
VoCo: Text-based Insertion and Replacement in Audio Narration

ZEYU JIN, Princeton University
GAUTHAM J. MYSORE, STEPHEN DIVERDI, and JINGWAN LU, Adobe Research
ADAM FINKELSTEIN, Princeton University

Audio Waveform Editor

SIGGRAPH two thousand and sixteen

Text Editor

SIGGRAPH two thousand and seventeen

Text Editor

S EH L S sil

ELSE

V AH N T IYEHS

SEVENTY

N T T AHAY AAW

WANT TO

sil

S IY NY VUW

YOU’VE SEEN

THANK

TH AE
SIGGRAPH two thousand and sixteen

Audio Waveform Editor

SIGGRAPH two thousand and seventeen

Fig. 1. Text-based editing provides a natural interface for modifying audio narrations. Our approach allows the editor to replace an existing word (or insert a
new word) by typing, and the system automatically synthesizes the new word by stitching together snippets of audio from elsewhere in the narration. Here we
replace the word sixteen by seventeen in a text editor, and the new audio is automatically stitched together from parts of the words else, seventy, want and seen.

Editing audio narration using conventional software typically involves many
painstaking low-level manipulations. Some state of the art systems allow
the editor to work in a text transcript of the narration, and perform select,
cut, copy and paste operations directly in the transcript; these operations
are then automatically applied to the waveform in a straightforward manner.
However, an obvious gap in the text-based interface is the ability to type
new words not appearing in the transcript, for example inserting a new
word for emphasis or replacing a misspoken word. While high-quality
voice synthesizers exist today, the challenge is to synthesize the new word
in a voice that matches the rest of the narration. This paper presents a
system that can synthesize a new word or short phrase such that it blends
seamlessly in the context of the existing narration. Our approach is to use
a text to speech synthesizer to say the word in a generic voice, and then
use voice conversion to convert it into a voice that matches the narration.
Offering a range of degrees of control to the editor, our interface supports
fully automatic synthesis, selection among a candidate set of alternative
pronunciations, fine control over edit placements and pitch profiles, and
even guidance by the editors own voice. The paper presents studies showing
that the output of our method is preferred over baseline methods and often
indistinguishable from the original voice.

CCSConcepts: •Human-centered computing→ Interaction techniques;

Additional Key Words and Phrases: audio, human computer interaction

ACM Reference format:
Zeyu Jin, Gautham J. Mysore, Stephen DiVerdi, Jingwan Lu, and Adam
Finkelstein. 2017. VoCo: Text-based Insertion and Replacement in Audio
Narration. ACM Trans. Graph. 36, 4, Article 96 (July 2017), 13 pages.
https://doi.org/10.1145/3072959.3073702

Author’s addresses: Princeton Computer ScienceDepartment, 35 Olden Street, Princeton
NJ 08540 USA; Adobe Research, 601 Townsend Street, San Francisco CA 94103 USA.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
0730-0301/2017/7-ART96 $15.00
https://doi.org/10.1145/3072959.3073702

1 INTRODUCTION
Recorded audio narration plays a crucial role in many scenarios
including animation, computer games, demonstration videos, docu-
mentaries, and podcasts. After narration is recorded, most of these
applications require editing. Typical audio editing interfaces present
a visualization of the audio waveform and provide the user with
standard select, cut, copy and paste operations (in addition to low-
level operations like time stretching, pitch bending, or envelope
adjustment), which are applied to the waveform itself. Such inter-
faces can be cumbersome, especially for non-experts. Researchers
have addressed this problem by aligning the waveform with a tran-
script of the narration, and providing an interface wherein the user
can perform cut-copy-paste operations in the text of the transcript.
Whittaker and Amento [2004] and Rubin et al. [2013] show that
this form of interface significantly reduces search and editing time,
and is preferred by users. State of the art video editing systems
incorporate audio-aligned transcript editors to facilitate search and
editing tasks [Berthouzoz et al. 2012; Casares et al. 2002].
While cut-copy-paste operations are supported, one aspect re-

mains conspicuously missing from text-based audio editors: inser-
tion. It is easy for a person to type a new word not appearing in the
transcript, but it is not obvious how to synthesize the corresponding
audio. Nevertheless, in many circumstances inserting a new word
or phrase during editing would be useful, for example replacing a
misspoken word or inserting an adjective for emphasis. It is possible
to record new audio of just the missing word, but to do so requires
access to the original voice talent. Moreover, even when the original
narrator, microphone and acoustic environment are available for a
new recording, it remains difficult to match the audio quality of an
inserted word or phrase to the context around it. Thus the insertion
is often evident in the edited audio, even while methods like that
of Germain et al. [2016] can ameliorate such artifacts. Regardless,
just as it is easier to type than to edit audio waveforms for cut and
paste operations, it is also easier to type for insertion or replacement
rather than record new audio.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

https://doi.org/10.1145/3072959.3073702
https://doi.org/10.1145/3072959.3073702

96:2 • Jin, Z. et al

This paper introduces a method for synthesizing a word or short
phrase to be inserted into a narration, based on typing. The input
is an existing recording coupled with a transcript, as well as the
text and location of the word to be inserted. With the proliferation
of voice-based interfaces, there now exist many high-quality text-
to-speech (TTS) synthesizers. The challenge in our problem is to
automatically synthesize the inserted word in a voice that sounds
seamless in context – as if it were uttered by the same person in the
same recording as the rest of the narration (the target voice). While
it is possible to customize a speech synthesizer for a specific target,
conventional approaches (e.g., Acapela Group [2016]) start from a
large corpus of example recordings (e.g., 10 hours) and require many
hours of human annotation. Our goal is to synthesize a word or
short phrase (as opposed to a full sentence) that reasonably matches
the target voice in the context into which it is inserted, but based on
a much smaller corpus that lacks human annotation. Moreover, the
synthesized voice should have clarity (be free of noticeable artifacts
like popping or muffling) and individuality (sound like the target).
The key idea of our approach is to synthesize the inserted word

using a similar TTS voice (e.g., having correct gender) and then
modify it to match the target using voice conversion (making an
utterance by one person sound as if it was made by another). Voice
conversion has been studied for decades, and the idea of using
voice conversion for TTS was proposed by Kain and Macon [Kain
and Macon 1998] in the 1990s. However, only recently have voice
conversion methods been able to achieve high individuality together
with substantial clarity, for example the recent CUTE algorithm of
Jin et al. [Jin et al. 2016]. Based on a triphone model of human
voice, CUTE performs a dynamic programming optimization to find
and assemble small snippets of the target voice from the corpus,
such that when concatenated they resemble the TTS word. This
approach has related ideas from computer graphics research, for
example the image analogies method of Hertzmann et al. [2001] and
the HelpingHand approach of Lu et al. [2012].
This paper introduces a method called VoCo that builds on

CUTE and makes several improvements suitable for our problem:
(1) it improves synthesis quality by introducing range selection to
replace frame-level unit selection; (2) to accelerate the optimization
for use in our interactive application, it introduces a new two-
stage optimization approach (dynamic programming for selecting
phoneme sequences, followed by range selection to choose audio
frames that match those phonemes); (3) it introduces the notion
of exchangeable triphones to achieve clarity with a smaller corpus
(20-40 minutes) than earlier methods; (4) it optimizes matching the
context of the insertion; and (5) for cases where the default output
is unsatisfactory in quality or prosody, it supports interfaces by
which novices and/or experts can improve the results – by choosing
among a variety of alternative versions of the synthesized word,
adjusting the edit boundaries and pitch profiles of the concatenated
audio clips, and even adjusting the synthesis using the editor’s own
voice.

We present studies showing that words synthesized by VoCo are
perceived as more natural than those produced by baseline methods
(TTS and CUTE). Moreover, the studies show that VoCo produces
output that, more often than not, is indistinguishable from the voice
of the target speaker when inserted into a sentence. These studies are

conservative in the sense that the goal of being indistinguishable
from the target voice (for careful listeners) is stronger than the
goal of being plausible or acceptable in edited narration (for casual
listeners). Finally, we describe another study wherein an expert
audio engineer painstakingly assembles snippets of the corpus to
synthesize new words, and even this arduous process produces
results that are audibly inferior those of VoCo.

