
Video Mosaics

Allison W. Klein1 Tyler Grant1 Adam Finkelstein1 Michael F. Cohen2

1Princeton University 2Microsoft Research

Abstract

We present a method for creating a video mosaic, a two-
dimensional arrangement of small source videos (tiles) that sug-
gests a larger, unified target video. We develop a distance mea-
sure to assess the match between source and target based on aver-
age color and also three-dimensional wavelet decomposition signa-
tures in the YIQ color space. We also introduce a dynamic pro-
gramming algorithm that automatically chooses the smaller tiling
sub-sequences from a large collection of candidate source video se-
quences to best match the target video. After the selection process,
the color in the tiling videos is automatically adjusted to better sug-
gest the target video. Finally, our method also supports the use of
different tiling shapes to create an additional level of visual interest.

Keywords: Animation, Temporal Aliasing, Video, Non-
photorealistic Rendering

1 Introduction

Many artists have exploited people’s fascination with layered
imagery – images composed of individually recognizable elements.
At the end of the 16th century, Giuseppe Arcimboldo created
human portraits from collections of semantically similar objects
such as fruits, birds, or fish [Mataev and Mataev 2001]. In the
early 20th century, Arthur Mole took photographs in which he used
thousands of individuals as human pixels to form images of famous
people or objects [Zucman 2001]. The artist Chuck Close paints
huge, recognizable human portraits composed many small abstract
tiles [Wye 1998].

A visually layered medium has recently emerged in the digital
domain: image mosaics forms a large image by arranging (and
sometimes adjusting the colors in) a collection of small images (e.g.
Finkelstein and Range [1998], Silvers and Hawley [1997]).

Our goal is to extend image mosaics into a third dimension (time)
by creating video mosaics out of a collection of small, tiling videos.
(See Figure 1 for an example frame from a video mosaic, as well as
the accompanying video clips for the dynamic version.) Because
video mosaics are visually intriguing and can contain multiple
layers of meaningful images, they are applicable for a variety of
artistic and commercial uses.

Figure 1: A frame from a video mosaic

Figure 2: Schematic of video mosaic creation

The challenges we address are:

• Finding a suitable spatiotemporal arrangement of tiling videos
that best match a given target video

• Maintaining a degree of temporal coherence

• Working within the limited spatial resolution available in
video

• Performing a suitable color correction on selected tiles to
mimic the target

Figure 2 shows a high-level schematic of our process. We take
as inputs a target video and a collection of other source videos. We
then match the source videos to the target in predefined regions, or
tiles, in the 2D image plane and along the time axis. The output
from this step is then color corrected to achieve a better visual
balance between the large (target) and small (tiling) images.

The crux in creating video mosaics lies in the matching step:
specifically, how to resolve the inherent tension between achieving
good image matches and maintaining frame-to-frame coherence.
Randomly assigning subsequences from the tiling videos to the

Figure 3: Random (left) vs. selected tiles (right), and before color
correction (top) vs. color corrected (bottom). Note that the random
tiles are almost completely washed out in the color corrected
version since the original selection of tiles has no resemblance to
the target.

target video may not provide visually satisfying results because
there is little color or edge matching, and so the color correction
step can totally overwhelm the original source videos. (See Figure 3
and associated videos.)

Therefore, we have chosen to build an algorithm capable of
efficiently selecting subsequences that best match the target. An
obvious solution might be to simply perform frame-by-frame
matches. First, pick a measure of image distance. Next, for each
tile area in a specific frame of the target video, calculate its distance
with every frame in the tiling collection, and then pick the closest
frame. Such an approach will cause any individual frame of the
resulting video mosaic to match the target as well as possible.
However, if the target video area is almost static, the resulting video
may contain the same source frame over and over. Even worse,
if the target video area is dynamic, different tiling frames will be
chosen for each target frame, and, at 30 frames per second, the
resulting video mosaic will be noisy and unpleasant.

