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Abstract

A long-standing challenge in geometric modeling is providing a natural, intuitive in-
terface for making local deformations to 3D surfaces. Previous approaches have provided
either interactive manipulation or physical simulation to control surface deformations. In
this paper, we investigate combining these two approaches with a painting interface that
gives the user direct, local control over a physical simulation. The “paint” a user applies
to the model defines its instantaneous surface velocity. By interactively simulating this ve-
locity, the user can effect surface deformations. We have found that this painting metaphor
gives the user direct, local control over surface deformations for several applications: cre-
ating new models, removing noise from existing models, and adding geometric texture to
an existing surface at multiple scales.

Key words: Geometric modeling, modeling interfaces, surface deformations, direct
texture painting.

1 Introduction

Creating intuitive geometric modeling interfaces is a fundamental problem in com-
puter graphics. The need to manipulate complex geometric models arises in a vari-
ety of areas from making movies and video games to designing cars and buildings.
The ultimate goal of any interface is to empower 3D modelers with direct control
of a model’s shape, freeing them from understanding the underlying machinery.
However, it is inherently difficult to manipulate 3D objects with typical 2D devices
such as a mouse and computer screen. This, in part, follows from the difficulty of
specifying locations and directions of motion inℜ 3 from cursor activity restricted
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(a) Painted Base (b) Painted Intermediate (c) Result
Model Model

Fig. 1. Many natural objects, like this blueberry muffin, are easy to model with interactive
physical simulation. (a) In our system the user paints a base model in order to control the
instantaneous velocity of its surface where red/green paint correspond to positive/negative
speed (with respect to the surface normal). (b) Next, the user interactively simulates this
surface velocity until the overall shape of the muffin is achieved. Then, the user adds more
paint to this intermediate model to further deform its surface. (c) After several iterations of
painting and simulating, we produce the final model.

to the 2D image plane. Another difficulty is allowing a user to specify complex,
large-scale changes to a model’s surface that might require the creation/positioning
of thousands of vertices. Moreover, many interfaces lack a physically intuitive con-
nection between editing the shape of the object and the human modeler’s activity.

In this paper, we describe a novel modeling interface that gives the user direct, local
control over a model’s surface. The key idea is a metaphor that allows the user to
“paint” directly onto the model as a way of expressing surface deformations. These
deformations are achieved by assigning an instantaneous velocity to the model’s
surface as a function of its paint and then interactively simulating the implied sur-
face motion over a user-controlled time interval.

Figure 1(c) shows a model created using our painting interface. The surface of this
blueberry muffin is quite complex and it’s not clear how one would use existing
modeling tools to create both its overall shape and the detailed cracking along its
top. However, the muffin is the result of a physical process: as it cooked, the surface
of hot dough expanded outward from the top of a cylindrical solid. In this context,
the muffin’s overall shape could be captured by simulating this cooking process in
terms of surface velocity. This is the approach we take in our modeling interface.
We begin with a simple base model and paint its surface in order to produce the
desired change to its shape (Figure 1(a)). After interactively simulating this mo-
tion and obtaining the muffin’s overall shape, we add more paint that will create
ridges along the base of the muffin, form bulges for the blueberries, give the sur-
face the texture of cooked bread, and produce an irregular crack along the muffin’s
top (Figure 1(b)). We alternate between painting and interactively simulating until
we arrive at the model shown in Figure 1(c).
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The main advantage of our approach is in exposing the inherently intuitive nature
of physical simulation as a modeling tool through a direct painting interface. We
accomplish this by establishing a metaphor that allows the user to “paint” the sur-
face’s instantaneous velocity which is then simulated to gain the desired change
to the model’s shape. By applying this type of paint using traditional 2D brushes
to a model’s 3D surface, the user can quickly and easily express complex surface
deformations.

Our contributions are establishing this painting interface and developing a proto-
type system based on dynamic polygonal meshes and the level set model. The rest
of this paper focuses on the definition of paint and the associated user interface
before presenting our results.