2 RELATED WORK
Our approach offers several connections to work in computer
graphics. The optimization over triphones described in Section 4.3
builds on the seminalVideo Rewritework of Bregler et al. [1997]. Like-
wise, research like that of Stone et al. [2004] and Levine et al. [2009]
shows how natural gestures of animated characters can be driven by
speech. Finally our approach is closely related to work that relies on
optimization for example-based synthesis of textures over a scalar
variable like time or arc-length [Lu et al. 2012; Lukáč et al. 2013].

Audio editing tools such as Adobe Audition and Audacity allow
experts to edit waveforms in a timeline interface. Audio manipula-
tion is achieved by chaining low-level signal processing tools that
require expertise and knowledge to use. However, such general-
purpose editing tools typically do not have a specialized speech
processing interface, as they are unaware of the linguistic proper-
ties of the signal. Therefore research-oriented speech editing tools
such as Praat [Boersma et al. 2002] and STRAIGHT [Kawahara et al.
2008] allow a user to manipulate phonetic and linguistic aspects of
speech in a timeline where audio is presented synchronously with
other properties such as phonemes and pitches. Similar to this idea,
recent research in this scope aims at connecting average users with
sophisticated speech processing tools using text and a middle layer:
Whittaker and Amento presents a voicemail editing interface that
boosts productivity with text-based navigation and word-level copy-
and-paste. The idea of using script to navigate a timeline is also
employed by video authoring tools such as the work of Casares et.
al. [Casares et al. 2002], and recent versions of commercial software
such as Avid Media Composer. It is also adopted by video browsing
and symmetrization tools such as Video Digest [Pavel et al. 2014]
and SceneSkim [Pavel et al. 2015]. In speech editing, text is not only
used for browsing but editing as well: Berthouzoz et al. [2012] cre-
ated interview video editing tool that allows an editor to place cuts
and pauses by cutting words and adding pauses in the transcript.
They also show “suitablility” scores as colors in the transcript to
indicate suitable points to place cuts. Later, Rubin et al. [2013] pre-
sented an editing tool for audio stories that support cut, copy and
paste in text and selecting among different takes in the text. One
important aspect of text-based speech editing, however, is missing
from these approaches – word replacement and insertion, crucial
for words that do not exist in the transcript. This is the main focus
of our work.
Kain and Macon [1998] showed how to create new TTS voices

with relatively little data using voice conversion. Typical voice
conversion methods represent voice signals as parametric source-
filter models in which the source approximates the vocal cords that
generate periodic or noise signals and the filter mimics the vocal
tract that shapes the source signal into the sounds we hear [Taylor
2009]. Then these methods explicitly model a conversion function

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

VoCo: Text-based Insertion and Replacement in Audio Narration • 96:3

Fig. 2. Main Editing Interface. An editor can cut, copy and paste text in the
transcript in order to effect changes in the narration. Our main contribution
is that the editor can also replace existing words or type new words not in
the narration (in this case replacing papers with videos) and our system will
synthesize a result that matches the voice of the speaker.

from one voice (source) to another (target) in the parametric space.
Given a new source (query), they apply the conversion function
and then re-synthesize actual signals from the converted parametric
model. The most classical conversion function is based on mapping
over Gaussian Mixture Models [Stylianou et al. 1998; Toda et al.
2001]. Recent research has also explored other forms of probabilistic
modeling [Toda et al. 2007a], matrix factorization [Aihara et al.
2014] and deep neural networks [Chen et al. 2014; Desai et al. 2009].
These approaches achieved very low distortion in the parametric
space but the output signal contains muffled artifacts possibly not
captured by the distortion measurement or introduced when re-
synthesizing from parametric representations of MFCC [Desai et al.
2009] or STRAIGHT [Kawahara et al. 2008]. The artifacts tend to be
perceptible when inserting a converted word between words of an
existing speech signal, and thus unsuitable for our word insertion
application.
In another thread of voice conversion research, algorithms con-

catenate segments of a target speaker’s voice to approximate the
query; a method called unit selection is used to select these seg-
ments such that they are close to the source in content and have a
smooth transition from one segment to the next [Hunt and Black
1996]. Recent approaches in this this thread differ in how units are
defined and selected: for example Fujii et al. [2007] segment speech
into phonemes and concatenate these phonemes to form new con-
tent. Another thread of research performs frame-level unit selection
(thereby increasing the number of units) to overcome the short-
age of voice samples [Dutoit et al. 2007]. Wu et al. [2013] perform
unit selection on exemplars, time-frequency speech segments that
span multiple consecutive frames [Raj et al. 2010]. Although these
methods produce words that are free from muffled artifacts, they
tend to have new problems with unnatural pitch contours and noise
due to discontinuities between units. The recent CUTE method
Jin et al. [2016] further reduces distortion by a hybrid approach
using phoneme-level pre-selection and frame-level unit selection.
Our method VoCo builds on CUTE and has several improvements
for better performance in word insertion.

3 EDITING INTERFACE
Our goal is to make editing narrations as simple as text editing for
both novices and experts, while providing a range of customization
options for motivated and advanced editors. To achieve this goal,
our interface inherits the basic cut-copy-paste functionality of the
speech editor of Rubin et al. [2013]. In addition our interface allows a
user to type newwords (via insert or replace) and then automatically
synthesize and blend them into the audio context. A non-expert
user can customize the synthesized words by selecting among a
number of alternative results. More experienced editors can adjust
the length, pitch and amplitude of the stitched audio snippets to
further refine the synthesis.

3.1 Text-based Editor
To start, a user selects an audio recording and its corresponding
transcript. Our system aligns the loaded audio recording with the
transcript and builds a customized voice synthesizer based on the
voice characteristics of the selected recording (Section 4). Then, the
main editing interface launches, shown in Figure 2. The upper part
visualizes the audio waveform segmented by individual words. The
lower part displays the transcript and provides a text pad in which
users can perform edits. When playing back the audio, two cursors
appear in synchronized locations in both the audio and the text.
A user can move the cursor by clicking on either the waveform
or the text. Basic operations including delete, cut, copy and paste
are allowed in the text editor. These operations will be reflected
immediately in the audio visualizer. The primary contribution of
this paper is that a user can also insert and replace words via typing;
the synthesizer will then synthesize the new words in the voice of
the person in the given recording and blend them into context as
seamlessly as possible. An edit button will appear and can be clicked
if the user chooses to customize the synthesis.

3.2 Alternative Syntheses
There are multiple ways to speak the same word, and therefore it
is natural to provide a user with alternative synthesis results. As
shown in Figure 3, the alternative results are organized in a list.
Via radio buttons, the user can quickly listen to all the alternatives,
and then optionally change modes (by a checkbox) to listen to how
each alternative sounds in the context of the full sentence. Studies
presented in Section 5 show that in general allowing the user to
select among alternatives produces a more natural sounding result.

Fig. 3. Interface presenting alternative results. When the editor is not
satisfied with the default synthesis, this interface allows them to explore
and choose among several alternative pronunciations.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

96:4 • Jin, Z. et al

Fig. 4. More advanced users can have fine-grain control over the boundaries
of audio snippets selected by our algorithm.

3.3 Manual Editing
To allow users with audio editing skills to customize the synthesis
result, we introduce two advanced editing options which can be
applied sequentially. Recall that the synthesized word is created by
stitching together snippets of words from the target voice corpus.
By clicking on the Edit button in the alternative syntheses window,
a user is presented with a new window containing multiple audio
tracks that depict these snippets. In Figure 4, a user can adjust
the boundaries of the snippets, change the lengths and find new
stitching points. After previous changes are confirmed, a second
window appears (Figure 5) that allows the user to adjust the pitch
contour of each snippet (shown as a graph of dots) either by dragging
handles or by choosing one of a pre-selected set of pitch profiles
shown at the bottom of the window. This window also allows the
editor to adjust the amplitude and/or duration of each snippet by
dragging the top or sides of the box that surrounds it. Finally, as an
alternative to manually adjusting the pitch and timing, a user can
speak into a microphone to demonstrate how a target word should
be spoken. The target word will then be re-synthesized taking into
account the users’ pitch and timing features. Studies presented in
Section 5 show that manual editing can further improve on words
selected via alternative syntheses.

