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Abstract—
We examine the impact of strategy and dexterity on
video games in which a player must use strategy to
decide between multiple moves and must use dexterity
to correctly execute those moves. We run simulation
experiments on variants of two popular, interactive
puzzle games: Tetris, which exhibits dexterity in the
form of speed-accuracy time pressure, and Puzzle
Bobble, which requires precise aiming. By modeling
dexterity and strategy as separate components, we
quantify the effect of each type of difficulty using
normalized mean score and artificial intelligence agents
that make human-like errors. We show how these
techniques can model and visualize dexterity and
strategy requirements as well as the effect of scoring
systems on expressive range.

Index Terms—AI-assisted game design, dexterity, strategy,
difficulty, automated play testing

I. INTRODUCTION

Video games have various sources of difficulty that affect the
experience of players with different skills in different ways. In
Tetris, for example, strategy requires players to plan where to
place each piece. Strategy errors occur when a player tries to
figure out the best move, but chooses an inferior move that leads
to a lower final score (Fig. 1a). Players’ dexterity affects their
ability to accurately use game controls to execute a strategic
plan. Dexterity errors occur when a player does not execute
a move correctly (Fig. 1b); they might want to place a piece
in a particular location but fail, perhaps due to time pressure,
such as rapidly falling pieces in Tetris. Both are critical, but
often orthogonal, components of the perceived difficulty of an
interactive puzzle game. By perceived difficulty [1], we mean
the experience of difficulty of a game for a particular player
population, which might be composed of human or artificial
intelligence (AI) players of different skill levels.

The combination of strategy and dexterity sets interactive
puzzle games apart from other kinds of games, as shown in
Figure 2. Perfect information games like Chess require only
strategy, simple action games like Flappy Bird require mostly
dexterity, and Mazes require neither type of skill. Games that
incorporate both dexterity and strategy are engaging largely
because they incorporate a finely tuned balance of both kinds of
challenge. Eliminating the dexterity component in an interactive
puzzle game (e.g. giving Tetris players unlimited time to place
pieces) would change the game radically, such that many
players would find the game less interesting.

Project page at http://game.engineering.nyu.edu/projects/strategy-dexterity
for the latest version of this paper and related work.

(a) Best Move
and Strategy Error

(b) Intended Move 
and Dexterity Errors

Fig. 1. Examples from Tetris demonstrating how players use strategy to decide
between multiple moves and use dexterity to correctly execute such moves.

The design and modeling of games that combine strategy and
dexterity requires new techniques: existing quantitative work
typically analyzes strategy games and dexterity games sepa-
rately (Sec. I-B). In contrast, this paper presents an approach
for simulating and quantifying the interactions between these
two types of difficulty. We integrate strategy and dexterity into
a single framework that quickly measures score distributions
for interactive puzzle games, while limiting the amount of
game-specific heuristics for the AI agents to play effectively.
Instead of focusing on perfect play, we simulate a range of
human-like strategy and dexterity using player modeling and
artificial intelligence agents.

We demonstrate our methods for two seminal games: Tetris,
which requires quick reactions, and Puzzle Bobble, which
requires accurate aiming. The resulting analysis of scores
quantifies existing claims that difficulty is not a single-
dimensional characteristic of games [2], [3]. We use our
analysis to model how scoring systems affect skill requirements.

Strategy Required

D
ex

te
rit

y 
R

eq
ui

re
d Infinite

Runners
(Canabalt,

Flappy
Bird)

Standard Match-3 
(Bejeweled, Candy Crush)Mazes

Interactive
Puzzle Games

(Tetris, 
Puzzle Bobble)

Chess

Real-Time
Strategy

(Starcraft II,
League of 
Legends)

Fig. 2. Games require varying amounts of dexterity and strategy. The regions
indicate rough ranges, and can overlap in practice.
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A. Automated Play Testing and Player Modeling

Our methodology rapidly explores multiple dimensions of
puzzle game design space using automated play testing [4],
while using player modeling [5] to represent how a human
might perform in a game. There are many approaches to player
modeling, but we use an open modeling approach that is
interpretable, avoids training time, and limits the need for
game-domain-specific expert knowledge for move selection
heuristics. Our goal is to approximate human play – not to
emulate it perfectly – so that we can quickly learn something
about the underlying game system.

