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Figure 1: (a) Given one or more query strokes, we synthesize (b) hand pose data crucial for bush simulation, based on artist’s examples.
(c) We can also modify the trajectory to locally match the artist’s style. (d) Trajectory and pose synthesis using different artist’s style.

Abstract

Digital painters commonly use a tablet and stylus to drive software
like Adobe Photoshop. A high quality stylus with 6 degrees of
freedom (DOFs: 2D position, pressure, 2D tilt, and 1D rotation)
coupled to a virtual brush simulation engine allows skilled users
to produce expressive strokes in their own style. However, such
devices are difficult for novices to control, and many people draw
with less expensive (lower DOF) input devices. This paper presents
a data-driven approach for synthesizing the 6D hand gesture data
for users of low-quality input devices. Offline, we collect a library
of strokes with 6D data created by trained artists. Online, given a
query stroke as a series of 2D positions, we synthesize the 4D hand
pose data at each sample based on samples from the library that
locally match the query. This framework optionally can also modify
the stroke trajectory to match characteristic shapes in the style of
the library. Our algorithm outputs a 6D trajectory that can be fed
into any virtual brush stroke engine to make expressive strokes for
novices or users of limited hardware.

CR Categories: 1.3.4 [Computer Graphics]: Graphics Utilities
Keywords: stylus, stroke, trajectory, stylization, data-driven

Links: ©DL BPDF @& WEB

1 Introduction

Artists wielding traditional drawing instruments such as a pencil,
a stick of charcoal or a paint brush exercise fine control over the
interplay between their gestures and

the physical medium. The appear- s

ance of the strokes is governed not —
only by the path of the instrument ) x>
but also the pressure and angle (see :

inset). Digital artists often work with ‘ \

high quality tablets that track a stylus - J \
with 6 DOFs (2D position, pressure, '\/‘ I\

2D tilt, and rotation), which painting / \
software can use to simulate the in- e
teraction of digital brushes in various © Sandr Imaging
media with increasing fidelity [Baxter and Lin 2004].

However, most people drawing on digital devices today do not
use 6-DOF tablets, for two reasons. First, high-quality tablets are
relatively expensive as compared with other input devices like mice
(2-DOF), multitouch screens (>2-DOF), or mass-market tablets
(3- or 5-DOF). Second, even if everyone owned a 6-DOF tablet,
most people would not have the training and experience to be able
to wield it effectively. To achieve high quality calligraphy, for
example, takes many hours (perhaps years) of practice.

This paper describes a method whereby a non-expert draws a 2D
query stroke (Figure 1a), perhaps using an inexpensive input device,
and missing DOFs are synthesized based on a library of examples
supplied by an artist (Figure 2a). The resulting marks follow the
trajectory drawn by the non-expert but convey the gestural style
of the artist (Figure 1b). We also show how the approach can be
extended to approximate the input trajectory while adopting some
of the character of the strokes in the artist’s library (Figure 1c). This
option is beneficial for users who are not confident in their own
style, or when using a coarse input device like a mouse. One can
easily change style by choosing a different library (Figure 1d).

To synthesize hand pose, we address this problem: given a library
of 6-DOF strokes (drawn by the artist) and a 2-DOF query stroke
(drawn by the user), produce 4-DOFs to accompany the query
so that the 6-DOF (2+4) combination looks like the strokes in
the library. Trajectory stylization optionally replaces the 2-DOF
trajectory as well. There is no single correct answer because the
same path can be drawn differently, even by a single artist, so our
goal is to synthesize plausible gestures.

Our method produces gestures that are plausibly in the style of the
artist’s library. It performs at interactive rates to provide immediate
feedback to the user during drawing and to make it easy to choose
amongst different styles. Finally, while we have designed the
system for interactive use by non-experts or people without high-
quality tablets, the same method can apply stylization to any source
of line art, including the output of vector illustration software or
computer-generated line drawings based on 3D models.

