topology prior to
decimation. Given a geometrically symmetrized mesh and a set
of vertex-point correspondences (Figure 5a-b), we first produce a
meta-mesh Mst with symmetric vertex correspondences by insert-
ing all the vertices of Ms into Mt , and vice-versa, splitting faces
into three when an inserted vertex maps to the interior of an exist-
ing face (Figure 5c). We then swap edges in order of an error func-
tion that measures the differences in the QEM for edge midpoints
before and after the swap, plus a quadratically growing penalty for
swaps of an edge multiple times, plus an infinite penalty for any
swap that would generate a topological fin in the mesh or break a
greater number of symmetric correspondences than it creates. The
process terminates when all edges are found to be in symmetric
correspondence, or when the minimal error of any cluster exceeds
some preset threshold. We have not implemented the edge-crossing
constraint and termination criterion of [ALS04], as it only guaran-
tees convergence for meshes on a plane [HOS96]. However, we
find that our method finds symmetric correspondences for all but
few edges in practice (99.9% in all of our examples). For the re-
maining edges, we simply copy those edges from one asymmetric
unit to the other(s). The net result is a mesh with fully symmetric
topology containing approximately twice as many vertices as the
original (Figure 5d). We give that mesh as input to the symmetry-
preserving version of Qslim to produce the final result – a topo-
logically symmetric mesh with a user-specified number of faces or
geometric error. Figure 5e-f shows the result for decimation to the
number of faces in the original mesh (98K). Compute times for the
entire symmetric remeshing process range between tens seconds for
the dragon and two hours for the armadillo on a 3GHz processor.
Of course, this process must be done only once per model.

It is difficult to make comparisons of our symmetric meshing



(a) Symmetric geometry (c) After inserting vertices (d) Final symmetric mesh

(b) Point correspondences (d) After edge flips (e) Final symmetric mesh
Figure 5: Symmetric remeshing. The input is shown in the left column (the symmetrized bust of Max Planck, zoomed to the bridge of the nose); intermediate
steps are shown in the middle column, and the output is shown in the right column. The final mesh has perfectly symmetric topology (as shown by colored face
correspondences in (e)) and still approximates the surface well with the original number of faces.

method to others, since our problem is somewhat different from
previous ones. However, to validate that our approach provides
benefits over the simple strawman approach described earlier in the
section (copy the topology of the right side over to the left), we pro-
vide a comparison of symmetrically remeshed surfaces of a mask
along the left crease of the nose (Figure 6). Note how our method
(middle) produces a mesh that retains sharp features of the original
(left), whereas the simpler approach (right) suffers from blurring
due to poorly oriented edges. Besides these differences in surface
quality, our method has the additional advantage that it works with-
out modification for partial and multiple symmetries of any type
of transformation, and produces symmetric mesh topology at any
user-selected face count.

(a) Original (b) Symmetric (c) Copy topology
Mesh Remeshing from right to left

Figure 6: A zoomed-in comparison the crease along left side of the nose on
the surface of the mask shown on the left. Note how our approach (b) does
not produce blurring when compared to the original (a), while the simple
alternative (c) of copying topology from one side to the other does.

6 Applications

The main theme of this paper is that awareness of symmetries can
and should be incorporated into mesh processing algorithms. Since
objects with perfect and/or approximate symmetries are prevalent
in our world, and since symmetries are often critical to an object’s
function and/or a human’s perception of it, we believe that algo-
rithms processing 3D models should understand their symmetries

and preserve them. In this section, we investigate how this can be
done for several classes of applications.

Roughly speaking, applications can be divided into classes ac-
cording to what type of mesh data they process, and almost equiv-
alently, what type of symmetry information they can exploit: (1)
Some applications are concerned mainly with creating new geom-
etry (e.g., surface scanning, interactive modeling, etc.). For this
class, geometric symmetrization provides a useful tool for coercing
the geometry of approximate input (e.g., scanned points, sketched
surfaces, etc.) to become more, less, or perfectly symmetric to
match the intended structure of the object being modeled. (2) Other
applications are concerned with manipulating attributes associated
with local regions of a surface (e.g., texture mapping, signal pro-
cessing, etc.). For them, symmetric mapping provides a way to
blend and transfer attributes between symmetric regions. (3) Still
other applications are concerned with the manipulating the topol-
ogy of a mesh (e.g., remeshing). For those applications, symmetric
remeshing provides an automatic way to coerce the mesh topology
to respect the symmetric structure of an object and provides cor-
respondence information that can be used to preserve topological
symmetries as the mesh is processed further. Finally, of course,
there are applications that can exploit all three types of symme-
try information simultaneously (e.g., beautification, compression,
etc.). In the following subsections, we show at least one example
from each of these classes.