A better solution is to pick out the best subsequences from the
collection of tiling videos to provide both visual matching and
temporal stability. Searching through the entire space of possible
subsequences and possible alignments with the target tile sequence
is a computationally challenging global optimization problem, and
one of the technical contributions of this paper is an algorithm to
efficiently solve this optimization problem. We also present an
efficient method for measuring the differences between two image
sequences. Based on wavelet coefficients, the measure is sensitive
to color, positional, and temporal information.

General contributions of this paper are:

• A new medium for layered video imagery.

• Simple and flexible difference measures between video se-
quences.

• A framework for efficiently finding optimally matching video
sub-sequences while maintaining coherence.

The paper organization is as follows: Section 2 discusses related
work. Section 3 presents our solution to the optimization problem,
while Section 4 presents some video mosaics created using our
method. Finally, Section 5 concludes with a discussion and some
possible future work.

2 Related Work

Our work is most directly related to prior work in image mosaics,
non-photorealistic video, and algorithms for gene sequence com-
parisons in computational biology.

The work of Finkelstein and Range [1998] extends traditional
halftoning methods and the work of Ostromoukhov and Her-
sch [1995] with a fully automatic process for color correcting an
image mosaic to more closely resemble its target. Because our sys-
tem uses this color correction technique, we discuss it in more de-
tail in Section 3.3. Selecting the best source image for each tile
of the destination image is a key challenge in creating image mo-
saics. Finkelstein and Range use the wavelets based algorithm of
Jacobs et al. [1995] as one solution. We have a similar challenge
per video frame, and we use a variation of this technique, discussed
in Section 3.

As noted earlier in [Finkelstein and Range 1998], image and
video mosaics may be thought of as a form of non-photorealistic
rendering using images as opposed to brush strokes. Litwinow-
icz [1997] and later Hertzmann and Perlin [2000] described algo-
rithms for painterly rendering of video, using optical flow to make
brush strokes follow pixels, thereby attempting to provide frame-
to-frame stroke coherence while minimizing the “shower door” ef-
fect. In contrast, video mosaics exploit the shower door effect: the
tiled nature of the result is part of the appeal of this form of lay-
ered imagery. However, as with painterly rendering of video, we
must provide a form of frame-to-frame coherence; we favor longer
matching video clips over shorter clips. It might be interesting to
try tilings that somehow reflect and move with important features
in the target video, but we have not explored this here.

Finding good sequence matches over the entire set of possibili-
ties is the core computational problem for us. For their video tex-
tures work, Schödl et al. [2000] find pairs of frames within a se-
quence that are good matches, using an L2 distance metric. These
pairs are then used as jumping points to generate a continuous,
varying stream of images from that single original sequence. In
contrast, we seek matches between portions of a single target video
and lots of possible source videos. Computational biology algo-
rithms for gene sequence comparison inspired our dynamic pro-
gramming solution. The Needleman-Wunsch [1970] algorithm cal-
culates optimal global alignments between two gene sequences,
treating them as strings in which each nucleotide is a character.
A score is assigned for each character-to-character comparison –
positive scores for exact matches and some substitutions, negative
scores for other substitutions, deletions, and the insertion of spaces.
The Smith-Waterman algorithm [1981] is similar, but sequence
comparisons are local, not global [par 2001]. Among the differ-
ences between these algorithms and ours is that the Needleman-
Wunsch and Smith-Waterman algorithms are only trying to match
pairs of sequences, while we are trying to match many sequences
to a single query sequence. In addition, we cannot allow a target
frame to be deleted or matched to a space (an empty frame), both
acceptable operations in the other two algorithms.

Finally, our work should not be confused with video mosaics
from the computer vision community (e.g.[Szeliski 1996]). These
papers are concerned with stitching together many videos of a
single scene to produce a high-resolution video with a wide field
of view. This stitching process is designed to minimize or smooth
out individual differences in the components videos. In contrast,
we benefit from the individual differences in our tiling videos by
stitching them together to recreate an entirely different video.