4 ALGORITHMS
Our word replacement and insertion tasks require synthesizing new
audio based on typed text, a process often referred to as text-to-
speech (TTS) synthesis. State of the art commercial TTS systems rely
on a large corpus with a significant amount of manual annotation
[Tokuda et al. 2013], neither of which is available in our setting. In
order to build a target TTS synthesizer for an arbitrary target voice
with a relatively small amount of data and no manual annotation,
we perform voice conversion with the following procedure:

(1) Corpus preparation - We first align the target speaker’s
speech samples to the transcript using a forced alignment
algorithm [Sjölander 2003]. This method converts the
transcript to phoneme sequences and then establishes the
mapping between phonemes and speech samples in time.
This step is also used by existing text-based speech editors
such as that of Rubin et al. [2013].

Fig. 5. Advanced editors can manually adjust pitch profile, amplitude and
snippet duration. Novice users can choose from a pre-defined set of pitch
profiles (bottom), or record their own voice as an exemplar to control pitch
and timing (top).

(2) TTS selection andpreparation - Given the target speaker’s
speech recording and transcript, we first choose an exist-
ing synthetic voice, the source TTS, which sounds similar
to the target. This is done by sampling several sentences
from the target speaker’s narration, and synthesizing the
same content in a variety of TTS voices. Then we calculate
the acoustic distances between the target and each of the
TTS voices usingMel-Cepstral Distortion (MCD) [Kubichek
1993], a metric that measures spectral difference between
two audio samples. We use the TTS voice with the lowest
MCD distance to the target, as the source TTS voice.

(3) Building a voice converter - We build a voice converter
based on parallel samples of the source and target voices.
Since we have the target narration and transcript, we use
the source TTS to synthesize the parallel speech in the
source speaker’s voice. We therefore do not need a pre-
existing parallel speech corpus. Similar to the target voice,
we segment the source voice into phonemes using forced
alignment. The segmented audio and transcript (both source
and target) serve as the training data for the proposed data-
driven voice converter (Section 4.1 through 4.4).

(4) Synthesis and blending - Given a new word, we synthe-
size the corresponding audio using the source TTS, trans-
form the result using the trained voice converter to make
it sound like the target speaker, and finally insert the syn-
thesized word into the given context using cross fade.

4.1 CUTE voice conversion
In this section we describe CUTE, the voice conversion method
recently introduced by Jin et al. [Jin et al. 2016]. As noted above, we
use voice conversion to convert our source voice (produced by TTS)
to match our target voice. CUTE is a data-driven voice conversion
approach that uses the source voice as a query and searches for
snippets of the target voice that as much as possible sound similar
to the query, while alsomatching at the stitch boundaries. CUTE first

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

VoCo: Text-based Insertion and Replacement in Audio Narration • 96:5

segments both the source and target audio into small, equally-sized
windows called frames. It then needs to find the optimal sequence
of frames of the target voice in order to perform the synthesis. It
does so via an optimization that minimizes two costs: matching cost
between the selected target and the source frames and concatenation
cost between adjacent frames. This optimization can be performed
via dynamic programming, much as drawing gestures are stitched
together in the HelpingHand approach of Lu et al. [Lu et al. 2012].
For interactive performance, CUTE relies on triphone preselection,
which limits the search space to a small number of candidate
frames, and is crucial in preserving synthesis quality. In particular,
rather than using the KNN algorithm as in HelpingHand, CUTE
selects candidates that are phonetically consistent with the query,
meaning they share a similar sequence of triphones. Sections 4.2–
4.4 offer several quality and performance improvements over CUTE.
Nevertheless, we briefly describe CUTE here as a baseline approach
for voice conversion in our system:
1. Frame-by-frame alignment: First, we segment the audio

into frames (in our implementation, the window size is 25ms and
consecutive frames overlap by 5ms%). Next, we apply Dynamic Time
Warping (DTW) to align the source frames with the target frames
using a distance metric defined as the Euclidean distance between
the corresponding MFCC features [Muda et al. 2010].
2. Feature extraction and exemplars: For both source and

target voices, we extract the per-frame MFCC and F0 feature
vectors. The F0 vectors representing the fundamental frequency
(also referred to as pitch) are normalized to the target voice’s F0 range
using a logarithmic Gaussian normalized transformation [Toda et al.
2007a]. We concatenate the feature vectors of 2n + 1 consecutive
frames into exemplars [Wu et al. 2013]. These exemplars not only
encode frequencies, but also temporal variation in frequencies.
Using the frame alignment from the first stage, we combine

the source MFCC exemplars and target F0 exemplars into joint
matching exemplars. Minimizing distance between the query and
matching exemplars helps the synthesized voice sound like the
query. Likewise, the target MFCC and F0 exemplars are combined
into concatenation exemplars; minimizing the distance between
neighboring concatenation exemplars encourages smoothness at
stitch boundaries.
3. Triphone preselection: For performance, this step removes

frames that are unlikely to be selected in the matching step. Based
on phoneme segmentation, each frame is assigned a phoneme label.
These labels are further converted to triphones – a phoneme and
its two neighbors. For example, the triphones for the word “user”
(phonemes: Y UW1 Z ER0) are

(st)_Y_UW1, Y_UW1_Z, UW1_Z_ER0, Z_ER0_(ed)

where (st) and (ed) label the beginning and the end of a sentence.
For each query frame (source voice), frames (target voice) that share
the same triphone label are selected as candidate matches. If there
are no exact triphone matches, CUTE selects the frames in which
either the first two or last two phonemes (called diphones) match
with the query triphone. Likewise, if no diphones are available,
candidates that only match the central phoneme (monophone) are
selected. This way, frames that are most phonetically similar to the
query are preserved for the next step.

5. Matching: In the speech synthesis literature, this matching
step is called unit selection [Taylor 2009]. Based on the candidate
table, the Viterbi algorithm [Forney 1973] is used to select one
candidate frame per query frame such that the sum of two cost
functions are minimized. The first is matching cost, defined as the
Euclidean distance between the query exemplar and the candidate’s
matching exemplar. The second is concatenation cost designed
to characterize the distortion introduced by concatenating two
candidates. It is the product of three terms, break cost, smoothness
cost and significance cost. The two cost functions together, aim to
choose candidates that result in the least number of breaks and if
there are breaks, they are in the least significant part of the synthesis
and their transition is smooth.
6. Concatenation: Consider sequences of consecutive frames

as audio snippets – we need to combine these snippets at their
stitch points. We use the WSOLA algorithm of Roelands and
Verhelst [1993] to find the overlapping areas between adjacent
snippets where the waveforms are most similar to one another,
and blend the snippets together using a cross-fade.
We have implemented CUTE for our application, and as shown

by experiments described in Section 5, the quality of the synthesized
result is often satisfactory. However, CUTE has several drawbacks
in our context. First, CUTE is slow whenever matching triphones
are not found in the preselection stage. In that case CUTE falls
back on diphones or monophones, of which there is a much larger
candidate pool, making the candidate table very large. Second, the
CUTE algorithm searches for snippets that match at internal stitch
boundaries, but does not optimize for blending an inserted word into
its context – sometimes leading to audible artifacts. Third, CUTE
has difficulty with accents. Suppose the source and target speakers
use different pronunciations (both of which are valid) for the same
word in the same context. When synthesizing the same word, CUTE
cannot emulate the target speaker’s accent because of mismatched
phonemes between the query and the candidates. Finally, CUTE
sometimes fails to synthesize natural sounding prosody. This is
especially the case when we have limited training data, as the
selected segments might have pitch discontinuities at the stitch
boundaries.
In the remainder of this section we introduce several improve-

ments to CUTE that address these limitations: use of Exchangeable
Triphones allows for alternative pronunciations. Dynamic Triphone
Preselection further minimizes the search space while preserving
meaningful candidates. Range Selection replaces the traditional Unit
Selection described above with a faster method for selecting audio
snippets directly. Finally we introduce an approach for generating
Alternative Synthesis Results that all tend to sound reasonable but
emphasize different characteristics of the target voice.