Some existing approaches to player modeling may be more
accurate, but they come at a cost. With a user study, one
can measure how humans estimate difficulty; however, these
techniques often require time-consuming play testing. By fitting
a function of puzzle game parameters (e.g. size of board,
number of pieces, etc.), one can accurately predict the difficulty
of specific strategic puzzle games [6], yet because the models
are game specific they are not suited for search based AI-
assisted game design [7]. Given existing human play traces,
one can use trained player models to have more human-like
behavior in action games [8] or by modeling slower decision
making and actions per second [9]. However, this requires data
collection on existing games to create play traces for analysis.

Our methodology does not model every reason for playing
games; instead, we purely assume that players are trying to
maximize their score. We recognize some players may simply
be playing to relax or to unlock all of the game content without
caring about score. This aspect of play may be abstracted away
as an aspect of play style in the simulation model [10]. Players
chasing high scores may take more moves with high risk and
high potential reward, while someone playing to relax will
tend to take low cognitive-load actions [11].

We do consider that a given game will be played by a
population of players, where this population will generally
encompass a variety of player types and skill levels; our
simulations require a model of the player population. To predict
how a game will be experienced in the real world, a designer
needs to target their game to a particular population and then
estimate how that population might experience the game. A
puzzle that is trivial for the population of expert players may
be highly engaging for players with low game experience [12].
In this work, we examine how score distributions change
when modifying the player populations to contain players
with different amounts of strategy and dexterity skill. By
comparing the score distributions, we can determine the amount
of strategy and dexterity required to successfully play the game.
This means our system is only appropriate for score-based
games, and we assume that the games have perfect information
(although this is not a requirement if one is willing to accept
the challenges of simulating imperfect information games [13]).

Because we are examining how changes to game design
parameters affect game play, we avoid machine learning “black
box” models that make opaque predictions. By focusing on
game trees and score distributions, we limit the amount of
heuristic knowledge required to analyze the game. While our
technique can be applied to a wide variety of games without

encoding many game specific behaviors into the AI agents, the
agents do need to act with human-like error making behavior.
Thus, our approach requires a decision on how human error will
map to move selection. We use forward models to avoid the
long training periods required for reinforcement learning [14].

B. Existing Methods for Modeling Difficulty

Strategy difficulty (also referred to as mental workload [2]
or cognitive challenge [3], [15]) in puzzles and games can
come from many sources [11], including the size of the
search space for the puzzle [16], the applications of logic
required to deduce correct moves [17], and the physical and/or
visual representation of a puzzle and its accessibility [18],
[19]. Difficulty in Sudoku has been modeled as a constraint
satisfaction problem, where the difficulty is related to the
number of logic inferences required, types of techniques, and
dependency steps to determine the accuracy of a move [20].
For Sokoban, measuring probability-of-failure for genetically
evolved AI agents models difficulty [21]. In addition to strategic
search depth and heuristics [22], hint symmetry can be an
important factor in measuring puzzle quality [23]. However,
all this research focuses on games and puzzles that have no
dexterity component, only strategy.

Dexterity difficulty (also referred to as physical effort [2]
or physical challenge [3], [15]) in puzzles and games also
takes various different forms. Puzzle games often include a
time-pressure component that forces players to act quickly
and therefore with some error, known as the speed-accuracy
tradeoff [24]. Dexterity error has been effectively modeled
in action games without strategic difficulty by time-shifting
button presses by a normal distribution [25]. Dexterity difficulty
can also be modeled by calculating geometric trajectories and
margin of errors for platformer jumps [26]. Note that time
pressure can induce strategy errors as well as dexterity errors.

Some existing methods for measuring game difficulty could
be used to measure games that incorporate strategy and
dexterity. One such approach is to define a puzzle as a series
of subgoals and then to measure the likelihood that a player
possesses the abilities required to beat all of the subgoals [27],
but this approach requires expert knowledge of what types
of abilities are needed. To determine which game parameters
might lead to more difficult games, a full factorial analysis
of multiple game parameters can be used to determine how
parameters affect game difficulty; however, this approach is
focused on dynamic difficulty adjustment and uses a variety
of game-specific (i.e. Pacman-specific) performance metrics
instead of focusing on more generic score distributions [28].