3 Creating a Video Mosaic

Referring back to Figure 2, creating a video mosaic involves the
following steps:

1. Select a target video, T .
2. Select a corpus of video sources, S.

3. Select a tiling structure. This may be a simple as an n × n
grid of rectangles or a more complex tiling pattern.

4. For each tile of the target video:

(a) For each frame of the target video:

i. Select the best frame Sj from the source videos
matching the current tile in the current frame of T .

ii. Color correct Sj to mimic the current tile in the
current frame of T .

iii. Paste Sj into the tile for output.

Obviously, the selection of the best frame from the source videos
for each tile of the output video is a key step in the process. The two
relevant questions are: how should we define best, and how should
we efficiently find the best frame from amongst all possible source
frames? We will address each of these questions in turn. We also
will discuss the color correction step in some detail.

3.1 Defining the Best Source Frame

There are a number of considerations in defining the best match
between a tile in the target video clip and all possible sub-sequence
arrangements of source videos, including:

1. Average color

2. Distribution of color
3. Temporal (motion) aspects

4. Temporal coherence in the tiles

The first three criteria refer to how well does a possible frame from
the source videos match the tile area of the target. The fourth
criterion indicates that we may want to choose the sequential source
frames for a particular tile over time to avoid having the tile exhibit
lots of jumping. In other words, each tile should display a video, not
simply a random series of frames. Balancing these considerations
while delivering an efficient solution to this complex optimization
problem is at the heart of this paper.

Color Matching

The first two criteria require choosing a measure of the color
difference between any possible source frame and a given tile of
a target video frame. A simple choice would be an L2 norm (i.e.,
sum of squared pixel differences). However, the cost of pixel-
wise comparisons between each tile and every source frame is
very expensive. (Our initial experiments indicate that the cost of
computing video comparable in size to those found in Section 4
would take on the order of months using L2.)

Another option is to first down-sample the images and then use
the L2 measure on these lower resolution images. However, this
has the drawback that small but important details may be lost.
Instead we use a slightly modified implementation of the fast image
querying system created by Jacobs et al. [1995]. Given a rough
hand drawing, Jacobs et al.were able to quickly compare a large
corpus of possible matches to find the image the user was seeking.
Our problem is similar: we are given a target tile and want to rank
possible matches from amongst the corpus of source frames.

The algorithm can be described as follows: first, we perform
a standard two-dimensional Haar [Stollnitz et al. 1996] wavelet

decomposition on each color channel of every image in our corpus
of source videos, S. Then, for each color channel, we store just the
overall average color plus the indices and signs (+ or -) of the 30
largest-magnitude wavelet coefficients in that channel. We use 30
coefficients because this value provides good results without using
creating too high a burden in terms of memory usage; this value
is also relatively close to the value that Jacobs et al.found to be
optimal for scanned queries (40 coefficients). The indices for all of
the database images are then organized into a single data structure
optimized for searching. This data structure is a set of six arrays,
called the search arrays, with one array for every combination of
sign (+ or -) and color channel (such as Y, I, and Q).

As an example, let Dc
+ denote the “positive” search array for

the color channel c. Each element Dc
+[i, j] of this array contains

a list of all images having a large positive wavelet coefficient
[i, j] in color channel c. Similarly, each element Dc

−[i, j] of the
“negative” search array points to a list of images with large negative
coefficients in c. The search arrays are created as a preprocess for a
given corpus of source videos and then stored on disk.

Constructing these search arrays will enable us to efficiently
measure the “distance” between a given tile in our target video
and each source video frame by allowing us to quickly compare
how many significant wavelet coefficients the query has in common
with potential targets. We perform the same wavelet decomposition
described above on the target tile, again keeping just the overall
average color plus the indices and signs of the largest 30 coefficients
in each color channel. We construct a distance measure by first
computing the differences between the target tile’s average intensity
in each channel c and those of the source video images. Next,
for each of the 30 non-zero, truncated wavelet coefficients in the
target tile, we decrement the distance score for all source videos
that share a matching coefficient. By only counting matches (rather
than mismatches) we can perform the count using a list traversal
that only touches the relevant images.