4.2 Exchangeable Triphones
Recall that when CUTE cannot find an exact triphone match, it falls
back on diphones or monophones, which leads to a much larger
candidate set containing worse matches, which impacts quality and
performance. Here we introduce two types of exchangeable triphones
that expand the triphone matching to include similar triphones that
lead to only a slightly different pronunciation, while maintaining a
much smaller search space than the diphone fallback.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

96:6 • Jin, Z. et al

Fig. 6. Alignment of two phoneme sequences (source above and target
below). Red lines indicate a match whereas blue lines show mismatching
phonemes (and thus suggest potential accent mappings).

Word-based Exchangeable Triphones come from aword-to-phoneme
dictionary like the one used in the aforementioned forced alignment
process [Sjölander 2003]. Some of the triphones in a word are ex-
changeable because alternative pronunciations of the word exist.
For example the word “this” has two pronunciations, DH_IH1_S and
DH_AH0_S, in the dictionary. So when we search for one of those
triphones in our corpus, we will accept the other as a valid match
as well.

Accent Exchangeable Triphones are not defined in dictionaries, but
rather are discovered via the phoneme alignment component of the
DTW-based source to target alignment process outlined above in
the first stage of the CUTE algorithm (Section 4.1). In that stage,
we discover cases where the source tends to utter one triphone
whereas the target utters a different triphone, when saying the
same text. Figure 6 shows an example of such phoneme alignment.
In this example (third and fourth rows), we find that D_AH0_N
and D_IH1_N are exchangeable. Therefore, just as with word-based
exchangeable triphones above, we allow matches between these
triphones when searching the corpus. This allows for a target
speaker with a particular accent to be better matched with the
more generic source TTS voice.

4.3 Dynamic Triphone Preselection (DTP)
When a query triphone has no matches in the corpus, the CUTE
algorithm instead fills the candidate table with diphones or mono-
phones as described above. This is somewhat ameliorated by the
exchangeable triphones introduced in the previous section. Nev-
ertheless, the problem can still occur. Since the complexity of the
Viterbi algorithm scales quadratically with the number of candi-
dates, having a large number of inferior candidates (matching only
the diphones and monophones parts) is undesirable. Moreover, not
all diphones are necessary. When the matching step imposes a large
break penalty for snippet boundaries, only segments with the small-
est number of breaks tend to be selected. Therefore we can remove
candidates that might result in larger number of breaks from the
candidate table. Essentially what we do is perform a dynamic pro-
gramming optimization at the phoneme level, to reduce the set of
candidates to only those triphone sequences with the optimal num-
ber of breaks. This hugely accelerates the frame-level search that
follows (Section 4.4).

To construct an optimally compact frame candidate table, we first
perform Dynamic Triphone Preselection, or DTP, at the phoneme
level to obtain a triphone candidate table. We call audio frames

Fig. 7. Dynamic triphone preselection. For each query triphone (top) we
find a candidate set of good potential matches (columns below). Good paths
through this set minimize differences from the query, number and severity
of breaks, and contextual mismatches between neighboring triphones.

spanning a phoneme, a phoneme segment. One triphone can have
multiple matching phoneme segments. The goal of DTP is to select
a small set of segments per query triphone such that the sequences
of frames that have the minimal number of breaks are contained.
In other words, this method finds optimal paths through phoneme
segments that contain minimal number of breaks and then merges
them into the candidate table.

The method is illustrated in Figure 7. For each query triphone q,
we first initialize its candidate table with all matching Triphones,
with exchangeable triphones also included. Similar to the triphone
preselection step, when exact matches are unavailable, diphones
and monophones are used instead. Between neighboring phonemes,
some segments are consecutive (dotted links) in the original target
speech and some are not. Non-consecutive phoneme segments will
surely introduce a break in the matching step and thus should be
minimized with priority. We also want to minimize the number
of neighboring Triphone segments that do not match, e.g. sp_S_I
and P_I_G, because they are likely to cause audible distortion when
they are stitched together. Finally, we should also minimize the
number of Diphones and Interchangeable Triphones because they
are an approximation to the desired Triphone in the query. Putting
all these criteria together, this problem is to minimize an energy
function of matching cost (similarity between query Triphone and a
candidate Triphone segment) and concatenation cost (whether there
is a break and whether a segment matches its previous segment’s
Triphone). This is very similar to those in the matching step of
CUTE and HelpingHand [Lu et al. 2012], and can be solved with
the Viterbi Algorithm. Figure 7 shows an example optimal solution.
Note that there could be multiple optimal paths, and all of them
should be included. Finally, we retain only the triphone segments
that are included in the optimal paths and omit the rest. The retained
segments form the input to the range selection step that follows.

4.4 Range Selection
In the matching step of the CUTE algorithm, the preselected
triphones are translated into corresponding frames and the optimal
sequence of frames are selected using the unit selection. In this paper,
we propose a new method, Range Selection, to replace Unit Selection.
Instead of selecting individual frames and indirectly encouraging

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

VoCo: Text-based Insertion and Replacement in Audio Narration • 96:7

Fig. 8. Range selection objective illustrated. The blue bars are the query
phonemes with length proportional to their duration. The gray wider bar are
candidate segments; consecutive segments are visually next to each other.
The orange bar depicts one possible selection of the candidates while the
arrows showwhere stitching occurs between the selected range of segments.

continuity using a high concatenation cost, Range Selection selects
ranges of consecutive frames directly by choosing their starting
and ending boundaries so that the sequences sound similar to the
query in terms of phonemes and pace and contain little distortion
at stitching points (Figure 8).
Selecting a range of frames instead of individual ones offers

several advantages: (1) it allows the definition of similarity at the
sequence level and thus more sophisticated similarity measures
such as Mel-Cepstral Distortion can be used; (2) it is an order of
magnitude faster than frame level unit selection – by a factor of
average number of frames per phoneme; and (3) it includes duration
of phonemes as part of the cost function, offering explicit controls
on the pace of the resulting synthesis – it is superior to the skip and
repeat costs in unit selection, which do not have a direct influence
on the duration of the synthesized signal.

Based on pre-selected phoneme segments, Range Selection finds a
small set of subsequences from those segments or “range”, expressed
by its starting and ending frame numbers. We use ⟨s, t⟩ to present a
range from Frame s to Frame t . Since dynamic triphone preselection
(Section 4.3) ensures that breaks will only occur once per phoneme,
we can limit the number of ranges selected per phoneme to be at
most two (e.g. Phoneme I in Figure 8). It means for each query
phoneme, at most two candidate segments are considered, and the
ranges we select from them are their subsequences.

Since only one break is allowed per phoneme, the break will occur
in one of the two locations: (Case 1) inside a phoneme, e.g., the break
inside Phoneme I in Figure 8; and (Case 2) between two phonemes,
e.g., the break between Phoneme G and R in Figure 8. In Case 1, the
range selected must cover the beginning of phoneme (first candidate
of Phoneme I) because otherwise it will introduce one more break,
violating the rule. Then it will transition to either another candidate
in the same phoneme (second candidate of Phoneme I) or to the next
phoneme (phoneme G transitioning to R). Note that transitioning
to another candidate of the same phoneme means a second range
is selected and the second range must extend to the end of the
phoneme (second candidate of Phoneme I); otherwise an extra break

will occur. In Case 2, there should be only one range selected inside
the phoneme because if there are two, one more break is introduced.

To optimize for similarity, smooth transition and pace, we define
an objective function in the following way. Let Ri j be the j-th
candidate segment for Phoneme i chosen by DTP. Each segment can
be represented with two numbers, the beginning and ending frame
indices, Ri j = ⟨bi j , ei j ⟩ = {bi j ,bi j + 1, ..., ei j }. Let variable Rik be
the k-th selected range for phoneme i , where Rik = ⟨sik , tik ⟩. Define
the set of ranges selected for Phoneme i as Ri = {Rik | k ∈
(1,Ki)} where Ki ∈ 1, 2 is the number of ranges selected for
Phoneme i . Range Selection minimizes the following function:

Or s =

n∑
i=1

(αS(qi ,Ri) + βL(qi ,Ri)) +
n∑
i=1

Ci +
n∑
i=2

Di (1)

where qi is the i-th query phoneme; Functions S and L measure
similarity cost and the duration cost between the query phoneme
and the selected ranges Ri . Their weights are controlled by a
constant value alpha and beta. Functions Ci and Di are two types
of concatenation costs that penalizes concatenating ranges that are
dissimilar to one another at the boundaries [Conkie and Isard 1997].
Ci is used for a concatenation point in the middle of a segment
(Case 1) and Di for a concatenation point at the beginning (Case
2). Through our experiments, we found that balancing between
concatenation, similarity and duration cost (α = 1 and β = 6) is most
likely to produce good results. The above optimization problem can
be solved efficiently with dynamic programming. See the detailed
description in the appendix.