II. INTERACTIVE PUZZLE GAMES

Interactive puzzle games are a classic genre of video game
that was originally popularized by Tetris, Bejeweled, and Candy
Crush Saga, and which is now especially popular on mobile
platforms. This paper examines two canonical examples of the
interactive puzzle genre: Tetris and Puzzle Bobble (a.k.a. Bust-
a-Move). We define a puzzle as specific list of game rules
and game parameters, in which the game parameters includes
the ordering of pieces and board starting state. For example,
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the game rules will define what the buttons do, how pieces
move, and what events cause scores to be awarded. The game
parameters define how fast each piece moves, which pieces
are available, and how many points are scored for an event.
In practice, a game may have many modes and/or unique
puzzles included, each puzzle with different ordering of pieces,
board layouts, movement speeds, board size, and/or upgradable
scoring bonuses.

One challenge with estimating the difficulty of a puzzle game
using AI simulation algorithms is the tendency to predict the
future by unfairly gaining foresight into the repeated outcome
of pseudo-random generators. For algorithms that rely on a
forward model such as Monte Carlo Tree Search (MCTS) [13],
the algorithm may learn what will come in the future, even if
that information is not truly available to the player at the time
they need to make their decision. To avoid relying on future
information, a more complicated forward model can simulate
multiple future possibilities [29] or hidden information can be
modeled in the algorithm as information sets [30], but this adds
significant time and complexity that we avoid in this paper.

Instead, we restrict our puzzles to have fixed finite length
and no hidden information, so that the AI and human have
exactly the same information presented to them. There is no
randomness in the game definition, and the entire order of
game pieces is presented to the player. While this restricts our
model to focus on game variants that are finite, there exists
a large number of puzzle games that have a fixed number of
moves, especially in mobile puzzle games where short play
sessions are desirable.

In this work, we vary both game parameters and player model
parameters to estimate the difficulty of an interactive puzzle.
We explore game parameters such as the starting condition
of the board, availability and variety of pieces, size of the
board, time available for decisions, and the assignment of
scores to in-game events and tasks. Player parameters in our
model (described in Sections III and IV) include dexterity skill,
strategic skill, move selection heuristics (which models play
style), and awareness of the player’s own dexterity (which
comes into play when evaluating the riskiness of a move).

A. Puzzle Variants
In our Tetris puzzle variant, the player tries to maximize

their score when presented a fixed pattern of pre-placed pieces
and a finite pre-determined queue of falling pieces (Figure 3a).
Our puzzles can use queues of any finite length, but in our
examples here the queue ranges from 3 to 4 pieces in length, so
the game ends before the board overflows. To simplify the AI,
our variant also locks pieces as they land, instead of allowing
moment of movement as in the original.

In our Puzzle Bobble variant (Figure 3b), the player shoots
colored balls towards other colored balls hanging from the
top of the play field. When firing at other balls, points are
scored by the size of the connected component (but not any
unconnected balls that are dropped). Each puzzle fixes the
balls already in the play field, the number of colors, and the
order and length of the queue of balls to fire. Our variant also
contains the swap mechanic, which lets the player switch the
current 1st and 2nd balls in the queue.

1st 2nd 3rd

1st

(a) Tetris Puzzle (b) Puzzle Bobble Puzzle

2nd 3rd

Fig. 3. Examples of puzzle games studied in this paper. (a) Scoring max
points in Tetris requires clearing 4 rows at one time. (b) Scoring max points
in Puzzle Bobble requires swapping to fire the balls in a particular order.

B. Normalized Mean Score

Because our puzzles have perfect information and fixed
length, each unique puzzle exhibits a determinable maximum
achievable score for a perfect player making no strategy or
dexterity errors. In reality, non-perfect players will not reach
this maximum score on every play, and more players will
reach the maximum score on easier puzzles. Examining the
distribution of scores achieved within that puzzle can help
determine the perceived difficulty of a puzzle.

In order to compare histograms of scores achieved by a
variety of players on different puzzles, we need to normalize
the scores [31]. We simply divide each score by the maximum
achieved score to normalize between 0 and 1.

We then take the mean normalized score, which gives us the
expected value of the normalized score probability distribution.
A low mean implies we expect a player to get a lower score;
when comparing two puzzles with normalized scores, the one
with the lower mean is expected to be more difficult.

Depending on the scoring system used in the game, it may
also make sense to normalize based on the logarithm of the
score; this would be especially useful for games with bonus
multipliers that imply exponentially distributed scores. We did
not need to use this type of normalization in this work.

Additional useful descriptive metrics may include the number
of unique scores, standard deviation, maximum achievable
score, median, mode, or skewness of the score distribution,
although we did not explore these in detail for this paper.