We compute the distance measure in each of three color chan-
nels, YIQ (luminance plus two chromaticity channels). Video sig-
nals are typically encoded in YIQ to allow efficient compression
that takes into account the differing perceptual sensitivity of the
human visual system to each channel. We use this fact as well to
weight the relative importance of each channel with ratios 8:3:1, the
ratios of bandwidths assigned to these channels in NTSC broadcast
television. There are significantly different ranges and variations of
the value in each of the three YIQ channels, and also between the
average colors and wavelet counts. We thus determine 6 individ-
ual normalization factors for the average differences and wavelet
match counts in each of the three channels. These are based on the
observed standard deviations in a sampling of video source; σaY ,
σaI , σaQ are the observed standard deviations of the average col-
ors, while σwY , σwI , σwQ are the observed standard deviations
in the number of wavelet matches for each color channel. The final
weighting of the contributions also includes a user set value, Wa, to
indicate the relative importance they want to give to average color
vs. the structural aspects derived from the wavelet coefficients.

Putting this all together we get:

Dist0 =
∑

Y,I,Q

Wc

(
Wa

σa
|Ct − Cs| − 1

σw
MatchCount

)
(1)

where: Wc are the relative weights (8, 3, and 1) of the color
channels, Wa is the factor to adjust the relative importance of the
overall color average as compared to the wavelet coefficients (this
factor can also be modified per color channel), Ct and Cs are the
average colors of the target and source, and MatchCount is a
count of the number of matches (in both index and sign) of the 30
largest wavelet coefficients. Each term is taken to have components
in each of the YIQ channels.

Temporal Matching

The wavelet formulation lends itself naturally to also accounting
for our third criterion, matching the temporal characteristics of the
target and source. Rather than wavelet transforming each frame
independently, we run a 3D wavelet transform on a small window
in time on both the source and target videos. For efficiency, we
chose to look at a 16-frame window. We also look only at the top
5 spatial levels of coefficients, thus in essence we are matching a
16×16 spatial resolution ×16 frames in time block of video. As in
Equation 1 above, the final distance measure is based on the average
color and number of matches in the largest 30 coefficients in each of
the YIQ color channels across this spatiotemporal block of video.

Maintaining Coherence

Finally, we address the fourth criterion, maintaining coherence
from frame to frame of the result. This requires a different type
of measure since, unlike the previous measures, it can not be
formulated as a separate decision for each frame of the result.

To minimize a noisy solution, we reward the choice of a source
frame if it is the frame that immediately follows the one chosen for
the previous output frame. Or conversely, we penalize switching
the choice of source video from frame to frame. Thus, there is one
addition term for the final distance measure:

Dist = Dist0 + SwitchCost(k, j) (2)

where the SwitchCost is 0 if frame k immediately follows frame
j in the source. Otherwise, SwitchCost is a user modifiable
constant.

3.2 Finding the Best Matching Sequence

With the introduction of the switching cost, finding the best source
video frame to tile a target frame changes from a local search (over
the current frame) to a global one involving the previous frame, and
by extension, the entire target video.

The global optimization problem can be stated as minimizing
the sum of final distances over all tiles, over all target frames, and
over all possible source frames for each tile. Since there is no inter-
tile term in the distance measure we can address the optimization
problem for a single tile and then apply this independently for each
tile. More formally, for each tile, we seek some sequence of frames
U = {U0, U1, . . .}, where the length of U , |U |, equals |T |, the
length of the target video, and each frame Ui ∈ S, the collection of
all source frames. We seek the minimum

U∗ = min
U

∑
i

Dist(Ui, Ti) (3)