2 Related Work

We envision our painting interface as being one tool within a comprehensive mod-
eling package. Clearly, there are advantages to modeling with other techniques that
our approach cannot match. However, we find our system useful for quickly and
accurately adding detail at various scales, locally smoothing noisy models, and for
creating certain stylized scenes.

Some of today’s most powerful modeling interfaces directly expose a mesh of ver-
tices to the user. This mesh acts as either a representation of the surface itself or
as control points for a NURBS surface (1) or subdivision surface (2). Through di-
rect manipulation of these vertices, a user can create smooth, analytical shapes.
Adaptive editing techniques have also been investigated (3; 4). Alternatively, mov-
ing control points can allow the user to deform the surface by deforming the space
around it (5; 6; 7). For all their advantages, however, this class of modeling inter-
faces has the drawback of burdening the user with the task of positioning control
points, adjusting weights, and inserting knot vectors. Moving individual control
points can sometimes result in unexpected changes to the surface resulting in the
user having to position many control points to effect detailed changes to a model.
Moreover, direct manipulation of free-form deformations (8) requires solving a
minimization problem, making this technique too expensive for interactive editing
of large models. Our system gives the user direct control over a physical simulation
thus offering a simpler interface for expressing surface deformations. By providing
adaptive refinement of the underlying mesh, our system elegantly handles deforma-
tions at any level of detail while still permitting large-scale surface changes.

Virtual sculpting interfaces are available in many modeling systems (9; 10; 11;
12; 13; 14; 15; 16). Although sculpting offers an intuitive modeling tool for any-
one accustomed to forming real objects from clay or wax, they require the precise
positioning of 3D virtual tools to deform the model’s surface. Consequently, mak-
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ing detailed changes to a model can be error-prone and time-consuming. Moreover,
controlling the direction and magnitude of the deformation can often prove difficult.
It is our belief that directly painting the 3D surface to define its temporal behavior
before interactively simulating its motion offers a more controllable, powerful way
of expressing surface deformations than applying external forces.

A third class of modeling interfaces involves physically based deformable mod-
els (17). Generally speaking, these are surfaces that minimize an energy func-
tional derived from a physical description of the model’s properties (e.g. elastic-
ity, plasticity, etc.). Much like virtual sculpting interfaces, interactive editing of
deformable models generally involves positioning a virtual tool near the model’s
surface that applies external forces, which disrupt the energy functional in a con-
trollable way (18; 19; 20; 21; 22). As with virtual sculpting, these modeling inter-
faces also suffer from their difficulty at editing large, complex models at various
levels of detail with 3D virtual tools. Also, the complexity of the dynamics can
sometimes make the computations too expensive for interactive manipulation. Al-
ternatively, using purely geometric approaches to deform models has been investi-
gated (23; 24; 25; 22). Although these techniques offer direct manipulation of the
model’s surface, they too lack powerful control over fine detailed alterations and
fail to easily support various levels of resolution.

Our approach also relates to other work that investigates physically simulating sur-
face velocity as a modeling technique. One such approach, (26), provides a set
of surface velocities for smoothing, embossing, and globally diffusing a level set
model (27). However, the user is asked to construct a surface speed function inℜ 3

and can control the part of the surface to be deformed only by providing a super-
ellipsoid region of influence. Although we agree that simulating surface speed is a
natural way to affect shape changes, this interface lacks a physically intuitive con-
nection between the speed function and the surface to be deformed. We address this
problem by specifying the velocity function directly on the surface.

Using simulation as a modeling tool was also examined in (28) where they describe
a system for procedurally authoring solid models. They, in fact, describe “painting”
onto a surface as a means of directly modulating surface velocity, a source of inspi-
ration for this work. They also explain how to generate turbulent surface layers by
procedurally modulating the velocity of the current surface. However, their system
does not develop the idea of exposing this painting metaphor as the user’s primary
modeling tool nor does it address issues of interactivity.