III. MODELING STRATEGY

A. Modeling Strategic Error

Our model requires the agent to first use strategy to select
a move. With strategic move selection we model the various
options with a game tree, with nodes representing states and
edges representing possible moves. To select a move, we
employ a variety of heuristics that can emulate or simulate
how players might think [11], [12]. These heuristics (also
called controllers [31]) can be deterministic or stochastic, and
imperfect heuristics represent some of the assumptions that
a player might make about how to value a move. We also
model uncertainty in the value estimation; this represents how
players might not always select the optimal move returned by
the heuristic due to incorrect estimation.
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We model strategic move selection using an action evaluation
function Q(s, a) that estimates the expected reward of taking
an action a from state s, as in Q-learning [14]. However,
instead of using reinforcement learning to train the Q function,
we implement it using heuristics and search (as described
in Sec. III-B). To select a move, we select the action a that
maximizes Q. For perfect play, our Puzzle Bobble and Tetris
variant puzzles are small enough to evaluate the full game tree.

We then model error in the player’s ability to select the Q-
maximizing move. This represents the difficulty in estimating
effects of actions, uncertainty about which move is best, and/or
time pressure. Instead of modeling “biological constraints” to
change the Q function [32], we model ability with a normal
distribution N (0, σs) added to the Q-values returned by the
move valuation function. The player’s ability to correctly
select the best move is reflected in the strategic error standard
deviation σs. Higher σs models a more challenging situation
or a player with less ability to select the best move. As we
modify the Q-values from the heuristic evaluation, a move
with high Q will be selected more often than low Q; moves
of similar Q will be selected by randomness rather than the
heuristic. For games where some moves are more error prone,
one can replace σs with σs|m to represent that the strategy
standard deviation is dependent on the type of move (although
our experiments use the same σs for all strategy moves).

Although an interactive puzzle may have a high branching
factor with many possible moves, in practice many of these
moves will lead to the same outcome or equivalent outcomes.
For example in our Puzzle Bobble variant, the branching factor
is 100 different angles, but many of these angles will clear the
same group. Similarly in Tetris, there are many paths a falling
piece can take that will put it into the same final location.
To address this, we assign the same strategic value and error
estimate to the moves that give the same result. This is done
by first identifying which set of actions map to the same future
state s′ and then only estimating the Q value once for all
actions within that set. We then duplicate the same strategy
value with randomized error for all actions within the set.
Q-value functions are discussed in reinforcement learning,

where an agent learns the expected rewards for each move, for
t episodes [14]. Such algorithms learn their own heuristics to
play the game, and can in theory learn how to play most video
games. Presumably more training and iterations t will increase
the skill of the player, although complicated games often do
not converge in practice causing the estimated value-function
to diverge without careful attention to the value-networks [33].
The training time can also be quite long, making it often more
practical to use the other search-based algorithms that avoid
a training phase. This training period is especially a problem
when modifying the scoring system for the game, as the reward
values are changing and long training periods are too time
consuming for a genetic population search to optimize scoring
systems. Therefore we abandoned using reinforcement learning
for this research due to the long training times that made it
difficult to quickly iterate on puzzle and game parameters,
though it has been used by others for these games [34], [35].
Instead, we use forward models and use non-game-specific
heuristics that can play more generally, as discussed next.

B. Player Heuristics

To simulate players with different types of strategy skill, we
implement Q(s, a) using a variety of methods that represent
different types of players present in the player population. In
practice, a designer will need to select a population of heuristics
they feel represents the players that will engage with the game.
For example, a casual game will have players that are more
likely to play with simple heuristics such as picking the best
immediate move; a hardcore puzzle game will have players
that tend to look deeper in the tree and may even expand the
game tree with pruning to find the optimal solution.

Our main heuristic is the n-ply Greedy Strategy, Gn. Each
move is evaluated n plies deep. A move is awarded the highest
value discovered from a descendant of the move within n plies.
When n = 1, this approximates a player who is making quick
judgments; this type of player will be easily caught by traps
that locally give the player the most points, but do not lead to
the global optimum. As n increases, we simulate players with
better lookahead ability [11].

We also employ Full Tree Search, T , where the player
searches the entire game tree. Moves receive a value equal to
the best value in any descendant node. This models the most
thoughtful player that is searching for the optimal score.