We solve the global optimization problem for each tile with a
dynamic programming approach. The approach involves building a
table (see Figure 4) that has as many rows as frames in T , |T |, and
as many columns as the total number of frames in all the source
videos, |S|. Each entry V alue(i, j) of the table will contain the
minimum total cost of all possible sequences from U0 to Ui that
end with the jth source frame. Thus:

V alue(i, j) = Dist0(Ti, Sj) + MinPath(i, j) (4)

where

MinPath(i, j) = min
k=1···|S|

(V alue(k, j−1)+SwitchCost(k, j))

We also save the source index of the minimum value from the
previous row, kmin. This reduces searching for a minimum path

Figure 4: Dynamic programming, for each tile, to select best source
frames for each target frame. Each cell of the table contains the
value of minimum cost path to that cell, plus a pointer to the cell in
the row above that generated the path. Path (a) does not incur the
SwitchCost since the source frames are in sequence, unlike path (b).

over all sources frames (the term mink=1···|S| above) to a choice
between two options. The minimum path must continue from either
kmin or from k−1, the previous frame in the source video, in which
case we pay no switching cost. The computational cost of filling in
the table for each tile is thus O(|T |×|S|)×O(Dist0calculation).

In addition to storing the V alue at each location in the table, we
also store k, the source index of the previous frame that led to this
minimum entry. When we have completed filling in the table, the
optimal sequence, U∗, is found simply by choosing the minimum
entry in the last row of the table and then walking back up through
the table following the k index values.

3.3 Color Correction

Given U∗ for each tile we can now display a video mosaic created
by simply playing these sequences for each tile. Although there are
no pixels derived directly from the target video, this new video will
mimic the target to some extent. As a final step, we now perform
a color correction that will change each pixel from U∗ to more
closely match the target while still maintaining the integrity of the
source videos.

Our goal is to adjust the pixels in the source image so that their
local average color matches that of the target. We use the method
of [Finkelstein and Range 1998], a simple scheme motivated by
digital half-toning. The objective is to match the color of the tiling
frame to the color of the region in the target frame covered by the
tile. If the target frame has a constant color x across this region,
then the tiling frame should be adjusted so that its average color a
is equal to x. If the brightness of the target frame ranges from dark
on the left side to light on the right side, then the brightness of the
tiling frame should be adjusted to match this gradient as well. In
addition, features in the tiling frame should be preserved as much
as possible.

The solution is a set of correction rules specified by [Finkelstein
and Range 1998]. These rules map a color in the frame to a color
in the final mosaic so that the region of the mosaic covered by the
tiling frame will have the desired average color a. We perform a
linear shift and scale of the histogram of colors in the source image
so that the average color of this adjusted source image is the color
of the target pixel. Specifically, if we can use only a shift without
sending any of the colors in the tile out of range, then we apply
this shift. Otherwise, we shift the color values as much as possible,
then scale the resulting colors until the desired average is attained.
We apply this operation for every pixel in every tile in the mosaic.
For each of these pixels, the color of the corresponding pixel in
the original target frame is supplied as the desired average color
a. Note that this operation is not simply a blend of the source
and target pixels, and in fact achieves a much better local match
to the target color while maintaining the integrity of the source

Figure 5: A simple Video Mosaic in which the same video is used
as both source and target.

tile. By having each pixel’s value be shifted or scaled according
to the value of the corresponding pixel in the original target frame,
areas of complex color variation in the original frame are preserved.
Similarly, areas of constant color are also preserved. For further
details, see [Finkelstein and Range 1998].

4 Results

We present a number of results from the Video Mosaic system. All
figures have an accompanying video which readers are encouraged
to view.

Figure 5 shows a simple but appealing video mosaic - tiling
a video with itself. Part of the appeal comes from the fact that
the motion in the smaller videos mirrors that in the larger videos.
Because this video requires no real computation to generate, it only
takes a few minutes.