There has been previous work in using 2D painting metaphors to manipulate 3D
models. ThePointshop 3D system (29) allows interactive editing of a point-based
representation. The user can specify normal displacements using either a paint
brush to modulate the offset distance or with virtual chisel tools. The work of (30)
uses a painting metaphor to create and manipulate a layered depth image. Generl-
izing Adobe Photoshop’s (31) approach to 2D image editing, their system supports
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editing at different layers of the scene either directly or with aclone brushing tool.
Furthermore, (32) explores the potential of describing the surface of a height-field
by directly specifying a 2D shaded image from a known viewpoint. After construct-
ing the shaded image for known lighting conditions using traditional 2D image
editing techniques, the surface can be extracted using a shape from shading vision
approach. These techniques differ from our approach in that they do not use a paint-
ing interface to control a physical simulation. As a result, their changes are largely
restricted to a small class of geometric deformations comprised mainly of normal
offsets.

Lastly, we note the similarities between our interface and the use of displacement
maps (33). Several commercially available packages (34; 35) even allow the user
to directly “paint” displacement maps onto the surface of an object. Much like
these techniques, our painting interface can be used to add detail to an existing
model. One difference, however, is that we adaptively refine the underlying surface
mesh to guarantee the resulting geometry will match that intended by the user. With
displacement maps, this procedure must be done manually. Also, our modeling
interface allows arbitrary deformations to a model’s surface that supersede normal
offsets of the vertices and certain operations, such as surface smoothing, are more
naturally expressed in terms of surface velocity.

3 Basic Approach

Our approach gives the user direct interactive control over surface deformations.
We control the instantaneous velocity of the surface and, consequently, the resulting
change in its shape, using a metaphor that allows the user to paint the surface in
order to define its motion. The user then interactively simulates this surface motion
until the desired change is met.

In our system, the modeling process consists of repeating the following steps:

� Beginning with a base model (Figure 2(a)), select the paint and brush that will
give the desired deformation (Figure 2(b)).

� Apply the paint to the model using the selected brush and a direct painting inter-
face (Figure 2(c)).

� Simulate the motion of the surface until the desired effect is realized (Figure 2(d)).

The advantages of this approach are five-fold. First, surface velocity is naturally a
good way for humans to “think” about surface deformations, as changing the shape
of a model easily relates to moving its surface at different relative speeds. Second,
our system provides local control over surface deformations: only the painted area
of the surface moves. Third, our interface allows the user to define surface defor-
mations as a 2D function on an existing surface, which is easier to understand and
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(a) Painted Model (b) Paint Specifies (c) Result
Velocity

Fig. 2. In our system the user begins with a base model. In this example, it is a simple
sphere. (a) Next, the user paints the surface of the model using a variety of brushes and
paint. (b) Instead of being decorative, however, this paint specifies the instantaneous surface
velocity of the model. (c) Finally, the user interactively simulates this velocity to produce
the desired deformation.

to use than ones requiring the user to move points through 3D space. Fourth, our
system displays the simulated motion of the surface at interactive rates, which al-
lows the user to “see” what is taking place to the model’s shape and stop when the
desired change is met. Finally, many useful modeling operations have natural spec-
ifications in the context of surface velocity. For example, smoothing/sharpening a
model’s surface is easily framed in terms of curvature-dependent surface velocity,
whereas accomplishing this same effect by manipulating control points would be
far more difficult.

4 Research Challenges

In realizing an implementation of a system based on this painting metaphor, several
challenges must be met:

� Defining Paint: The first challenge is defining the relationship between paint
and surface velocity. We would like it to supportany deformation of a surface
while making the more useful deformations the easiest to express.

� Applying Paint: We wish to maximize the ease the user experiences in applying
paint. This implies creating an interface that supports very generic distributions
of paint over the surface.