In addition, we require a board evaluation function to
determine the value of making particular moves from particular
states. In Puzzle Bobble points are typically earned on every
move, so the value of a board state is simply the number of
points earned along the path back to the root of the search. For
Tetris points are typically not earned on every move, so we
estimate the board state using a modified version of Lee’s board
evaluation heuristic [36]. As this heuristic tends to strongly
prioritize survival over immediate score, we switch to a points
earned heuristic when placing the last piece of the puzzle.
Similarly when full tree search is employed, we use points
earned instead of the weighted heuristic.

Note that more complicated functions to better model human-
like strategy, such as those discussed in Section I-B, could
also be plugged into in our framework by using a different
Q-value estimator and strategy error mapping σs|m. If one
cannot expand the entire game tree due to computational limits,
then Monte Carlo sampling of the game tree can still give an
approximate estimate of the Q-value.

IV. MODELING DEXTERITY

A. Simulating Accuracy

We can simulate players with differing levels of dexterity
by adding random error to the AI agent’s ability to execute
moves. Given a particular move selected by the agent, we
modify the accuracy of the move by an error drawn from
a normal distribution N (0, σd), with mean 0 and dexterity
standard deviation σd. Larger σd reflects lower accuracy while
smaller σd reflects higher accuracy.

We modify the selected move in different ways for different
games. For Puzzle Bobble we modify the angle the ball is fired
with probability drawn from N (0, σd). For Tetris we move
the falling piece to the left or right one or more spaces, with
probability drawn from N (0, σd). Note that σd is defined with
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respect to the game; the values will be different depending
on the speed-accuracy tradeoff and the mechanics of the skill
required. Thus the σd used in Tetris will not be the same value
or units as the one used in Puzzle Bobble.

For a particular game, the dexterity standard deviation σd
will not always be a single constant, because some moves may
be more difficult to execute than others. For example, in Puzzle
Bobble, we found that players are significantly less accurate at
executing moves with a bounce off the walls than straight shots
with no bounce. Thus, we improve the simulation by using
a different value for the standard deviation when a bouncing
move will be made. With this extension, for a move m, we
can replace σd with σd|m, reflecting that the dexterity standard
deviation can change given the type of move.

B. Determining Accuracy Values

To determine adequate values for σd|m we performed a
small pilot study for each game. For Puzzle Bobble, we asked
six participants from our research lab to fire a ball at a target at
the top of the board and varied parameters such as the starting
position of the ball, target position, and number of bounces
required. For each condition, we calculated the ideal target
angle to perform the task with minimum error. We gave each
player 64 different target scenarios. After each shot was fired,
we measured the number of bounces, the difference between
the ideal angle and the selected angle, and the final collision
point. We removed shots when a player did not execute the
requested number of bounces (e.g. the player shoots straight at
the target when they were asked to bounce it). From this data
we determined that σd|no bounce = 0.0274 radians (n =
94, SE = 0.00283) and σd|bounce = 0.0854 radians (n =
246, SE = 0.00544). Factors such as travel distance and x-
position of the target did not have a significant impact on the
error. Using a normality test and qq-plot, the data shows that the
aiming errors are sufficiently normally distributed. Therefore,
using a normal distribution to simulate accuracy is justified; we
have previously shown that normal distributions are justified
for modeling timing accuracy [25].

For Tetris, we asked five student participants in a pilot study
to place 4x1 pieces in boards of width 8 where the bottom
four rows were filled except for a target empty space. After
each piece was placed, we reset the board with a new target
x-position. The test consisted of five phases of 30 placements.
Each phase had increasing piece drop speed, giving players
between 2.25 seconds (phase 1) and 0.67 (phase 5) seconds
to place each piece.1 These times were chosen to cover cases
where every participant would correctly place every piece and
cases where every participant would fail to place most pieces.
By comparing target coordinates with players’ placements, we
determined that players make no placement error (σd = 0
cells) when given sufficient time, and up to σd = 2.21 cells
(n = 180, SE = .165) at the test’s highest speed. Thus, in
Tetris, σd|m depends on the speed at which the pieces fall (we
make a linear interpolation to adjust σd to simulate varying
levels of difficulty).

1For comparison, Tetris on Nintendo Game Boy gives between approximately
12 seconds (level 0) and 0.7 seconds (levels 20+) for these scenarios.
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Fig. 4. Effect of awareness convolution on move value in an example move
for Puzzle Bobble. Higher awareness increases the signal smoothing; this
differentiates between multiple moves that have the same value for a perfect
player, but different expected values for an error-prone player.