4.5 Alternative Syntheses
While the default range selection method uses predefined α and β
values in our experiments, alternative syntheses can be produced
by using different combinations of α and β . Since α is the weight
of similarity, the higher the value of α , the closer to the query the
synthesis sounds will be, in both pitch and timbre. A higher α is
more likely to lead to stitching distortion while a lower α is likely
to lead to a smoother synthesis result since it is less restricted in
terms of pitch and timbre. Similarly, higher β makes the duration of
the synthesis closer to the query while lower β is less restrictive in
terms of duration. Since range selection is effecient, we can quickly
produce a grid of results, varying α and β in log space (Figure 9).

Fig. 9. Alternative syntheses. A grid of results produced by varying values
of α and β for range selection. Each cell represents one alternative, and
they are color coded such that similar results have the same color.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

96:8 • Jin, Z. et al

Though there are many of cells in the grid, only a handful
sound unique. We group synthesis results using the same phoneme
segments and color-code the grid by group. Inside each group, we
retrieve a representative result by choosing the onewith theminimal
number of breaks. The most representative nodes in Figure 9 are
marked with dots. These comprise the alternatives presented to the
user, as shown in Figure 3.

5 EXPERIMENTS AND RESULTS
This section describes some synthesis results, as well as several
studies wherein we asked subjects to evaluate the quality of these
results. The audio files used in these experiments can be found at our
project web page: http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/

5.1 Synthesis Examples
In this section we show some example results from our speech
synthesis algorithm to demonstrate how our proposed method
achieves the goals of contextual smoothness and having as few
breaks as possible. The CMU Arctic dataset [Kominek and Black
2004] is used in these experiments.
Figure 10 shows a first example, where we synthesize the word

“purchase” and insert into a recording where it is surrounded by
silence. Multiple copies of the word “purchase” exist in the corpus,
but because they are all chained with neighboring context words
they would be unsuitable for simply copying into a silent context.
Instead, our algorithm finds a different combination of audio pieces
where PUR is from “pursue” (preceded by silence) and ASE is from
the ending of “this” (followed by silence). Between those fragments,
the middle part of “speeches” connects them. Note that because of
exchangeable triphones, Z and S are allowed to be matched.

The next example is a homophone. The query is “prophet” without
context. The result we obtained has no break at all. It is one solid
piece of the word “profit”. This demonstrates our approach not only
finds exact word matches if they exist, it also finds homophones if

Query

N AA1 T

NOT

sp

sp

P ER0 S UW1

PURSUE

DHAH0

THE

Query

M IH1NAH0T

MINUTE

S P IY1 CH AH0 Z

SPEECHES

sp

sp

Query

F AO1 R

FOR

DH AH0 S

THIS

sp

sp

sp PURCHASE sp

Fig. 10. Synthesis example: the word “purchase” placed in a silent context
(not audibly linked to neighboring words). The query is above, segmented
by where breaks occur in the synthesis result. The text beneath it shows the
spans of words. The following three chunks of waveform show the snippets
of audio that are concatenated during synthesis (green, purple, green). For
visualization, the query waveform is stretched or compressed to match the
length of chunks below.

they fit. The two lines below this paragraph show the query and the
piece(s) used to synthesize that query. The first row is the query’s
phoneme decomposition. Then the row below it shows information
about a piece, including sentence ID, frame numbers, phonemes and
words contained in this piece.

Query: P R AA1 F AH0 T (prophet)
u0518: (334-407) P|R|AA1|F|AH0|T (profit)

The third example is alternative synthesis.When putting theword
“poison” between “the” and “of the strange vegetation”, we obtain
alternative combinations of pieces that have different prosody and
styles:

Query: P OY1 Z AH0 N (poison)
COMBINATION 1:
u0277: (359-448) P|OY1|Z|AH0|N (poisonous)
COMBINATION 2:
u0277: (359-402) P|OY1 (poisonous)
u0412: (107-120) Z (is)
u0519: (243-277) Z|AH0|N (is in)
COMBINATION 3:
u0141: (309-354) P|OY1 (pointing)
u0020: (073-121) Z|AH0|N (clubs and)

Although the second alternative combination has the largest number
of breaks, it sounds most natural within the context. It is selected in
the sampling method because it has competitive pitch continuity
with other alternative syntheses. Also note that we select segments
across words if there is no silence detected between them.

5.2 Mean Opinion Score Test
We conducted two experiments in Technical Turk to evaluate our
methods. The first one is aMeanOpinion Score (MOS) test [Machado
and Queiroz 2010] that asks subjects to rate the quality of the
inserted synthetic words. The second one is an identification test
where subjects will tell whether they think a sentence has been
edited or not. Four voices, two male and two female, from the CMU
Arctic dataset, are used to create test samples. We used the first
800 utterances (40 minutes) for training and the remaining 332
utterances for word replacement. We randomly choose 44 words
that spans 4 to 11 phonemes from 44 different sentences. For each
sentence, we remove the chosen word, synthesize the word and
insert it in the same location to create a recording with one word
altered. We synthesize the same word using various other methods
for comparison. There are 6 conditions where sentences are made:

• Synth.We use the source TTS voice to synthesize the word
and put into context.

• CUTE. Based on our word synthesis framework, we use
CUTE instead of VoCo for the voice conversion.

• Auto. Our method using pre-defined α and β values in
range selection.

• Choose.Wemanually choose one synthesis from a number
of alternatives (up to 16), if it improves on Auto above.

• Edit. We use the editing interface to further refine the
synthesis, if it improves on Auto/Choose.

• Real. the actual recording without modification.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

http://gfx.cs.princeton.edu/pubs/Jin_2017_VTI/

VoCo: Text-based Insertion and Replacement in Audio Narration • 96:9

Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Male2(BDL)

all(44)

edited(25)

Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Female1(SLT)

all(44)

edited(23)

Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Male1(RMS)

all(44)

edited(23)

Synth CUTE AutoChoose Edit Real
1

2

3

4

5
Female2(CLB)

all(44)

edited(11)

Fig. 11. These mean opinion score tests show that VoCo synthesis results
are generally perceived as higher quality than those of baseline methods,
scored on a Likert scale from 1=bad to 5=excellent.

In each MOS test, we present a subject with a recording drawn
randomly from 44 sentences and 6 conditions above. They are
informed that each sentence has one word corrupted but restored
by a computer program. They are asked to listen and rate the
quality of the restored sentence on a Likert scale: 1 = bad (very
annoying), 2 = poor (annoying), 3 = fair (slightly annoying), 4 = good
(perceptible but not annoying) and 5 = excellent (imperceptible,
almost real). They can play the recording multiple times.
On Amazon Mechanical Turk, we launched 400 HITs, 100 per

voice. At the beginning of each HIT, we use a warmup question to
get the subject familiar to the voice they are about to hear, where
they are asked to choose a word heard in a long sentence. In each
HIT, a subject is presented with 32 different sentences in which
24 of them are made of 4 instances from the above 6 conditions.
From a held-out set of sentences, we add 4 more instances of the
“Real” condition and 4 more cases of badly edited “Synth” condition
to validate that the subject is paying attention and not guessing
randomly. For the data to be retained, the subject may make at most
one mistake on these validation tests, by either rating < 3 on “Real”
examples or > 3 on “Synth” examples. The sentences and conditions
are globally load-balanced using a database, so that we cover every
sentence-condition combination a similar number of times.
In the end, we collected 365 valid HITs (out of 400 issued). For

each condition per voice, we average all the ratings to produce the
bar plot shown in Figure 11. The blue bars show average rating of
all sentences while the yellow bars only include sentences that were
manually edited (because it improved on the automatic method).
From the blue bars, we can see that the MOS is ascending in the
order of Synth, CUTE, Auto, Choose, Edit and Real. The average
scores for Auto, Choose and Edit are both over “Good” and they
significantly outperform CUTE that resides in the range of “fair”.
For the male voice “RMS” specifically, the rating is very close to
“Real” example. From the results on Edited examples, we can see

SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Female1(SLT)

all(44)

edited(23)

SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Female2(CLB)

all(44)

edited(11)

SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Male1(RMS)

all(44)

edited(23)

SynthCUTE AutoChooseEdit Real
0

0.2

0.4

0.6

0.8

1
Male2(BDL)

all(44)

edited(25)

Fig. 12. Identification tests show that VoCo synthesis results are more likely
identified as original recordings than other baseline methods, shown here
as a fraction of people who identify the recordings as original.

all methods generally have reduced rating because these examples
are hard to synthesize and thus require editing. We also notice
that “Edit” consistently outperform “Choose”, which indicates that
manual editing is useful in improving quality for some sentences.