� Evolving the Surface: To support interactive deformations of the surface, we
must evolve the surface efficiently, while maintaining a stable representation of
the model.
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Fig. 3. Propagating velocity. On the far left, the user has painted the top of a cylindrical
solid with a smoothly varying circular brush containing positive propagating paint (i.e. the
surface will move in the direction of its normal). This sequence of images shows several
frames from the interactive simulation of the resulting surface velocity. Clearly, simulating
propagating motion gives rise to organic or blobby deformations. In this case, the user has
created the shape of a mushroom.

� Surface Representation: We need a dynamic representation of the model. This
should allow the simulation to execute quickly, maintain a high quality represen-
tation of the model during the simulation, and support adaptive levels of detail.

The remaining sections describe how we address these challenges.

5 Defining Paint

We are interested in a simple model of paint to control the instantaneous velocity
of freely moving surfaces. We describe surface velocity at some point along the
model’s surface,x � ℜ 3, with surface normal,n, as the linear combination of three
terms:

v�x� � vprop�x��vadv�x��vcurv�x�� (1)

where each term is defined as follows:

� Propagating velocity causes the surface to move at a constant speed in the di-
rection of its surface normal:

vprop�x� � α n (2)

When simulated, this type of surface velocity results in blobby, organic deforma-
tions. As an example, a user could create the shape of a mushroom by simulating
the motion of smoothly varying propagating velocity painted across the top of
a cylindrical solid (Figure 3). Also, the overall shape of the muffin’s top was
created by simulating propagating velocity (Figure 1(a,b)).

� Advective velocity causes the surface to move at a constant speed in a constant
direction:

vadv�x� � βp (3)
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(a) Original Model (b) Painted Model (c) Result After
Simulation

Fig. 4. Advective velocity. (a) The user wants to add a branch to an unfinished model of a
tree. (b) To accomplish this, she adds positive advective velocity using a circular brush to
the model. (c) After interactively simulating this motion, the user has created a deformation
that gives the appearance of a tree branch. This example demonstrates how simulating
purely advective motion gives rise to discontinuous or spiky deformations of a model’s
surface.

This type of motion gives rise to discontinuous geometry. Traditional sculpting
tools that displace vertices a certain distance along some axis are, in fact, simulat-
ing purely advective motion of a surface over a single, fixed time step. Another
example of simulating this type of velocity is the spiky tree branch created in
Figure 4.

� Curvature-dependent velocity causes the surface to move at a speed propor-
tional to its mean curvature,κ , in the direction of its surface normal:

vcurv�x� � γκn (4)

This type of surface velocity can be used to smooth irregular meshes (36; 26).
In Figure 5 we use curvature-dependent velocity to locally smooth a noisy scan
from the Digital Michelangelo Project (37).

The total velocity of a point on the model’s surface is then:

v�x� � α n�βp�γκn (5)

Every point on the model’s surface can contain an element of paint, consisting of
the parameters:α , β , γ, andp (called the “pigment vector”) that fully describe its
instantaneous velocity. The velocity is assumed to be zero over un-painted regions
of the surface. Defining a surface deformation consists of mixing propagating, ad-
vective and curvature-dependent paints and applying this mixture directly to the
model’s surface before interactively simulating its motion.
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(a) Original (b) Painted (c) Interactive (d) Automatic
Model Model Result Result

Fig. 5. Curvature-dependent velocity. (a) Starting with a noisy scan of the right leg of
Michaelangel’s statue of David, (b) the user applies curvature-dependent paint to the cor-
rupted area. (c) After physically simulating the implied motion, only the noisy area is re-
paired. (d) An alternative approach, such as global diffusion would remove both the noise
and the detail in David’s sling.

6 Applying Paint

The success of our modeling interface clearly depends on the user’s ability at con-
trolling the distribution of paint along a model’s surface. After the work of (38),
we directly paint the object by projecting a 2D image into the scene from the cur-
rent center of projection as shown in Figure 6 (Hanrahan and Haeberli call these
“screen-space brushes”).