C. Awareness of Accuracy

The final component to modeling accuracy is to incorporate
the player’s own awareness of their dexterity, ad, which the
player uses for maximizing their chances of successfully
performing a move. Given a choice between multiple moves, a
player who knows they are not perfectly accurate may choose
to take a less risky move to increase their expected value, rather
than trying for the maximum possible score.2 This also occurs
when multiple moves can give the same outcome: for example,
in Puzzle Bobble to reduce the likelihood of missing a shot, the
player can aim for the center of the cluster and prefer straight
shots to error-prone bounces. Values of awareness have the
following meaning: 0.0 means the player is oblivious to the
possibility that they could make dexterity errors (maximally
aggressive play); between 0.0 and 1.0 means the player acts
as if they make less errors than they actually do (aggressive
play); 1.0 is optimizing expected value with full knowledge of
one’s dexterity (realistic play); > 1.0 assumes more dexterity
error than is likely to happen (conservative play).

We incorporate dexterity awareness into our simulation by
smoothing the move value functions with a truncated fixed-
width Gaussian filter [37], with filter standard deviation equal
to the player’s dexterity standard deviation for the move σd|m
multiplied by awareness ad. This filter is equivalent to a
variable-filter convolution over the space of possible move
executions. When awareness is 0.0, we skip the filtering step.

Figure 4 uses different values of awareness to change the
standard deviation of the Gaussian filter. Moves that require
more accuracy lose value as awareness increases. With an
awareness of 0.0, many moves have the maximum value and it
is not clear which is best to pick; as awareness increases only
one action is clearly the best as it is the least risky.

V. ALGORITHM

We present the algorithm for calculating a score distribution
for an interactive puzzle. The caller defines 1) a puzzle,
with game parameters, scoring system, and game rules, 2) a
population of AI agents that represent the set of players that
will experience the puzzle, each agent with its own move

2For example, they may be trying only to clear a level with a lower “one
star” threshold, rather than trying to achieve a high “three stars” threshold.
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evaluation heuristic, strategy skill σs, dexterity skill σd, and
awareness ad, and 3) the number of times n to repeat the
puzzle, large enough to reach a desired level of accuracy. The
makeup of the population and the player parameters will greatly
determine the outcome of the score distribution.

We initialize an empty score histogram, and loop over the
following evaluation method to simulate n players and create
n scores. Each iteration of the loop begins by choosing a new
player at random from the population and initializing a new
board. Starting at the initial game state, we repeatedly calculate
new moves one turn at a time until we reach a terminal state
and receive a final score for the current player.

To select a move, we first estimate the reward values for
each of the unique moves. We determine a vector of Q values,
one element for each unique move from a given state, using
one of the heuristics described in Sec. III-B. These heuristics
may approximate the value, or they may determine the true
value of a move based on fully expanding the game tree. We
operate on unique moves so that if there are multiple actions
that lead to the same future state, they all receive the same
value. Unique moves are identified by determining that they
lead to the same immediate future state.

We next add randomness N (µ = 0, σ = σs|m) to each of
the Q values to simulate the player’s uncertainty at picking the
strategically correct move. However, moves that are superior are
still more likely to be chosen than inferior moves. We duplicate
the estimated strategy value plus error to the identical moves
within the same group. This ensures that large groups do not
get picked more often merely because they have more chance
to be randomly assigned a larger error value.

We also use the player’s awareness of their dexterity to filter
the possible score values they might achieve, as described in
Sec. IV-C. This makes more difficult shots less likely to be
chosen by risk-averse and low-skilled players. We choose the
move that the player estimates is the best after adding strategy
error. If more than one move has the same value, we chose the
move in the middle of the longest span of maximum values,
which is least likely to result in a dexterity error.

Finally, we try to execute that move using simulated
dexterity, but possibly perform a nearby move by adding
Gaussian randomness Round (N (µ = 0, σ = σd|m)) to the
move index i. This assumes that the moves are sorted in an
order proportional to position in the game, for example from
minimum to maximum fire angle in Puzzle Bobble or left to
right in Tetris. The dexterity and strategy standard deviations
can be dependent on the type of move (e.g. in Puzzle Bobble
we have more dexterity error when a move requires a bounce).

These steps are repeated n times, each time choosing a
different player from the population at random. The resulting
histogram is normalized and a mean score is calculated.