5.3 Identification Test
In the Identification test, a subject is presented one sentence drawn
from the six conditions described above (Synth, CUTE, Auto, Choose,
Edit and Real) and informed that there may or may not be one word
edited using a computer. The task is to identify if the recording
is original or edited. In this experiment, we released 440 HITs on
Mechanical Turk, 110 for each voice. These HITs incorporate the
same warm-up question as in the MOS test, as well as the same
procedure relying on held-out sentences for validation with at most
one mistake allowed. Each HIT contains 24 actual test sentences
drawn randomly from the six conditions, together with 8 validation
sentences. The sentences and conditions are load-balanced such
that no sentence is repeated during a HIT, and globally all pairs of
sentence and condition are covered roughly uniformly.
For this experiment we collected 391 valid HITs in total (out

of 440 issued). For each method in each voice, we compute the
percentage of subjects who think the recordings they heard are
original. As with the MOS tests, we show both the results for all
sentences as well as just the edited sentences in Figure 12. From
the blue bars (all sentences), we observe that the likelihood of a
synthesis being identified as original ascends in the order: Synth,
CUTE, Auto, Choose, Edit. The chance that Auto is confused with
an actual recording is on average 57% for the female voices and
68% for the male voices which is significantly higher than those of
CUTE (43% and 53%). Based on Fisher’s exact test, Auto improves
on CUTE with p << 1 × 10−16, indicating that our fully-automatic
approach performs significantly better than a state of the art method
for this task. Likewise Choose improves over Auto with p < 2×10−5,

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

96:10 • Jin, Z. et al

1 2 3 4 5

number of breaks

0

0.2

0.4

0.6

0.8

1

lik
e

lih
o

o
d

 o
f

b
e

in
g

id
e

n
ti
fi
e

d
 a

s
 r

e
a

l female male

Fig. 13. Identification test results as a function of number of breaks in the
synthesis. For female voices, the result degrades significantly as the number
of breaks increase while in male voices, the trend is less strong.

meaning that choosing among alternatives improves the results, at
least in some cases. We also find that Edit improves on Choose
(p < 0.027 using Fisher exact test), with significance even though
manual editing is used only in difficult cases where choosing among
alternatives does not yield adequate results.

For the Edit condition, the chance of being confused with actual
recordings is 71% for female voices and 76% for male voices. This
performance gap between female and male voices is reduced with
alternative syntheses and manual editing. Note, however, that this
gap is not observed at all in the MOS test, where our method
performs equally well on female and male voices. We speculate that
this difference is observed because males voices generally sound
noisier than female voices, and the noise obscures discontinuities
introduced by piecing together audio snippets. Evidence supporting
this hypothesis is revealed in Figure 13. The probability of a
synthesized word being identified as real is plotted as a function of
the number of breaks points in synthesizing a word using the fully
automatic method. For female voices there is a strong descending
trend whereas the trend is less strong for male voices.

5.4 Human synthesis
VoCo makes it possible for non-experts to insert and replace words
in audio narration by typing. But does it make editing easier and/or
generate better results for audio experts? To answer these questions,
we asked two audio experts to manually create new words and
insert them into a sentence using software tools with which they
were familiar. One expert chose to work with the open-source
audio editor Audacity1 while the other used commercial application
Adobe Audition.2 Four words – mentioned, director, benefit and
television – were were picked for the task because they contain non-
trivial numbers of phonemes and there were sufficient triphones to
synthesize them in the corpus. The experts were presented with 80
seconds of recordings, selected so as to ensure that there were
abundant material to create those specific words. We used only 80
seconds of recordings to narrow the search space and thereby save
human search time, thus measuring an upper bound of human
performance. The actual human performance on a real corpus that
contains tens of minutes of recordings should be considerable worse
than what is demonstrated in our experiment. For comparison, we
also synthesized these words using VoCo and the Synth voice as a
baseline, each based on the same corpus.

1http://www.audacityteam.org/
2http://www.adobe.com/products/audition.html

mentioned director benefit television
0

1

2

3

4

5
Synth Expert1 Expert2 VoCo

Fig. 14. Mean opinion scores for experts and algorithms replacing words in
sentences with synthesized words: mentioned, director, benefit and television.
VoCo outperforms the experts, while Synth provides a baseline.

We clocked the time the experts spent to create each new word:
Expert 1 spent 15-27 minutes and Expert 2 spent 30-36 minutes per
word. For comparison, VoCo only takes about one minute to process
the 80-second corpus, and less than a second to synthesize each
word. We also performed an MOS test on Mechanical Turk for the
manually-edited words as well as two automatic methods – VoCo
and Synth. There are 16 unique tests in total (4 words crossed with 4
conditions), and each unique test was shown twice per HIT (which
contained 32 tests in total, presented in random order). Since the
subject answered each question twice, we were able to reject data
from subjects whose answers were inconsistent (more than 2 points
apart on a question). Thus we collected 48 valid HITs, the results of
which are shown in Figure 14. From the MOS scores, we can see that
VoCo outperforms human editing in all four cases. Also the results
of the generic synthesizer were considered no better than those of
the experts, since they are in a voice that’s slightly different from
the voice used in the sentence. This study suggests that VoCo makes
word insertion more efficient and effective than manual editing by
audio experts.

6 CONCLUSION AND FUTURE WORK
This paper describes an algorithm that supports text-based editing of
audio narrations by augmenting the relatively straightforward cut-
copy-paste operations with the more challenging operations insert
and replace. Our studies suggest that when synthesized words are
inserted in the context of a spoken sentence, the modified sentence
is often perceived as indistinguishable from other sentences spoken
in the same voice. With alternative syntheses and manual editing,
the “authenticity” of the synthesized word is further strengthened.
Moreover, even in cases where subjects can recognize the sentence
as edited, it would still have acceptable quality for many applications.
In cases where a newword is desired (or needed), the only alternative
approaches are to re-record the audio, or to recruit an expert audio
engineer to painstakingly assemble the word (more than 20 minutes
per word on average, according to our study, to yield words that
were of inferior quality to those produced by VoCo). Therefore, we
believe the proposed system offers a valuable improvement over the
state of the art.
Nevertheless, there are several limitations in this approach that

suggest areas for future work. First, our ultimate goal is to synthesize
words with such consistently high quality that they will be rarely
or never recognizable as edited. Our approach relies on MFCC and
pitch features for determining compatible areas of waveform to

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

VoCo: Text-based Insertion and Replacement in Audio Narration • 96:11

be stitched together. We believe the factor that could improve the
quality of our synthesized words would be to design or find features
that were optimized specifically for our problem.
Second, our method relies on a hand-crafted energy function to

select an “optimal” synthesis result, but this function is not well
correlated with human perception. We believe it may be possible
to design a more suitable energy function for our problem via a
data-driven approach that may even be voice-specific.
Finally, our method can currently only synthesize a word or

short phrase. This limitation mainly stems from the challenge of
synthesizing a voice with natural prosody over longer sequences
of words. Since the prosody of generic TTS systems is generally
unnatural, our approach inherits this defect. One idea we would
like to investigate is the use of the audio editor’s voice as the
query, instead of the generic TTS voice. The editor could enunciate
the query with a particular prosody, and this would guide the
synthesized result. The main challenge is that in this scenario there
is no aligned synthetic voice to guide the voice conversion process
towards the target voice. However it may be possible by applying
many-to-one voice conversion to the editor’s voice [Toda et al.
2007b]. An alternate approach might build on the recent WaveNet
work of van den Oord et al. [2016] which shows that deep learning
can effectively model human prosody by learning directly from
audio samples.