Fig. 6. Applying paint. This diagram shows a 2D example of how our system applies paint
to the surface of a model. When the user begins to paint (by depressing a mouse button),
the system computes the set of vertices contained within the brush frustrum defined by the
current position of the 2D brush in the image plane and the center of projection (COP)
for the current viewpoint. Next, the system back-projects each such vertex into the image
plane and samples the brush to determine the intensity of the paint at that position along
the model’s surface.
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Fig. 7. The user can employ any 2D image as a brush when painting the model. The paint
parametersα , β , andγ are modulated by the intensity of each pixel in the brush.

In our system, the user first selects the paint that will give rise to the desired type
of surface deformation (i.e. the user adjustsα , β , andγ) and then chooses a 2D
image to use as the brush. Some brush bitmaps we have found useful are shown in
Figure 7. Next, the user directly paints the model by drawing in the image plane
with the selected brush.

Additionally, we give the user direct control over the paint’s pigment vector,p.
In our current implementation, the direction of advective velocity (if any) can be
taken as the surface normal where the paint was applied to the model, the viewing
vector for the camera position at the time the paint is applied, or as an arbitrary
global vector. These options help easily express directed motion of the surface. One
application of defining the pigment vector at each point to be the current surface
normal is embossing (Figure 8).

We find the process of creating 2D brush images and painting directly onto a 3D
surface to be a powerful and easy way of expressing surface deformations. Al-
though not explored in our system, other techniques that advance the idea of direct
texture painting could easily be incorporated (39). However, unlike texture painting,
we are interested in giving each vertex a physical property as opposed to decorating
the object by interpolating images across faces of the mesh. Therefore, considera-
tions about texture space warping are not directly related to our approach. Instead,
we pay particular attention to the mesh’s vertices because we directly sample the
projection of the 2D image at these points. Accurately sampling this projection of-
ten requires adaptive refinement of the mesh, where adding a sufficient number of
vertices to sample this projection guarantees that the resulting geometric detail will
match the deformation implied by the model’s paint.

10



(a) Original (b) Embossed
Model Result

Fig. 8. Simulating advective motion where the direction of the velocity is the existing sur-
face normal can create embossing effects. In this example, the user adds the Princeton
emblem to a kabuto by painting positive advective paint onto its crown.

7 Evolving the Surface

Once the instantaneous surface velocity has been painted onto the model, the user
interactively simulates the implied motion. We gain interactivity by explicitly inte-
grating these simple equations of motion and updating the painted vertices at each
time step. Maintaining a stable mesh is achieved through a heuristic that scales the
speed of the surface by the average length of the painted edges. This provides fine
control (small displacements) for highly-detailed areas and coarse control (large
displacements) for less detailed portions of the model. By scaling the speed of the
surface, we effectively normalize the values of the paint parameters (α , β , andγ)
to lie between -1.0 and 1.0 and the time step to lie between 0.0 and 1.0 for any level
of detail. We also use the normalized mean curvature (36) that permits explicit
integration, although our current system does not compute curvature at boundary
points.

In our current implementation, the user can set the time step to any value between
0.0 and 1.0 and advance the simulation with either the keyboard or mouse. This pro-
vides interactive control, allowing the user to “see” the surface move and stop once
the desired deformation is achieved. Additionally, we offer the facility to “undo”
a modeling operation by saving copies of the model before the user deforms its
surface and tracking the user’s painting operations.
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8 Surface Representation

We wish to accurately and efficiently represent a dynamic surface that moves at
interactive rates. We have implemented our painting interface with two types of
surface representations: level sets and polygonal meshes. In the end, we found dy-
namic polygonal meshes more suitable for our interactive application.