6.1 Beautification of Meshes for Symmetric Objects

There are many application domains in which scans are acquired
for symmetric real-world objects. For example, in rapid prototyp-
ing applications, physical mockups are often constructed for a pro-
posed design (e.g., with clay) and then scanned for computer simu-
lation and processing. Likewise, in reverse engineering, objects are
scanned when the original design is not available. However, rarely
are the scanned models perfectly symmetric, due in part to scanner
bias and noise, and due in part to processing tools that introduce
asymmetries as a surface mesh is reconstructed. Since so many
scanned objects are in fact symmetric, it seems useful to have a tool
that takes a scanned mesh as input and produces the most similar
symmetric mesh as output.



(a) Original mesh (b) Symmetrized mesh

Figure 7: Symmetrizing a scanned screwdriver model. The input mesh is
shown on the left side, and the output mesh is on the right. Note that the
output mesh is perfectly symmetric, has less noise (e.g., on the tip and at the
junction with the handle), and retains sharp features (e.g., the ridge on the
top of the handle).

As an example, consider the scanned screwdriver downloaded
from the Cyberware repository of Desktop 3D Scanner Samples
(left side of Figure 7). In this case, the physical object has two
parts (handle and tip), each of which is approximately symmetric
with respect to two plane reflections (top-middle of Figure 7). Yet,
the scanned mesh contains significant asymmetries with respect to
all of these planes (e.g., artifacts at the junction of the tip and the
handle).

Motivated by the idea of “beautifying” this mesh, we extracted
planes of symmetry automatically with the Iterative Symmetric
Points algorithm of [PSG∗06], augmented to ensure that pairs of
planes for the same part were perpendicular, and that all four planes
aligned on a single axis (note that the planes for the handle are ro-
tated by 20 degrees with respect to those of the tip). Then, we ran
our geometric symmetrization algorithm on the entire mesh, with
all four planes of symmetry guiding the surface deformation.

The result is shown in the images on the right side of Figure 7.
Looking closely at the image in the middle right, it can be verified
that the surface is symmetric up to the resolution of the mesh (note
the high-frequency interleaved pattern of yellow, red, green, and
blue overlaid surfaces). It can also be seen that significant shape
features are retained during symmetrization (e.g., the ridge in the
top of the handle), while noise is reduced (e.g., the tip shown in
close-up on the bottom right). In general, shape features that align
across multiple symmetries are retained, while those that do not are
diminished. Overall, the mesh on the right of Figure 7 has the prin-
cipal symmetries of the physical object and lower levels of noise,
and thus is probably preferable for most simulation and visualiza-
tion applications.

6.2 Symmetry Enhancement

In some applications, it may not be desirable to symmetrize a
surface completely, but rather to enhance or to diminish symme-

(a) Original (b) Symmetrized (c) Symmetrized
Part-way Completely

Figure 8: Enhancing the symmetries of a sketched model under interactive
control.

(a) Input eye color (b) Input hand color

(c) Transferred eye color (d) Transferred hand color
Figure 9: Transferring surface attributes between symmetric parts.

tries instead. As a concrete example, imagine that a person has
drawn the dragon shown in Figure 8a using a sketching tool like
Teddy [IMT99], but wants to make it more symmetric (note that
the wings are quite misaligned with respect to the left-right sym-
metry plane). While this type of operation is possible with a series
of deformations and local surface edits, it would be tedious with
current modeling tools.

Instead, we propose an interactive tool that allows a user to con-
trol the degree of symmetrization applied to a surface. We provide
a slider that the user can manipulate to make a surface more or
less symmetric with respect to a selected transformation while the
model is updated with real-time visual feedback. As an example,
Figure 8b-c shows screenshots after the user has interactively sym-
metrized the dragon part-way (middle) and completely (right). In
this simple case, the symmetrizing deformation could be computed
in real-time. For more complex models, symmetry enhancement
can be performed in real-time following symmetrization as a pre-
process (see the video for examples). We believe that such a tool
would be a useful addition to the suite of commands for interactive
surface design.

6.3 Attribute Transfer

There are many applications that require blending or transferring
attributes between semantically related surface regions – for exam-
ple, texture transfer, denoising, and morphing. The challenge is
usually to establish correspondences between semantically related
parts. In the case of objects with approximate symmetries, symmet-
ric mapping provides a useful way to solve this problem.



For example, consider the Armadillo model. Although the sur-
face is “semantically symmetric” (e.g., the arm on the left has a
functional correspondence with the one on the right), the surface
is not symmetric geometrically (e.g., the arms are in significantly
different poses). In cases like this, our symmetrization framework
provides a natural way to establish correspondences between ap-
proximately symmetric parts via symmetric mapping.