A DETAILS OF THE RANGE SELECTION ALGORITHM
Range Selection (Section 4.4) aims to find a small set of consecutive
frames (ranges) that are similar to the query and then combine
them together to obtain the final synthesis result. In this section,
we present the algorithmic details and more precise mathematical
definitions about Range Selection. To recap, a range , denoted as ⟨s, t⟩,
is defined as a sequence of frames starting from index s to t . The j-th
candidate segment of phoneme i is Ri j = ⟨bi j , ei j ⟩. Our objective
is to select ranges Rik = ⟨sik , tik ⟩ that minimizes Equation 1.
We denote the collection of ranges selected for i-th phoneme as
Ri = {Rik | k ∈ (1,Ki)}, assuming there are Ki ranges selected
for that phoneme (Ki ∈ {1, 2}).
In Equation 1, the concatenation costs Ci and Di are defined as

follows:

Ci =
{

0 if Ki = 1
C(ti1, si2) if Ki = 2 Di = C(ti−1,Ki−1 , si1)

where function C(t , s) represents the distortion transitioning from
Frame t to Frame s . In this paper, we define C(t , s) as the Euclidean
distance between the exemplar feature of Frame t to that of Frame
s . For other cost functions in Equation 1, we define similarity cost S
as Mel-Cepstral Distortion and the duration cost L(r1, r2) as the log
of the ratio between the length of r1 and the length of r2.

Because we limit the number of ranges per phoneme to be at most
two, there are two types for each phoneme (1) choose two ranges,
one starts from phoneme boundary (we call it Pre) and the other
ends at a phoneme boundary (we call it Post). (2) choose only 1
range, starting and ending in the same phoneme segment; we call
its starting point Start and ending point End.

This allows us to use dynamic programming to solve the general
optimization defined in equation 1 efficiently. Let ni be the number

Fig. 15. Range selection algorithm illustrated. Above: the frames selected
by dynamic triphone preselection, numbered by frame indices. Below: the
dynamic programming table, where each box shows the frame-range it
represents; the connections between boxes show dynamic programming
dependencies. The orange boxes and connections show an example solution,
wherein frame ranges 1-4, 5-6, 10-11 and 12-13 are selected.

of candidates for phoneme i . For a segment ⟨bi j , ei j ⟩j=1...ni , the
only valid ranges set for each query phoneme i should belong to one
of the following two sets: Pre(i) × Post(i) ≡ {{rpre , rpost }|rpre ∈
Pre(i), rpost ∈ Post(i)} and Start(i) ⊗ End(i) ≡ {< b, e > |j ∈
[ni],b ∈ Start(i, j), e ∈ End(i, j),b < e} where,

Pre(i) = {⟨bi j ,bi j + k⟩|j ∈ [ni],k ∈ [ei j − bi j]}
Post(i) = {⟨bi j + k, ei j ⟩|j ∈ [ni],k ∈ [ei j − bi j]}

Start(i, j) = {bi j ,bi j + 1, ..., ei j − 1}
End(i, j) = {bi j + 1,bi j + 2, ..., ei j }

Start(i) =
ni⋃
j=1

Start(i, j), End(i) =
ni⋃
j=1

End(i, j)

For example, if a segment contains frame 1 through 3, then the above
four sets are: Pre = {⟨1, 2⟩, ⟨1, 3⟩}, Post = {⟨1, 3⟩, ⟨2, 3⟩}, Start =
{1, 2} and End = {2, 3}. And the valid ranges are: Pre × Post =
{{⟨1, 2⟩, ⟨1, 3⟩}, {⟨1, 2⟩, ⟨2, 3⟩}, {⟨1, 3⟩, ⟨1, 3⟩}, {⟨1, 3⟩, ⟨2, 3⟩}} and
Start ⊗ End = {{⟨1, 2⟩}, {⟨1, 3⟩}, {⟨2, 3⟩}}. Because we are looking
at one phoneme here (i = 1), we omit i from the equation. We can
assume these sets are ordered for simplicity.

Now the task becomes selecting a subset of these valid ranges to
minimize the objective function. First we prepare a minimal cost
table: for each phoneme i , we create a note for each of the elements in
the above 4 sets, Pre(i), Post(i), {Start(i, j)}j and {End(i, j)}j . Let
F (Pre, i, j) be the corresponding frames of j-th element in set Pre(i)
and Mpre,i, j be its minimal cost. We do the same for Post, Start
and End. Then we can derive the following dynamic programming
algorithm that selects a transition path through the table that
combines ranges to obtain a minimal costM :
For Start and Pre, their preceding ranges are always from the

previous phoneme. Therefore, the minimal costM is defined to be
the smallest of all their preceding ranges’ minimal costsM plus con-
catenation cost C . If the ranges are consecutive, the concatenation

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

96:12 • Jin, Z. et al

cost is 0. Here is the complete mathematical definition.

MPre,i, j = min(
min
t

{MPost,i−1,t +C(FPost,i−1,t , FPre,i, j)},

min
t

{MEnd,i−1,t +C(FEnd,i−1,t , FPre,i, j)})

MStart,i, j = min(
min
t

{MPost,i−1,t +C(FPost,i−1,t , FStart,i, j)},

min
t

{MEnd,i−1,t +C(Fpost,i−1,t , FStart,i, j)})

For each Post range, when combined with a preceding Pre range,
they form a valid range choice for the current phoneme. Then we
can use the corresponding frames to determine the similarity cost
and the duration cost. If Pre and Post are not consecutive, then
there will be a concatenation cost. Therefore,

MPost,i, j = min
t

{MPre,i,t + αS(qi , {FPre,i,t , FPost,i, j })

+ βL(qi , {FPre,i,t , FPost,i, j })
+C(FPre,i,t , FPost,i, j)}

in which the definition of α , β, S and L follows the same definition
used in Equation 1. Similarly, combining an End range with a Start
range forms a valid range choice that defines the similarity and
duration cost. Since there is only one range selected, there is no
concatenation cost. Therefore,

MEnd,i, j = min
t

{MStart,i,t + αS(qi , {⟨FStart,i,t , FEnd,i, j ⟩})

+ βL(qi , {⟨FStart,i,t , FEnd,i, j ⟩})}
Using back trace, we can extract the selected ranges that produce the
minimal cost. Figure 15 shows an example selection result. When
combined, the final selected frames form two consecutive: segments:
1-6 and 10-13.

Range Selection is more efficient than Unit selection. Suppose each
query phoneme lastsm frames and has n candidates. Unit selection
has a complexity ofO(mn2) per phoneme with the Viterbi algorithm.
In Range selection, however, the list of candidates per phoneme
contain O(n) rows and only 2 columns (Figure 15). Therefore, the
complexity of Range selection per phoneme is O(n2). Because of the
efficiency, we can mass produce selection results for all possible
values of α and β , which leads to alternative Syntheses (Section 4.5).

REFERENCES
Acapela Group. 2016. http://www.acapela-group.com. (2016). Accessed: 2016-04-10.
Ryo Aihara, Toru Nakashika, Tetsuya Takiguchi, and Yasuo Ariki. 2014. Voice

conversion based on Non-negative matrix factorization using phoneme-categorized
dictionary. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP 2014).

Floraine Berthouzoz, Wilmot Li, and Maneesh Agrawala. 2012. Tools for placing cuts
and transitions in interview video. ACM Trans. on Graphics (TOG) 31, 4 (2012), 67.

Paulus Petrus Gerardus Boersma et al. 2002. Praat, a system for doing phonetics by
computer. Glot international 5 (2002).

Christoph Bregler, Michele Covell, and Malcolm Slaney. 1997. Video Rewrite: Driving
Visual Speech with Audio. In Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’97). 353–360.

Juan Casares, A Chris Long, Brad A Myers, Rishi Bhatnagar, Scott M Stevens, Laura
Dabbish, Dan Yocum, and Albert Corbett. 2002. Simplifying video editing using
metadata. In Proceedings of the 4th conference on Designing interactive systems:
processes, practices, methods, and techniques. ACM, 157–166.