VI. EXPLORING PUZZLE SPACE

In this section, we discuss various applications of our method
for exploring the rich, complicated puzzle space spanned by the
game design parameters. Small changes in these parameters
give rise to a wide variety of score distributions. We also
discuss how we extract the strategy and dexterity requirements
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Fig. 5. Our algorithm quantifies how much strategy and dexterity is required
to solve various Puzzle Bobble puzzles.

for each game, evaluating the difficulty of a puzzle as a 2D
point for visualization.

The rules of a puzzle game create a high-dimensional space
called game space [25]. A specific instance of spatial puzzle
arrangement and the associated parameters defines a point in
game space. Having a computer iterate through thousands of
game puzzles can lead to interesting designs that may not be
found when human designers design a puzzle (though human
designed puzzles may still be preferred [38]).

A hill climbing approach could generate difficult puzzles.
First, one iterates over the neighborhood and picks the most
difficult puzzle. That puzzle is then used as a seed for a new
neighborhood search. The search terminates at a given difficulty
threshold, or when the puzzles no longer increase in difficulty.

A. Determining Strategic and Dexterity Difficulty

In this section, we present a method for finding the amount of
strategy and dexterity required for a particular puzzle. We first
create two populations of AI agents: one with perfect dexterity
but imperfect strategy and the other with perfect strategy but
imperfect dexterity. Running these two separate populations
through our simulation, we obtain two unique histograms. Since
normalized mean score decreases with difficulty, we subtract
each normalized mean score from 1. This gives us the amount
of skill required, ranging between 0 and 1. In turn, the strategy
required and dexterity required gives us a 2D coordinate.

Plotting these 2D coordinates gives a quantitative method
for creating charts similar to Figure 2. For example, Figure 5
shows several Puzzle Bobble puzzles analyzed with this two-
population method. The first population contains five players
with perfect dexterity, but a mixture of heuristics (as defined
in Sec. III-B: greedy one-ply G1 search, greedy two-ply G2

search, and full tree search T ) and strategy standard deviation
σs: {(G1, σs = 0), (G1, σs = 1), (G2, σs = 0), (G2, σs =
1), (T, σs = 1)}. The 2nd population contains nine players,
all with perfect strategy (T, σs = 0), but with each pairwise
combination of dexterity standard deviation σd ∈ {.5, 1, 1.5}
and awareness ad ∈ {.5, 1, 1.5}. Each puzzle requires a unique
combination of skill, as demonstrated by its 2D location.
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B. Evaluating the Effect of Scoring Systems

Game designers may wish to modify the attributes of a puzzle
by changing the way points are allocated. In this subsection,
we examine how changes to Tetris and Puzzle Bobble scoring
systems changes the difficulty of games as well as the range
of puzzles that can be created.

1) Scoring Systems in Tetris: We examine two scoring
systems in Tetris for clearing 1, 2, 3, or 4 rows simultaneously:
linear scoring where a player earns 1, 2, 3, or 4 points and
quadratic scoring where a player earns 1, 4, 9, or 16 points. 3

For many Tetris puzzles, strategy skill only has an impact when
giving points are awarded for clearing more rows, since this
rewards players who defer clearing rows to a larger scoring
move later. This in turn requires longer-term planning and
deeper search. Linear scoring does not reward deeper search,
so playing greedily has no penalty.

For this experiment, we use the normalized mean score
metric and use separate strategy and dexterity populations.
The strategy population contains each pairwise combination of
strategy standard deviation σs ∈ {0, 0.25, 0.5, 0.75} and greedy
strategies with varying depths {G1, G2, G3, G4}. Each member
of the strategy population has perfect dexterity (σd = 0). The
dexterity population includes players with dexterity standard
deviation σd ∈ {0, 0.25, 0.5, 0.75}, strategic error σs = 0,
and greedy strategy G4. All AIs for Tetris used a dexterity
awareness value ad = 0, as we found awareness modeling to
be computationally costly with little impact on score in Tetris.
Awareness has a limited effect because good moves in Tetris
tend to be nonadjacent, and all moves have bad consequences
if they are placed incorrectly due to dexterity error. While the
examples here have 3-4 pieces to make the visualizations clear,
this is not a limitation of our system and we have successfully
tested our algorithm on much larger puzzles.