8.1 Level Sets

Level set methods (27) describe a dynamic surface as the zero level set of a time-
dependent function. The main advantages of this approach are its elegant handling
of topological changes to the surface (Figure 9) and its ability to uniformly sample
a moving surface. To incorporate level sets in our modeling system, we need an
implicit representation of the surface paint. We accomplish this by defining a “paint
volume” such that paint on the surface at some pointx corresponds to the value at
the same location in the paint volume. By warping this paint volume after each time
step according to the changes in the implicit representation of the model, we cause
the paint to move with the surface. Furthermore, we must maintain a paint volume
with at least twice the resolution of the model itself in order to prevent “bleeding”
of the paint from one side of the model to another.

Fig. 9. A piece of swiss cheese created with a level set prototype system of our model-
ing interface. The holes in the cheese demonstrate the topological changes that level sets
elegantly handle.

Although our level set prototype system robustly handles arbitrary topology changes,
its main drawbacks are that it cannot support both high resolution and interactive
updates (Figure 10). Narrow band level set techniques (40) ensure that their simu-
lation time is proportional to the number of voxels that intersect a model’s surface
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(a) Melting Candle (b) Mesh Output
from Level Set System from Marching Cubes

Fig. 10. Level set prototype system. (a) A melting candle created with a prototype system of
our modeling interface using a level set representation with a volume grid of 100x100x200
voxels. (b) The lack of adaptive resolution in the level set model prohibits the user from
editing the model at various levels of detail. Moreover, this simple model took approxi-
mately 45 minutes to create due, in part, to the slow simulation speeds permitted by level
sets.

and we update the narrow band only along the painted regions. Nevertheless, when
creating models of varying complexity, a level set approach must sample the signed
distance field at its finest resolution. Furthermore, taking an approach where only
the painted region is converted into a level set representation does not work either
as the surface deformations can cover large distances and a majority of the model
is often painted. At each time step, we must also extract and display the zero level
set, (41), which further decreases the update rate of the simulation. While multires-
olution level set methods might address these issues, using them in an interactive
modeling tool is still a future topic of research.

8.2 Polygonal Mesh

Alternatively, the moving surface can be represented as a polygonal mesh where
the vertices are free to move in space. Because updating polygonal meshes is an
inexpensive operation, they can easily support real-time simulation of the surface’s
velocity. The paint can also be stored at each vertex, avoiding the need for an im-
plicit paint volume as required for a level set approach. Also, commonly available
graphics hardware renders polygonal meshes much more efficiently than volumet-
ric representations.

With polygonal meshes we can support adaptive resolution of the dynamic model.
This is necessary while the user paints the model’s surface because the distribution
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(a) Refine Mesh when (b) Result after
Painting Simulation

Fig. 11. (a) We subdivide the mesh as a function of the painting direction and location. This
refinement guarantees that vertices along the model’s surface accurately sample the brush
bitmap. (b) This results in a mesh whose complexity matches the geometric detail of the
deformation.

of vertices in the brush’s 3D projection must accurately sample its 2D image. Ignor-
ing this situation can result in aliasing of the paint along the model’s surface creat-
ing undesirable affects on the resulting deformation. The reason for this is that high
frequency components in the brush’s image convey quickly varying relative speeds
that will create high frequency geoemtric components along the model’s surface.
To prevent undersampling the brush image, we locally refine the mesh until the
location of vertices along the model’s surface matches the resolution of the image
projection (Figure 11(a)). This refinement guarantees that the mesh’s complexity
matches the geometric detail in the resulting surface deformation (Figure 11(b)).

In our current implementation we provide user-control over the desired length of
the projection of each edge into the image plane. The finest sampling would have
each edge project into a space of 1 pixel in the image plane, resulting in a complete
sampling of the brush bitmap. Alternatively, we could weight this adaptive refine-
ment by the image gradient of the brush’s bitmap, focusing subdivision on those
edges that lie below areas of high frequency content in the brush. The reason is that
high frequency components in the brush’s image convey quickly varying surface
velocity that will create high frequency geometric components along the model’s
surface that must be accurately sampled by the final mesh.