This mapping can be used to transfer and blend surface at-
tributes. For example, Figure 9 shows a demonstration of transfer-
ring per-vertex colors between symmetric regions of the Armadillo
model. In the top row, the user has drawn colors on the eyes and
hands on one side of the surface with an interactive painting inter-
face. The system then automatically transfers the colors to the other
side (bottom row) via an automatically generated symmetric map.

In this example, the main benefit is to save the user the effort
of painting details twice. However, in other examples, perhaps it
is important that the surface attributes are applied to both sides in
exactly the same way, or that surface details are blended very pre-
cisely, which would be difficult without guidance from a symmetric
map.

6.4 Simplification

Simplification algorithms take a mesh and produce an approxima-
tion with fewer polygons, usually to increase rendering speed, de-
crease storage, and/or provide a base domain for parameterization.
Generally, however, they do not preserve large-scale symmetries (or
other global shape features), in favor of minimizing local geometric
errors.

In this section, we investigate whether the symmetry-preserving
mesh decimation algorithm described in Section 5 can be used ef-
fectively for extreme simplification of approximately symmetric
surfaces. Following the general approach outlined in Section 3,
we establish symmetric topology for an asymmetric surface by
first symmetrizing it, remeshing with symmetric topology, and then
warping the new topology and correspondences back to the original
geometry. We then perform symmetry-preserving mesh decimation
on the symmetric topology over the asymmetric mesh.

Figure 10 shows the results of this method (top two rows) in
comparison to the original version of Qslim (bottom row). Note
that the topology of the mesh output by our algorithm is per-
fectly symmetric, even though the geometry of the surface is
not. Note also that the geometric approximation achieved with
symmetry-aware simplification is similar to the original (accord-
ing to Metro [PCS98], it has a Hausdorff distance approximately
6% larger). Since the symmetric mesh better reflects the semantic
structure of the surface, we believe it may be preferable as a base
domain for parameterization, animation, simulation, and other ap-
plications.

e believe that the high-level geometric structures of an object
(e.g., symmetries) are more important than the local, differential
properties for many applications, and thus it is important to preserve
them during mesh processing.

7 Conclusion
In summary, this paper has investigated methods for and applica-
tions of symmetrizing 3D surface meshes. The main idea is that
symmetry-aware algorithms can be used to preserve, exploit, and
enhance structural symmetries of a surface, even if the underlying
geometry is only approximately symmetric. This idea is important
because the vast majority of objects in the world have some sort
of structural symmetries, and current mesh processing algorithms
generally do not preserve them.

The main contribution of this paper is the symmetry-aware mesh
processing framework, which includes algorithms for geometric
symmetrization and symmetric remeshing. We provide demonstra-

(a) Symmetry-preserving Qslim (face correspondences)

(b) Symmetry-preserving Qslim (edges)

(c) Original Qslim (edges)

Figure 10: Symmetry-preserving Qslim (a-b) produces a surface approxi-
mation comparable to the original algorithm (c) of [GH97], but guaranteed
to have symmetric topology, even for an asymmetric surface (the top row (a)
shows symmetric face correspondences preserved during the decimation).

tion of the framework for mesh beautification, symmetry enhance-
ment, attribute transfer, and simplification.

The initial results seem promising, but our implementation has
limitations, which suggest immediate topics for future work. We
have demonstrated our algorithms only for symmetries across pla-
nar reflections. Although our code can handle symmetries for arbi-
trary affine transformations, we have not investigated examples of
this type in our study.

Considering steps forward, the most obvious next step is to in-
vestigate other applications enabled by symmetry-aware process-
ing. First candidates include compression and denoising. In the
former case, it is possible that factoring a mesh into its symmetric
part and its asymmetric residual could provide increased compres-
sion ratios, since at least half of the symmetric part can be dis-
carded [SKS06]. For denoising, the symmetric map could provide
a way to blend noise across symmetric surfaces, as in Smoothing
by Example [YBS06]. These are just two examples – considering
other applications that exploit symmetries will be a fruitful topic for
future work.

The main long-term direction suggested by this work is that dig-
ital geometry processing algorithms can and should consider large-



scale structural features as well as local surface properties when
processing a mesh. So, future work should consider better ways
to detect and encode large-scale shape features (such as symmetry)
and to preserve and exploit them during surface processing.

inally, for completion, it is plausible that simple mesh com-
pletions could be performed directly in our framework by trian-
gulating holes, marking them as the only regions allowed to de-
form, and then running the geometric symmetrization algorithm
– this approach is similar to Example-Based 3D Scan Comple-
tion [PMG∗05], but with examples taken from symmetric regions
of the same mesh.
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