The main contributions of this paper include stroke stylization via
example-based synthesis of hand pose—data needed to control a
virtual brush—as well as optional trajectory modification. Through
data collection and analysis we offer understanding of how hand
pose relates to individual writing style. Finally, we explore the
space of candidate algorithms and evaluate them quantitatively and
qualitatively, concluding with a demonstration of practical results.

2 Related Work

The fundamental idea of our method builds on recent advances in
non-parametric modeling that have been shown to be effective
for texture synthesis by example in a variety of domains—images,
meshes, video, and animation [Wei et al. 2009]. These techniques
work by selectively copying portions of a library to generate new


http://doi.acm.org/10.1145/2185520.2185542
http://portal.acm.org/ft_gateway.cfm?id=2185542&type=pdf
http://gfx.cs.princeton.edu/pubs/Lu_2012_HES/index.php

(tquor Juqs my ex pub
czu(iil cyi]ou\;jc( \?zue \/Joﬂ‘fu\

guj of bed w Lk waxy
and c(uwerfnj 300‘”
fumble piz-tthe quck

(a) ArtA

data that maintains a similar statistical distribution and aesthetic
property, with careful tailoring to the particular requirements of
each domain. Ashikhmin [2001] observed that copying swaths of
pixels for image texture greatly improves performance over per-
pixel methods, but leads to discontinuity artifacts at boundaries.
Optimal boundary placement on the 2-D grid is intractable; how-
ever, we show that on our 1-D domain it can be solved via dynamic
programming. Due to this optimization over the 1-D domain, our
method is similar to the video textures of Schddl et al. [2000].

We also derive high-level inspiration from the approach for human
motion synthesis of Kovar et al. [2002] and Hsu et al. [2004], both
of which synthesize high dimensional output from a database of
low dimensional control input. Several aspects of stroke gesture
synthesis make our problem unique. For example, artist data col-
lection must be fully automatic, as many strokes are made quickly.
Similarly, user input must be processed at interactive rates and with-
out additional user input, to allow for a fluid painting experience.
Furthermore, we separate the concerns for pose stylization versus
input trajectory stylization, and show how to apply our algorithm to
either one individually or both simultaneously.

Stylization. There have been a number of versions of curve and
stroke stylization in the graphics community. In the 2D domain,
Elasticurves [Thiel et al. 2011] intelligently neaten input strokes
based on velocity data, but are only able to produce a single
style of smooth result. McCrae and Singh [2011] presented a
different neatening technique that would piecewise fit and blend
among french curve segments to sketched input, to create pleasing
line shapes. They also demonstrated alternative stylizations by
substituting different canonical strokes for french curves. The
curve analogies framework of Hertzmann et al. [2002] could apply
arbitrary stylizations to input curves, by learning variations from
pre-existing input-output curve pairs. But its extension to more
general brush parameters such as pose is not obvious. Moreover,
our approach for trajectory modification relies on a library of
output-only exemplars, rather than input-output pairs.

Some previous work address additional brush parameters. House
and Singh [2007] propose a dynamic control process to generate
varying width along smooth curves. Saito et al. [2007] describe
heuristics to procedurally compute stroke width based on curva-
ture. Both approaches depend on explicitly and narrowly defined
relationships between stroke shape and width, and do not support
additional pose DOFs as needed for a virtual brush model. The
isophote distance of Goodwin et al. [2007] formulates heuristics
about line thickness, but relies on a 3D scene as input.

Specifically targeted towards digital painting, Okabe et al. [2005]
apply realistic brush strokes to curves, by first acquiring videos
of the changing shape of real brushes during strokes, and then
training an HMM to generate the appropriate footprint based on
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Figure 2: Example libraries. (a) and (b) show the same pangrams written by two different artists; (c) and (d) are line drawings.

the user’s curves. The IntuPaint system of Vandoren et al. [2008]
creates artistic paintings using instrumented, physical brushes and
workspaces and interactively acquiring the pigment deposition for
compositing to a virtual document in realtime. It supports a
variety of traditional media tools and techniques, but imposes heavy
custom hardware requirements and thus is not suitable towards our
goal of more generally applicable brush stroke rendering.