We also refine the mesh during the simulation (Figure 12). In order to maintain an
even sampling of vertices along the model’s surface we perform edge splits, edge
collapses, and edge swaps as in (42). These operations maintain roughly constant
edge lengths while maximizing the minimum interior angles of the faces.

The main drawback of using polygonal meshes is their difficulty in handling events
like topological changes and self-intersections (Figure 13). Although our current
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Before After

Fig. 12. In order to maintain an even distrubition of vertices along the model’s surface
during the simulation, our system refines the mesh by employing local edge operations
(swap, split and collapse).

Before After

Fig. 13. Local self-intersections can occur with dynamic polygonal meshes. Unless care is
taken to avoid or repair faces interpenetrating one another during the simulation, the mesh
can intersect itself resulting in a degenerate representation of the deformed surface.

implementation does not explicitly handle either case, techniques do exist to pre-
vent self-intersections, (42; 43), and could be added to our modeling system. For
our purposes, however, we found the fast simulation rate that meshes permit more
important than their difficulty in handling these degeneracies.

The advantage polygonal meshes provide over level sets are gained through their
adaptivity and by allowing an explicit representation of the surface paint. At each
time step far more voxels must be updated as compared to the corresponding num-
ber of vertices in an adaptive polygonal mesh representing the same surface. More-
over, a polygonal mesh representation avoids the implicit paint volume required
with level sets because the paint can be stored explicitly at each vertex. Lastly, com-
monly available graphics hardware favors efficient rendering of polygonal meshes
as opposed to volumetric representations.
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(a) Original (b) Painted (c) Smoothed
Model Model Result

Fig. 14. A major feature of providing local surface deformations is locally smoothing a
detailed model. (a) A model of a human foot has an undesirable wire running along its
top. (b) The user applies curvature-dependent paint (visualized in bright blue) only to this
area. (c) Next, the user interactively simulates the implied motion to remove this unwanted
artifact.

9 Results

We have found our painting interface useful for creating certain stylized scenes,
adding detail to existing models at various scales, and locally smoothing noisy
models. The following results were created with our system:

� Locally Smoothing a Noisy Model: (Figure 14) This example demonstrates the
usefulness of providing local surface deformations. Starting with a model of a
human male foot acquired from the Visible Human project (44), the user has
painted the undesirable wire running along the top of the foot with curvature-
dependent paint. The user then simulates this motion, smoothing away this un-
wanted artifact. Other, more global, diffusion techniques would have removed
the detail in the rest of the foot and toes, demonstrating the usefulness in provid-
ing local control over a smoothing process.

� Stylized Cemetery: (Figure 15) This stylized cemetery scene was created quickly
with our modeling system. Starting with a base plane, we first created the tree
trunk using positive advective paint and then filled in its crown of branches us-
ing brush-dependent refinement and more advective paint. The gravestones were
grown off the base plane using a smoothly varying brush bitmap of a rectangle
that decreased in intensity at its ends. The engravings on the gravestones show
how brush-dependent refinement can create highly detailed geometry on an ini-
tially simple object. Other examples of multi-resolution deformations include the
grassy texture of the ground and the knot in the trunk of the tree.
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Fig. 15. This stylized cemetery was created by “painting” surface deformations onto a
model.

Fig. 16. Compared to the melting candle modeled with a level set approach (Figure 10),
this example demonstrates the fine resolution that meshes can provide while maintaining
interactive simulation rates.

� Melting Candle: (Figure 16) This candle was created by first growing its overall
shape from a base plane using advective paint. Next, we added an indentation to
its top using negative advective paint. To give the model a melting look, we added
the wax dripping down its sides by simulating a mixture of propagating and ad-
vective paint modulated with a small brush bitmap the user manually moved
along the side of the candle. The pool of wax around the candle’s base was cre-
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(a) Original (b) Modified

Fig. 17. (a) The user starts with a terrain scene. (b) Using a mixture of negative advective
and propagating velocity, they create a deep ravine that cuts across the terrain.

ated in the same way. Lastly, we added a wick to the candle’s top using a small
circular brush. This example highlights the main advantage of polygonal meshes
over level sets. The melting candle created with the level sets system (Figure 10)
does not have nearly the resolution of this candle because interactively simulat-
ing its motion would not be feasible for larger volumetric representations.