The remaining figures in the paper were generated with the
method described in Section 3. All results were generated on a
PentiumIII 933MHz machine with 512MB of RAM. We used three
collections of source videos. The first, hereafter referred to as
the “TV” footage, was 1 hour long. It was captured from MTV,
VH1, and Comedy Central. The preprocess to extract and store the
indices of the 30 largest wavelet coefficients took 33 minutes. The
second corpus, hereafter referred to as the ”documentary,” consisted
of 45 minutes of footage from a nature documentary about the
Florida Everglades and took 23 minutes to preprocess. The final
collection of source videos, which required 17 minutes for the
wavelet coefficient preprocessing, was 30 minutes of video footage
taken on and around the Princeton University campus. All video
mosaics were generated using the TV footage as source videos

Video Length Computation Switch Wa

Mosaic (secs) Time (h:min) Cost

Figure 1 10 3:47 AvgDist× 1.0 1.0
Figure 6 8 3:15 AvgDist× 1.0 1.0
Figure 9 10 3:47 AvgDist× 1.0 20.0
Figure 10 10 3:47 AvgDist× 1.0 1.0
Figure 11 10 2:58 AvgDist× 3.0 1.0
Figure 13 11 4:47 AvgDist× 2.0 1.0
Figure 14 10 5:00 AvgDist× 3.0 1.0

Table 1: Video mosaic generation statistics.

Figure 6: Video Mosaic after tile selection but before color
correction. (Original frame is in upper right corner). Note how
the automatically selected source frames help delineate shapes in
the original.

Figure 7: Same frame as Figure 6 but after color correction.

except for Figures 11 and 12 which used the documentary footage.
Some timing statistics for the video mosaics, plus values for

SwitchCost and the weight given to average color matching
versus edge matching (Wa from Section 3), can be found in Table 1.
The AvgDist referred to as part of the SwitchCost is the average
Dist0(Ti, Sj) value calculated across the dynamic programming
table. For all of these video mosaics, the color correction took only
an additional 2 minutes.

Figure 6 and Figure 7 show the sequence from the original video
(the upper right corner of Figure 6), to a video mosaic created based
on edge matching but without color correction, to the final, color-
corrected video mosaic. The mosaic is 8 seconds long, contains 400
tiles in a 20 by 20 grid, and uses the TV footage as source. Figure 6
shows how our method automatically chooses source frames that
delineate shapes in the target video frame.

Figures 8, 9, and 10 show the difference between weighting
the distance metric towards color versus edge matching. Note
how the mosaic created with an emphasis on color matching (the
left-hand image in Figure 8) looks better before color-correction,
but shows very noticeable grid artifacts in the color-corrected
version, Figure 9. In contrast, the video mosaic created using

edge matching, the right-hand image in Figure 8, does not yield as
pleasing results without color correction, but with color correction
offers a smoother final image.

Figures 11 and 12 show additional results, both generated using
the nature documentary as both source and target video. We
particularly like the idea of using thematically related footage

Figure 8: Two results before color correction. Users may choose to
emphasize the average color match (left) or wavelet matches (right),
yielding different results. Original is at top.

Figure 9: After color correcting the video mosaic emphasizing
average color matches.

Figure 10: After color correcting the video mosaic emphasizing
wavelet matches. Note that color correction adjusts colors while
maintaining the edge/smoothness.

for both sources and targets. We take this idea a step further
in Figure 12 by using a leaf-like pattern as the tiling pattern.
Figures 13 through 16 show some additional results.

5 Conclusion

We have presented a system for creating video mosaics – an
arrangement of small videos that suggests a larger, unified video
sequence. We solve the main challenge of providing both visual
matches and temporal stability in a computationally efficient way,
while still being flexible enough to accommodate a variety of
matching criteria.

There are many more possibilities for altering the final look of
the video mosaic:

• Different tile shapes and animated tiles: There is no reason
the tiles need to be simple rectangles. In fact, if one segments
the target video into semantically meaningful regions, the tiles
shapes could be modified to follow these region boundaries.