Handwriting. Our approach of learning and then reproducing the
brush pose styles of real artists also bears similarities to a branch
of biometrics research concerned with handwriting verification
and synthesis. Much of the work records samples of individual
character glyphs in advance, and then plays back those glyphs based
on the desired target text, often with random or physically inspired
perturbations [Varga et al. 2005]. However, these techniques only
reproduce strokes they have recorded and labeled, making them
inappropriate for freeform sketching.

More general approaches attempt to create dynamical systems
that can reproduce 2D handwriting-like motion from training sam-
ples [Hinton and Nair 2005]. In the extreme, Plamondon [1995]
developed a kinematic theory of rapid human movements that was
used to synthesize stroke trajectories with properties similar to nat-
ural motions. Beyond 2D trajectories, Franke et al. [2005] created
a handwriting robot that holds a pen at a static orientation but can
vary pressure throughout a stroke, to create very convincing sig-
nature forgeries. Yu et al. [2004] consider hardware that acquire
5D input including pressure and 2D tilt, but only for the purposes
of writer identification, and not synthesis. We are not aware of
previous work that considers the six DOFs of a real brush.

3 Data Collection and Analysis

We collected two data sets from tilt 9 rotation
. . . pressure '

the artists: English pangrams — "y

and line drawings (Figure 2). >0 ‘

Five artists drew strokes in their ggm

own natural drawing style using

a Wacom Intuos4 tablet with an

art pen (inset) and Adobe Pho-

toshop CS5 for immediate visual feedback and recording, sampled

at 140 Hz. During recording, the tablet orientation remained consis-

tent for each particular artist and is treated as part of their drawing

style. Each 6D sample contains 2D position x = (z,y) and 4D

pose h = {p, 0, ¢, w) comprised of pressure p, tilt (6, ) and rota-

tion w. We refer to trajectory T as a sequence of sample positions

T = {x;}, and pose H as the corresponding hand pose sequence

H = {h;}. After capture, we resample each stroke uniformly in

arc length (roughly 1 pixel spacing in 2000x2000 images).

+

Our system takes those recordings as input and builds a collection
of 6D strokes that we call library L. Each library stroke L € L
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Figure 3: Pose correlation. Left: Correlation is weak for random
pairs and strong for similar shapes. Right: Libraries drawn by
the same artist are highly correlated (diagonal blocks), relative to

0.5 -
0.4
libraries from different artists.

03 -
0.2
0.1 -

Random Path’ Similar Path

consists of a set of position and pose samples, L = {x;,h;}.
Figure 2 shows Photoshop renderings from some examples of the
data that we collected. While artists created multiple pages of input
(e.g., Figure 1a), we treat each page as a separate library. Typical
pangram libraries have between 100 and 200 strokes, each of which
typically has between 40 and 80 samples, whereas drawings often
contain some longer strokes.

3.1 Artist Distinctiveness

This project relies on several assumptions. The first is that shapes
of strokes used in handwriting (for example) are part of the “style”
of a given artist; different examples of similar shapes like loops
or ‘v’ shapes will be more consistent from the same person as
compared with examples from other artists. This assumption is
widely accepted. For example, it forms the basis for forensic
handwriting analysis. We rely on this assumption for the trajectory
synthesis method presented in Section 4. But we also make a
second assumption that is less well studied—that artists’ hand poses
are determined by their target trajectories, with some variance. An
artist drawing the same shapes (with the same intention) multiple
times tends to select poses from the same pool of possible gestures.
This implies that given a stroke L with trajectory T, if we find other
strokes with similar trajectories their poses should have similar
statistics as 'T. This observation forms the underpinnings of the
example-based pose synthesis methods presented in Section 4.

