Creating Consistent Scene Graphs Using a Probabilistic Grammar

Tianqiang Liu¹ Siddhartha Chaudhuri^{1,2} Vladimir G. Kim³

Qi-Xing Huang^{3,4} Niloy J. Mitra⁵ Thomas Funkhouser¹

Princeton University

Cornell University

Stanford University

TTIC

UCL

Motivation

Growing number of 3D scenes online.

Google 3D warehouse

Motivation

Synthesis [Fisher et al 2012, Xu et al 2013]

Understanding [Xu et al 2014, Song et al 2014]

Input: A scene from Trimble 3D Warehouse

Output 1: Semantic segmentations

Output 2: Category labels.

Output 2: Category labels at different levels.

Output 2: Category labels at different levels.

Shape is not distinctive.

Contextual information

All-pair contextual information is not distinctive.

All-pair contextual information is not distinctive.

Key Idea

Semantic groups

Semantic hierarchy

Key Idea

Pipeline

Related Work

Van Kaick et al. 2013

Related Work

Van Kaick et al. 2013

Boulch et al. 2013

Overview

→ Grammar Structure

Learning a Probabilistic Grammar

Scene Parsing

Results

Probabilistic Grammar

Labels

Rules

Probabilities

Labels

Examples:

bed, night table, sleeping area

Rules

Example:

sleeping area → bed, night table

Probabilities

Derivation probabilities

Cardinality probabilities

Geometry probabilities

Spatial probabilities

Derivation probability P_{nt}

bed $\xrightarrow{0.6}$ bed frame, mattress

Cardinality probability P_{card}

sleeping area → bed, night table

 $P_{card}(bed | sleepingarea) P_{card}(nighttable | sleepingarea)$

Geometry probability P_g

 $P_g(x | bedframe) > P_g(y | bedframe)$

Spatial probability P_s

 $P_s(x,y \mid desk, chair, studyarea) > P_s(z,y \mid desk, chair, studyarea)$

Overview

Grammar Structure

→ Learning a Probabilistic Grammar

Scene Parsing

Results

Pipeline

Identify objects

Node(0): NULL bedroom000032(0,)

Label objects

Node(16); NULL bedroom000032(17,21,)

Group objects

Grammar generation

→ Labels

all unique labels

Rules

Probabilities

Grammar generation

Labels

→ Rules

concatenating all children for each label

Probabilities

Learning a Probabilistic Grammar

Grammar generation

Labels

Rules

→ Probabilities

 P_{nt}, P_{card} : learning from occurrence statistics

 $P_{\scriptscriptstyle g}$: estimating Gaussian kernels

 $P_{\rm s}$: kernel density estimation

Overview

Grammar Structure

Learning a Probabilistic Grammar

→ Scene Parsing

Results

Pipeline

Pipeline

Objective function

$$H^* = \operatorname{argmax}_H P(H \mid S, G)$$

- H is the unknown hierarchy
- S is the input scene
- *G* is the probabilistic grammar

After applying Bayes' rule

$$H^* = \operatorname{argmax}_H P(H \mid G)P(S \mid H, G)$$

After applying Bayes' rule

$$H^* = \operatorname{argmax}_H P(H \mid G)P(S \mid H, G)$$

Prior of hierarchy
$$P(H \mid G) = \prod_{x \in H} P_{prod}(x)^{T(x)}$$

After applying Bayes' rule

$$H^* = \operatorname{argmax}_H P(H \mid G)P(S \mid H, G)$$

Prior of hierarchy
$$P(H \mid G) = \prod_{x \in H} P_{prod}(x)^{T(x)}$$

 $P_{prod}(x)$: probability of a single derivation

formulated using P_{nt}, P_{card}

After applying Bayes' rule

$$H^* = \operatorname{argmax}_H P(H \mid G)P(S \mid H, G)$$

Prior of hierarchy
$$P(H \mid G) = \prod_{x \in H} P_{prod}(x)^{T(x)}$$

T(x) compensates for decreasing probability as H has more internal nodes.

After applying Bayes' rule

$$H^* = \operatorname{argmax}_H P(H \mid G)P(S \mid H,G)$$

Likelihood of scene

$$P(S | H,G) = \prod_{x \in H} P_g(x)^{T(x)} P_s^*(x)^{T(x)}$$

After applying Bayes' rule

$$H^* = \operatorname{argmax}_H P(H \mid G)P(S \mid H,G)$$

Likelihood of scene

$$P(S \mid H,G) = \prod_{x \in H} P_g(x)^{T(x)} P_s^*(x)^{T(x)}$$

 $P_g(x)$: geometry probability

After applying Bayes' rule

$$H^* = \operatorname{argmax}_H P(H \mid G)P(S \mid H,G)$$

Likelihood of scene

$$P(S \mid H,G) = \prod_{x \in H} P_g(x)^{T(x)} P_s^*(x)^{T(x)}$$

 $P_s^*(x)$: sum of all pairwise spatial probabilities $P_s(x)$

We work in the negative logarithm space

$$E(H) = \log P(H \mid G)P(S \mid H, G)$$

$$= -\sum_{x \in H} T(x) \log \left(P_{prod}(x) P_{g}(x) P_{s}^{*}(x) \right)$$

Rewrite the objective function recursively

$$E(H) = \overline{E}(R)$$

$$\overline{E}(x) = E(x) + \sum_{y \in x. children} \overline{E}(y)$$

where R is the root of H, E is the energy of a sub-tree.

The search space is prohibitively large ...

Problem 1: #possible groups is exponential.

Problem 2: #label assignments is exponential.

Problem 1: #possible groups is exponential.

Problem 1: #possible groups is exponential.

Solution: proposing candidate groups.

Problem 2: #label assignments is exponential.

Problem 2: #label assignments is exponential.

Solution: bounding #RHS by grammar binarization

where x'is partial label of $x, k \in \{a_1, a_2, ..., a_n\}$

Problem 2: #label assignments is exponential.

Solution: bounding #RHS by grammar binarization

where x' is partial label of $x, k \in \{a_1, a_2, ..., a_n\}$

Now #rules and #assignments are both polynomial.

The problem can be solved by dynamic programming.

Problem 2: #label assignments is exponential.

Solution: bounding #RHS by grammar binarization

Convert the result to a parse tree of the original grammar

Overview

Grammar Structure

Learning a Probabilistic Grammar

Scene Parsing

→ Results

Shape only

Shape only

Shape only

Flat grammar

Datasets

Object classification

Generalization of our method

Parsing Sketch2Scene data set

Take-away message

Modeling hierarchy improves scene understanding.

Limitation and Future Work

Modeling correlation in probabilistic grammar.

Limitation and Future Work

- Modeling correlation in probabilistic grammar.
- Grammar learning from noisy data.

Limitation and Future Work

- Modeling correlation in probabilistic grammar.
- Grammar learning from noisy data.
- Applications in other fields.

Modeling from RGB-D data [Chen et al. 2014]

Acknowledgement

Data

Kun Xu

Discussion

Christiane Fellbaum, Stephen DiVerdi

Funding

NSF, ERC Starting Grant, Intel, Google, Adobe

Code and Data

http://www.cs.princeton.edu/~tianqian/projects/hierarchy/