• Allowing temporal distortions: Tiling sequences to be
temporally distorted (slowed down or sped up) to achieve
better matches. Finding the best temporal distortions presents
an interesting problem.

• Different matching criteria: Doubtless, there are other
matching criteria worth investigating. Given a large enough
corpus of source video, one might also score the match based
on semantic information.

• Automated video collection: Not surprisingly, a large,
diverse collection of source video footage produces better
results since there are more possibilities for finding a good
match. However, we found getting good input videos to be
difficult. For example, collecting footage from television is
often unsatisfying because cuts often happen too frequently
(for example, every 2 or 3 seconds on a station such as MTV)
or the subject matter itself does not change frequently enough
(you get an hours worth of elephants on a PBS nature special).
An automated process might be able to look through large
volumes of video footage and segment out contiguous shots
of desired length.

• Incorporating video textures: Another way of collecting
good tiling footage may be to synthesize longer sequences
from shorter ones using the video textures framework [Schödl
et al. 2000].

• Infinite mosaics: Designing infinite, circular video mosaics
would provide fun results. The end goal would be a video
mosaic that allows you to zoom into one of the tile images
to get another video mosaic and then repeat this process until
you are finally zooming back into the original mosaic.

• Parallelism: Our approach should be easily parallelized,
since each tile is independent of the others in both matching
and color correction.

Acknowledgements

This work was supported in part by a Microsoft Research Fellow-
ship.

Figure 11: A video mosaic of some young girls walking. Note how
a fire sequence from the nature documentary has been used to tile
the sandy path.

Figure 12: Video mosaic using non-rectangular tiles. Tile mask in
lower left.

References
FINKELSTEIN, A., AND RANGE, M. 1998. Image mosaics. Proceedings of RIDT

1998, 11–22.

HERTZMANN, A., AND PERLIN, K. 2000. Painterly rendering for video and
interaction. Computer Graphics (Proceedings of NPAR 2000), 7–12.

JACOBS, C. E., FINKELSTEIN, A., AND SALESIN, D. H. 1995. Fast multiresolution
image querying. Computer Graphics 29, 277–286.

LITWINOWICZ, P. 1997. Processing images and vdeo for an impressionist effect.
Computer Graphics (Proceedings of SIGGRAPH 97) 31, 407–414.

MATAEV, O., AND MATAEV, H., 2001. Olga’s gallery. http://www.
abcgallery.com/A/arcimboldo/arcimboldo.html.

NEEDLEMAN, S. B., AND WUNSCH, C. D. 1970. A general method applicable to
the search of similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology 48, 443–453.

OSTROMOUKHOV, V., AND HERSCH, R. D. 1995. Artistic screening. Computer
Graphics (Proceedings of SIGGRAPH 95) 29, 219–228.

2001. Paracel algorithm primer: similarity searching algorithms. http://www.
paracel.com/faq/faq_algorithm_primer.html.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video textures.
Computer Graphics (Proceedings of SIGGRAPH 00) 34, 489–498.

Figure 13: A video mosaic of students on a college campus.

Figure 14: Video mosaic of a student walking through a garden.

SILVERS, R., AND HAWLEY, M. 1997. Photomosaics. Henry Holt & Company, Inc,
New York, New York.

STOLLNITZ, E., DEROSE, T., AND SALESIN, D. H. 1996. Wavelets for Computer
Graphics. Morgan Kaufmann, San Francisco, California.

SZELISKI, R. 1996. Video mosaics for virtual environments. IEEE CG&A (March),
22–30.

WATERMAN, M. S., AND SMITH, T. F. 1981. Identification of common molecular
subsequences. J. Mol. Biol. 147, 195–197.

WYE, D., 1998. Museum of modern art website. http://www.moma.org/
exhibitions/close/.

ZUCMAN, G., 2001. Artboy. http://www.ioc.net/˜artboy/P/mole.
html.

Figure 15: A sequence of three images taken from the walking girls
mosaic.

Figure 16: A sequence of three images taken from the college
campus mosaic.