� Modifying a Terrain Scene: (Figure 17) In this example we used a mixture of
advective and propagating paint to add a deep ravine to an existing terrain scene.
This highlights another useful feature of our painting interface: easily express-
ing large-scale deformations. With other modeling techniques, this deformation
would have to be formed incrementally, requiring the user to move along the
location of the ravine, manually deforming the surface appropriately. With our
interface, however, the user was able to paint the location of the deformation all
at once before simulating its motion. Therefore, expressing a large-scale defor-
mation that involves re-positioning hundreds of vertices spread across the entire
model was as simple as expressing a small, local surface deformation.

� Entrance to a Cave: (Figure 18) Starting with a single plane, we grew the over-
all shape of the cave’s entrance using advective paint before growing the spiky
stalactites and stalagmites. Lastly, we added the bumpy texture using a noisy
brush bitmap and a combination of advective and propagating paint. This ex-
ample highlights the usefulness of painting on many parts of the model at one
time and then interactively simulating its motion. Sculpting techniques would
require individually moving the model’s surface for each spike. This highly de-
tailed scene would also pose problems for a level-set approach that uses constant-
sized voxels to represent the model. Directly applying displacement maps might
not be an option either, as this would require continually forming a local surface
parameterization before executing the vertex displacements.
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Fig. 18. Starting with a single plane, this model of the entrance to a cave was created with
our painting interface.

10 Discussion

Our results were all created with an implementation of our painting interface using
dynamic polygonal meshes running on a 2GHz Pentuin IV with 512 MB of memory
equipped with a 64MB NVIDIA GeForce4 display adapter. These models contain
on the order of tens of thousands of vertices. With the exception of modifying the
terrain and locally smoothing the human foot, it took a user familiar with our system
approximately 20 minutes to create these models. Creating the terrain scene took
10 minutes and smoothing the noise on the foot took about 2 minutes. Because the
computation time is proportional to the number of painted vertices, this interface
could easily scale to handle much larger models.
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11 Limitations

Although our painting interface does offer a powerful setting for executing certain
modeling operations, it still has several limitations. For one, this interface is not
suited for every model one might wish to create. Generally speaking, it makes most
sense to use this interface to create organic objects or to edit scanned objects and
probably is not suitable for mechanical CAD. Moreover, although our system al-
lows editing at multiple scales, it does not support multiresolution editing where
fine details are preserved when coarse edits are made. Lastly, this interface relies
upon the user’s ability to view the portion of the model where the deformation
is to take place and, consequently, performs poorly when modeling highly self-
occluding objects like, for example, deforming the camshaft in a truck engine.

12 Conclusion

In this paper, we have described a new interface for interactive 3D modeling in
which a user specifies deformations by painting directly onto the model’s surface.
This approach combines direct manipulation with physical simulation in an inter-
active modeling tool. Our implementation includes several tools for applying paint
to surfaces and algorithms for evolving a mesh data structure and a level set model
as a surface deforms.

Although our modeling interface does not outperform existing techniques in all
scenarios, it does provide unique control over an interactive simulation useful for
creating new models, removing noise from existing models, and adding texture to
an existing surface at multiple resolutions.

Topics for future work include:

� Utilizing graphics hardware to accelerate the simulation of dynamic polygonal
meshes.

� Investigating adaptive level set methods.
� Investigating the potential of describing geometry as simulated surface velocity

for compression applications.
� Using paint to transfer geometric texture from one part of a model to another.
� Developing a constructive theory of geometry for how paint texture relates to

resulting geometric detail.
� Extending the current interface to support time-dependent pigment vectors.
� Investigating other metaphors in which a user has interactive control over physi-

cal simulations.
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