Ling-Hui Chen, Zhen-Hua Ling, Li-Juan Liu, and Li-Rong Dai. 2014. Voice conversion
using deep neural networks with layer-wise generative training. Audio, Speech, and
Language Processing, IEEE/ACM Transactions on 22, 12 (2014), 1859–1872.

Alistair D Conkie and Stephen Isard. 1997. Optimal coupling of diphones. In Progress
in speech synthesis. Springer, 293–304.

Srinivas Desai, E Veera Raghavendra, B Yegnanarayana, Alan W Black, and Kishore
Prahallad. 2009. Voice conversion using Artificial Neural Networks. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009).

Thierry Dutoit, Andre Holzapfel, Matthieu Jottrand, Alexis Moinet, J Prez, and Yannis
Stylianou. 2007. Towards a Voice Conversion System Based on Frame Selection. In
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2007).

G David Forney. 1973. The Viterbi algorithm. Proc. IEEE 61, 3 (1973), 268–278.
Kei Fujii, Jun Okawa, and Kaori Suigetsu. 2007. High-Individuality Voice Conversion

Based on Concatenative Speech Synthesis. International Journal of Electrical,
Computer, Energetic, Electronic and Communication Engineering 1, 11 (2007), 1617 –
1622.

François G. Germain, Gautham J. Mysore, and Takako Fujioka. 2016. EqualizationMatch-
ing of Speech Recordings in Real-World Environments. In 41st IEEE International
Conference on Acoustics Speech and Signal Processing (ICASSP 2016).

Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H Salesin.
2001. Image analogies. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 327–340.

Andrew J Hunt and Alan W Black. 1996. Unit selection in a concatenative speech
synthesis system using a large speech database. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 1996). 373–376.

Zeyu Jin, Adam Finkelstein, Stephen DiVerdi, Jingwan Lu, and Gautham J. Mysore.
2016. CUTE: a concatenative method for voice conversion using exemplar-based
unit selection. In 41st IEEE International Conference on Acoustics Speech and Signal
Processing (ICASSP 2016).

Alexander Kain and Michael W Macon. 1998. Spectral voice conversion for text-to-
speech synthesis. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP 1998). 285–288.

Hideki Kawahara, Masanori Morise, Toru Takahashi, Ryuichi Nisimura, Toshio Irino,
and Hideki Banno. 2008. TANDEM-STRAIGHT: A temporally stable power spectral
representation for periodic signals and applications to interference-free spectrum,
F0, and aperiodicity estimation. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP 2008). 3933–3936.

John Kominek and Alan W Black. 2004. The CMU Arctic speech databases. In Fifth
ISCA Workshop on Speech Synthesis.

Robert F. Kubichek. 1993. Mel-cepstral distance measure for objective speech quality
assessment. In Proceedings of IEEE Pacific Rim Conference on Communications
Computers and Signal Processing. 125–128.

Sergey Levine, Christian Theobalt, and Vladlen Koltun. 2009. Real-time Prosody-driven
Synthesis of Body Language. ACM Trans. Graph. 28, 5, Article 172 (Dec. 2009),
10 pages.

Jingwan Lu, Fisher Yu, Adam Finkelstein, and Stephen DiVerdi. 2012. HelpingHand:
Example-based Stroke Stylization. ACM Trans. Graph. 31, 4, Article 46 (July 2012),
10 pages.

Michal Lukáč, Jakub Fišer, Jean-Charles Bazin, Ondřej Jamriška, Alexander Sorkine-
Hornung, and Daniel Sýkora. 2013. Painting by Feature: Texture Boundaries for
Example-based Image Creation. ACM Trans. Graph. 32, 4, Article 116 (July 2013),
8 pages.

Anderson F Machado and Marcelo Queiroz. 2010. Voice conversion: A critical survey.
Proc. Sound and Music Computing (SMC) (2010), 1–8.

Lindasalwa Muda, Mumtaj Begam, and Irraivan Elamvazuthi. 2010. Voice recognition
algorithms using mel frequency cepstral coefficient (MFCC) and dynamic time
warping (DTW) techniques. arXiv preprint arXiv:1003.4083 (2010).

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. 2016. Wavenet:
A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016).

Amy Pavel, Dan B. Goldman, BjörnHartmann, andManeeshAgrawala. 2015. SceneSkim:
Searching and Browsing Movies Using Synchronized Captions, Scripts and Plot
Summaries. In Proceedings of the 28th annual ACM symposium on User interface
software and technology (UIST 2015). 181–190.

Amy Pavel, Björn Hartmann, and Maneesh Agrawala. 2014. Video digests: A browsable,
skimmable format for informational lecture videos. In Proceedings of the 27th annual
ACM symposium on User interface software and technology (UIST 2014). 573–582.

Bhiksha Raj, Tuomas Virtanen, Sourish Chaudhuri, and Rita Singh. 2010. Non-negative
matrix factorization based compensation of music for automatic speech recognition.
In Interspeech 2010. 717–720.

Marc Roelands and Werner Verhelst. 1993. Waveform similarity based overlap-add
(WSOLA) for time-scale modification of speech: structures and evaluation. In
EUROSPEECH 1993. 337–340.

Steve Rubin, Floraine Berthouzoz, Gautham J. Mysore, Wilmot Li, and Maneesh
Agrawala. 2013. Content-based Tools for Editing Audio Stories. In Proceedings
of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST
2013). 113–122.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

http://www.acapela-group.com

VoCo: Text-based Insertion and Replacement in Audio Narration • 96:13

Kåre Sjölander. 2003. AnHMM-based system for automatic segmentation and alignment
of speech. In Proceedings of Fonetik 2003. 93–96.

Matthew Stone, Doug DeCarlo, Insuk Oh, Christian Rodriguez, Adrian Stere, Alyssa
Lees, and Chris Bregler. 2004. Speaking with Hands: Creating Animated Conversa-
tional Characters from Recordings of Human Performance. ACM Trans. Graph. 23,
3 (Aug. 2004), 506–513.

Yannis Stylianou, Olivier Cappé, and Eric Moulines. 1998. Continuous probabilistic
transform for voice conversion. IEEE Transactions on Speech and Audio Processing 6,
2 (1998), 131–142.

Paul Taylor. 2009. Text-to-Speech Synthesis. Cambridge University Press.
Tomoki Toda, Alan W Black, and Keiichi Tokuda. 2007a. Voice Conversion Based

on Maximum-Likelihood Estimation of Spectral Parameter Trajectory. IEEE
Transactions on Audio, Speech, and Language Processing 15, 8 (2007), 2222–2235.

Tomoki Toda, Yamato Ohtani, and Kiyohiro Shikano. 2007b. One-to-many and many-
to-one voice conversion based on eigenvoices. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2007). IV–1249.

Tomoki Toda, Hiroshi Saruwatari, and Kiyohiro Shikano. 2001. Voice conversion
algorithm based on Gaussian mixture model with dynamic frequency warping of
STRAIGHT spectrum. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2001). 841–844.

Keiichi Tokuda, Yoshihiko Nankaku, Tomoki Toda, Heiga Zen, Junichi Yamagishi, and
Keiichiro Oura. 2013. Speech Synthesis Based on Hidden Markov Models. Proc. IEEE
101, 5 (May 2013), 1234–1252.

Steve Whittaker and Brian Amento. 2004. Semantic Speech Editing. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI 2004). 527–534.

ZhizhengWu, Tuomas Virtanen, Tomi Kinnunen, Engsiong Chng, and Haizhou Li. 2013.
Exemplar-based unit selection for voice conversion utilizing temporal information.
In INTERSPEECH 2013. 3057–3061.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 96. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Editing Interface
	3.1 Text-based Editor
	3.2 Alternative Syntheses
	3.3 Manual Editing

	4 Algorithms
	4.1 CUTE voice conversion
	4.2 Exchangeable Triphones
	4.3 Dynamic Triphone Preselection (DTP)
	4.4 Range Selection
	4.5 Alternative Syntheses

	5 Experiments and Results
	5.1 Synthesis Examples
	5.2 Mean Opinion Score Test
	5.3 Identification Test
	5.4 Human synthesis

	6 Conclusion and Future Work
	A Details of the Range Selection Algorithm
	References

