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• 2,000 Images
• 6 GB



Challenge
• Given: dense set of measurements of light 

transport function.

• Provide: intuitive representation that is 
compact and allows editing.
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Observation #1:
Represent high-dimensional 
measured function as
tree-structured collection of 
lower-dimensional parts.

…

Observation #2:
Decomposition at each level 
is matrix factorization. 

Observation #3:
Intuitive decomposition 
achieved using constrained 
factorization.
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Fitting Parametric Models
• Cluster fits of parametric BRDF: 

[Lensch et al. 03],  [Goldman et al. 05].

• Editable if nice clusters

• Single analytic BRDF limits accuracy

Lensch et al. 2003



Dimensionality Reduction

• Apply rank-reduction algorithms to data matrix:
[Dana et al.  99], [Chen et al. 02], [Tsumura et al. 03]

• Compact and accurate

• Cannot be directly edited

HOSVD “Basis Images” from Wang et al. 2005
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Figure 4: (a) A second set of basis images obtained by transforming
the basis images in Fig. 3 by the core tensor . These are
basis images for the view and illumination modes. (b) Examples of
reconstructed images.

of such directions become much denser, retaining the original two
dimensions would likely achieve better compression ratios.
To remove redundancy and produce a compact representation,

we use another fourth-order tenser with reduced ranks to ap-
proximate as in Section 2.2. The new tensor is represented
as:

(4)

where , ,
, , and

. and spec-
ify the reduced ranks (columns) of the four basis matrices for the
four modes. The reduced ranks are provided by the user to control
the approximation error in (1). The smaller they are, more compact
the resulting new tensor is. Given the reduced ranks, the out-of-core
tensor approximation algorithm in Section 3.3 is applied to solve for
the reduced basis matrices and the core tensor, . The reduced
basis matrices and the core tensor together comprise the compact
representation.
The process of reconstructing a BTF image from our 4th-order

tensor is outlined in Figs. 3 and 4. As shown in Fig. 3, if we
take one column vector from and another column vec-
tor from , the tensor between them, , defines a basis
image. All such basis images together interact with the core ten-
sor, , to produce a different set of basis images, shown in
Fig. 4(a), for different view and illumination directions. Math-
ematically, the second set of basis images are obtained by per-
forming where

. Then, if we take a pair of row vec-
tors, and , from and , respectively, the BTF image
associated with the corresponding illumination and view directions
can be reconstructed by performing . Fig. 4(b)
shows reconstructed BTF images of LEGO.
Our tensor representation has clear advantages compared to the

one used in [Vasilescu and Terzopoulos 2004]. First, by represent-
ing an image as a second-order subtensor, the redundancies between
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Figure 5: Comparisons of RMS errors obtained for different com-
pression ratios by PCA (black diamonds), TensorTexture (black
squares), modified TensorTexture (blue triangles), and our method
(red circles). The top diagram shows the errors for a LICHEN BTF,
and the bottom one shows the errors for a VELVET BTF.

adjacent rows and columns can be removed and much higher com-
pression ratios can be achieved. Second, the resulting basis matri-
ces and in (4) are much smaller than the matrix
in [Vasilescu and Terzopoulos 2004], and therefore much less ex-
pensive to compute. Third, because there are more basis matrices,
each of them does not need to be truncated as much to achieve the
same compression ratio.

Fig. 6 and 7 compare our tensor representation against PCA and
TensorTexture [Vasilescu and Terzopoulos 2004] using the captured
BTFs from [Koudelka et al. 2003]. For the convenience of compar-
ison, we actually used 45 views and 60 illumination directions from
each BTF, and the image resolution is 192x192. It can be easily ver-
ified that processing each color channel separately does not affect
tensor approximation results. For each channel, our scheme con-
structs a 4th-order tensor with size 192x192x45x60; TensorTexture
adopts a 3rd-order tensor with size 36864x45x60; PCA organizes
the data into a matrix of size 36864x2700. Note that TensorTexture
only compresses the view and illumination modes while maintain-
ing the original image resolution. We also did experiments on a
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Research Challenge

Providing an intuitive factorization:

≈ ?

?



Key Idea
Incorporate domain-specific knowledge as 
constraints of factorization:

≈

Plausible BRDFs

Plausible
blending
weights.



• Non-negativity:
Reflectance functions are non-negative

• Sparsity:
Few BRDFs at each position

• Domain-specific:
Energy-conservation, monotonicity, etc.

Factorization Constraints



Factorization Algorithms

Algorithm
Groups

Properties
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Our Method



Our Method

1.  Initialize W and H
2.  Update W
3.  Update H
4.  Iterate until convergence

≈V W

H

Alternating Constrained Least Squares (ACLS)



H

Our Method

!v !w

Convex QP Problem

min
!w
‖!v − !wH‖2

!l ≤
{

!wT

A!wT

}
≤ !u1.  Initialize W and H

2.  Update W
3.  Update H
4.  Iterate until convergence

Alternating Constrained Least Squares (ACLS)

≈



• Non-negativity
Value constraint

• Energy conservation
Constraint on sum

• Monotonicity
Constraint on derivative

Appearance Constraints
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Measure of Sparsity
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Season’s Greetings Dataset

Gold Foil Silver Foil White Paper Blue Paper

5 Camera Positions x 350 Light Positions ~ 1,750 Images



Silver Foil Gold Foil White Paper Blue Paper

Season’s Greetings Dataset
Factorization Computed with ACLS (4 Terms)



Wood+Tape Dataset

Oak Wood
(Anisotropic)

Semi-Transparent
Tape

Retroreflective
Bicycle Tape

12 Camera Positions x 480 Light Positions = 6,000 Images



Wood+Tape Dataset

Blending Weights from ACLS (5 Terms)

Scotch Tape Dark Grain Light Grain Red Bicycle White Bicycle



0.014
(RMS)

SVD

NMF 0.015

k-means 0.029

ACLS 0.022
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Conclusion
Inverse Shade Trees enable applications with measured 
appearance data:

Compression for interactive rendering

Editing of texture and reflectance



Concurrent Work

Translucent
[Peers et al. 06]

Time-Varying
[Gu et al. 06]



Future Work

• Automatic selection of tree topology

• Additional composition nodes:
(e.g. over operators, masks, etc.)

• Higher-dimensional light transport 
functions

• Other linear decomposition problems
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