Style Compatibility For 3D Furniture Models

Tianqiang Liu¹

Wilmot Li²

Aaron Hertzmann²

Thomas Funkhouser¹

¹Princeton University

²Adobe Research

Stylistically incompatible

Stylistically compatible

Goal

Modeling pairwise style compatibility

How likely is it that a person would put these two furniture pieces together, when furnishing an apartment?

Goal

Previous work – shape style

[Xu et al. 2010]

[Li et al. 2013]

Previous work – virtual world synthesis

[Merrell et al. 2011]

[Fisher et al. 2012]

[Xu et al. 2013]

Concurrent work – style similarity

[Lun et al. 2015] (previous talk in this session)

- Hard to design a hand-tuned function
- Coupled with functionality
- Requiring comparisons across object classes

- Hard to design a hand-tuned function
- Coupled with functionality
- Requiring comparisons across object classes

- Hard to design a hand-tuned function
- Coupled with functionality
- Requiring comparisons across object classes

- Hard to design a hand-tuned function
- Coupled with functionality
- Requiring comparisons across object classes

Key ideas

- Crowdsourcing compatibility preferences
- Part-based geometric features
- Learning object-class specific embeddings

Key ideas

- Crowdsourcing compatibility preferences
- Part-based geometric features
- Learning object-class specific embeddings

Design of user study [Wilber et al. 2014]

Please select the two most compatible pairs.

Rater's selection

and 4 more triplets ...

Collected 63,800 triplets for living room and 20,200 for dining room

Key ideas

- Crowdsourcing compatibility preferences
- Part-aware geometric features
- Learning object-class specific embeddings

Contemporary

Antique

- Consistent segmentation
- Computing geometry features for each part
- Concatenating features of all parts

Step 1: Consistent segmentation [Kim et al. 2013]

Step 2: Computing geometry features for each part

Step 3: Concatenating features of all parts

Key ideas

- Crowdsourcing compatibility preferences
- Part-aware geometric features
- Learning object-class specific embeddings

Previous approach [Kulis 2012]: Symmetric embedding

$$d_{symm}(x_i, x_j) = ||W(x_i - x_j)||_2$$

 d_{symm} is the compatibility distance

 X_i, X_j are feature vectors of two shapes

Previous approach [Kulis 2012]:

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

Illustration styles [Garces et al. 2014]

Assumptions of the previous approach

- Feature vectors have same dimensionality.
- Corresponding dimensions are comparable.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

Our approach: Asymmetric embedding

$$d_{asymm}(x_i, x_j) = \|W_{c(i)} x_i - W_{c(j)} x_j\|_2$$

c(i) is the object class of X_i

c(j) is the object class of x_i

Learning procedure [O'Donovan et al. 2014]

- Using a logistic function to model rater's preferences
- Learning by maximizing the likelihood of the training triplets with regularization

Outline

- Key ideas
- Results of triplet prediction
- Applications

Results of triplet prediction

Test set: triplets that human agree upon

- 264 triplets from dining room
- 229 triplets from living room

Results of triplet prediction

Method	Dining room	Living room
Chance	50%	50%
No part-aware, Symmetric	63%	55%
Part-aware, Symmetric	63%	65%
No part-aware, Asymmetric	68%	65%
Part-aware, Asymmetric (Ours)	73%	72%
People	93%	99%

Results of triplet prediction

Method	Dining room	Living room
Chance	50%	50%
No part-aware, Symmetric	63%	55%
Part-aware, Symmetric	63%	65%
No part-aware, Asymmetric	68%	65%
Part-aware, Asymmetric (Ours)	73%	72%
People	93%	99%

Results of triplet prediction

Method	Dining room	Living room
Chance	50%	50%
No part-aware, Symmetric	63%	55%
Part-aware, Symmetric	63%	65%
No part-aware, Asymmetric	68%	65%
Part-aware, Asymmetric (Ours)	73%	72%
People	93%	99%

Outline

- Key ideas
- Results of triplet prediction
- Applications

Applications

- Style-aware shape retrieval
- Style-aware furniture suggestion
- Style-aware scene building

Applications

- Style-aware shape retrieval
- Style-aware furniture suggestion
- Style-aware scene building

Style-aware shape retrieval

Query model

Dining chair

Style-aware shape retrieval

Query model

Dining chair

Style-aware shape retrieval

Query model

Dining chair

(Most incompatible chairs)

Style-aware scene modeling

User study

- 12 participants, each works on 14 tasks.
- Half of the tasks are assisted by our metric, and the other half are not.
- Results from both conditions are compared on Amazon Mechanical Turk

Take-away messages

It is possible to learn a compatibility metric for furniture of different classes.

- Part-aware geometric features
- Asymmetric embedding of individual object classes

The learned compatibility metric is effective in styleaware scene modeling.

- Shape retrieval
- Interactive scene building

Take-away messages

It is possible to learn a compatibility metric for furniture of different classes.

- Part-aware geometric features
- Asymmetric embedding of individual object classes

The learned compatibility metric is effective in styleaware scene modeling.

- Shape retrieval
- Interactive scene building

Take-away messages

It is possible to learn a compatibility metric for furniture of different classes.

- Part-aware geometric features
- Asymmetric embedding of individual object classes

The learned compatibility metric is effective in styleaware scene modeling.

- Shape retrieval
- Interactive scene building

Limitations and future work

Modeling fine-grained style variations

Sheraton style with lyre motif

Limitations and future work

- Modeling fine-grained style variations
- Investigating how other properties determine style

Limitations and future work

- Modeling fine-grained style variations
- Investigating how other properties determine style
- Investigating style compatibility in other domains

Acknowledgements

Data and code

- Trimble and Digimation
- Vladimir Kim and Evangelos Kalogerakis

Discussion

Adam Finkelstein and Peter O'Donovan

Funding

Adobe, Google, Intel, NSF

Project webpage

http://gfx.cs.princeton.edu/pubs/Liu_2015_SCF