Figure 6 shows examples of several puzzles and how their
difficulty changes based on changing the scoring system. We
see the puzzles exhibit very low strategy requirements when
using linear scoring. However, puzzle b requires strategy when
quadratic scoring is introduced, as a skilled player is rewarded
for planning ahead to avoid clearing the bottom two rows until
a four-row clear is possible.

Puzzle c is an example of a puzzle providing two different
piece types that remains nontrivial when using linear scoring.
A player with poor planning might use a horizontal L piece
and a vertical I piece to clear a row, leaving it impossible to
clear all of the remaining blocks. As better planning makes a
four-row clear possible, this puzzle relies even more on strategy
when quadratic scoring is introduced.

Puzzle d is a basic puzzle designed to have typical dexterity
requirements and trivial strategy requirements. There is no
change in difficulty when changing scoring systems.

Puzzle e demonstrates a perceptual limitation of our current
Tetris player model. This puzzle looks perceptually simpler
than puzzle c , but our algorithm evaluates them to be roughly
equivalent when using quadratic scoring. In this experiment,

3Tetris on the NES, Game Boy, and SNES awards 1×, 2.5×, 7.5×, and
30× points for clearing 1, 2, 3, or 4 rows simultaneously. Most modern Tetris
variants award 1×, 3×, 5×, or 8× points, beginning with Tetris DS.
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Fig. 6. Tetris scoring can affect how much strategy and dexterity is required.

we did not model the additional mental effort it takes to plan
moves that require rotation, even though rotation requires more
mental effort [39]. Specifically, puzzle c requires players rotate
the last L piece 180 degrees, but our Tetris strategy model
does not model this as more difficult than placing I pieces. To
enable this, one must modify the strategic error σs given the
move, using a dynamic σs|m instead of a constant σs.

We also see that variation in dexterity tends to have roughly
the same impact on all of the examples, with the notable
exception of puzzle f . The lower impact of dexterity in this
puzzle is a result of the taller board, which gives all players in
the population enough time to make all placements accurately.

2) Scoring Systems in Puzzle Bobble: Giving bonus points
via an exponential chain bonus can potentially reward stronger
strategy. In this subsection, we examine how changing the
scoring system of a game can change the types of puzzles that
might be generated. This measures the expressive range [40] of
a game system. We generate 1000 random puzzles to determine
the expressive range of two scoring systems. In Figure 7, we
calculate the 2D strategy and dexterity difficulty of each random
puzzle and plot them in a hex bin histogram. This tells us how
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Fig. 7. The Puzzle Bobble scoring system affects the game’s expressive range.
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likely we are to find puzzles that require different amounts
of each kind of difficulty based on the scoring system. When
adding a chain bonus, the range expands significantly, and the
mode shifts to the right towards more strategic challenge. Note
that any particular Puzzle Bobble puzzle does not necessarily
get more difficult just by changing the scoring system. We only
demonstrate that the puzzle space has different characteristics
based on the scoring system.

VII. CONCLUSIONS

We have shown how modeling and measuring the effect
of strategy and dexterity can be used for AI-assisted game
design. This two-dimensional analysis of game difficulty allows
a designer or system to create games that are tuned for certain
types of skill. Using simulation, one can explore the effect of
parameter and rules changes on game variants to tune games,
analyze games, and to better understand games in general.
This research further demonstrates the necessity of modeling
different types of difficulty in many kinds of video games.

Several applications and extensions remain for ongoing and
future work. Firstly, a user study to validate that humans agree
with our difficulty predictions is warranted. With our system
to estimate the two-dimensional difficulty of a puzzle, we can
estimate the thresholds where we can give one/two/three stars
rewards and for ordering puzzles by effective difficulty. There
is also more work to be done on the effect of awareness on
which moves are selected, where the player uses knowledge
of their dexterity to make a strategic decision [41].

While we examine the effects of strategy and dexterity as
major sources of difficulty for players, it is important to identify
that emotional challenge [3] (e.g. an emotionally difficult
subject matter) and accessibility are additional dimensions that
adds to the difficulty of a game. The concept of accessibility
comes from bounded rationality theory, which identifies that
information can be harder to process based on the way that it is
presented and perceived [19]. For example, in tile-swap games
such as Bejeweled, challenge arises because it is difficult to
quickly see connections on a large board with many different
symbols [42]. Accessibility can come in the form of rules
complexity, how easy it is to perceive the game state, and
affordances for controlling or communicating in the game.
Modeling accessibility is a promising future step, bringing
additional dimensions to the analysis of game difficulty.
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