Therefore, to verify our pose assumption, we conduct a correlation-
based analysis on the recorded library data, investigating how
well the pose attributes are correlated between stroke patches
with similar shapes. For each sample ¢ in each stroke L € L,
we construct a patch t; centered at sample ¢ and composed of
neighboring samples t; = {x; | n > |i — j|}. For a stroke with
m samples, we have a total of m — 2n overlapping patches, each
of size 2n + 1. The size n provides a notion of what we mean by
“local” and through moderate trial and error we found n = 12 to
work well; we use this value throughout our experiments.

For each patch t; € L we construct a simple feature vector F'; as the
vector of local tangents at every sample, concatenated with a pair of
coordinates (z;, ;) that indicates whether the sample is near the
beginning or end of the stroke (described fully in Section 4.1). Next
for each patch t; we find the most similar patch t. from a different
stroke within the library, measured by the Lo distance ||F; — F.||.
We reject all pairs of patches whose distance is larger than a
threshold (the mean feature distance over all pairs of patches). For
each remaining pair of patches (t;,t.) we calculate the Pearson
correlation coefficient between their corresponding pose attributes,
ri,c = corr(H;, H.). To aggregate across multiple patch pairs
and multiple pose attributes, we convert Pearson’s r coefficients
into Fisher’s z coefficients, compute the average, and then convert
the result back into Pearson’s r [Silver and Dunlap 1987]. The
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Figure 4: Pose visualizations (color range: blue=low — red=high).
(a) Pen pressure follows similar progressions for similar shapes
drawn at different times. (b) Rotation angle depends strongly on
pen position. (c) Positional influence removed via linear regression.

aggregated r gives us an indication of how well a library’s pose is
correlated among similar strokes. As a baseline comparison, we
also find random pairs of patches of the same size 2n + 1 within
the library and calculate the correlation among them.

Figure 3 summarizes our findings. The bar chart shows that within
libraries written by the same person, pose sequences of random
pairs of patches are not well correlated whereas pose from strokes
with similar trajectories have high correlation. The blue bars report
aggregate correlation within the library shown in Figure 2b. Red
bars are for a different library from the same artist, and green shows
correlation between those two libraries. While correlation is low for
random pairs it is still positive; many strokes have some correlation
because pressure always starts and ends near zero, for example.
As evidence that different people have different writing styles, we
observe that their hand pose data also carry different statistics. The
matrix on the right shows the same correlation analysis described
above, comparing all pairs from a set of nine libraries (three by each
of three artists). The block diagonal (same artist) exhibits obviously
higher values than the off-diagonal (different artists).

Of course even within the same library, correlation is not perfect
(r < 1) for at least three reasons. (1) During the recording process,
which lasts about an hour, the volunteer may introduce hand pose
variation setting down the stylus and picking up again with a
different grip. (2) Pairs of similar patches do not have exactly the
same trajectories. (3) The same artist exhibits some variation in
hand pose, even when following the same path multiple times. The
degree of variance depends on the individual and to some extent
the artist’s skill. Pose data from novice users tends to exhibit less
consistency. Three of our five volunteers have more than two years
of experience with a stylus (Artists A-C in Figure 3) while the
other two are less experienced and have correlation statistics around
0.5—still higher than typical correlation between different artists
(off-diagonal). Figure 4a supports these claims with a visualization
of the pressure magnitude of example characters drawn by an artist
(the word “quiz” above with other examples of letters ‘q” and ‘v’
below). Observe that the same shapes drawn at different moments
on different parts of the tablet exhibit similar pressure progressions,
although there is variation.

3.2 Spatial Variation

There are other influences related to pose, beyond shape and artist.
One of the prominent factors is the position of the stroke on the
tablet. This is to be expected based on body kinematics, because
the pen pose changes when the person moves his hand from one
position to another. This factor can have an observable effect.
As an extreme example, Figure 4b shows that the rotation of the
pose is strongly related to the position of the stroke, at least in
this library where the range from blue to red is roughly 50°. It
is possible to remove the strong spatial component prior to pose



synthesis, as follows. We model the pose attributes at sample i,
for example rotation w;, as a sum of two components: (1) local
variation intended by the artist w;, and (2) a positional component
Q(x;). We observe that the the local variations are fairly uniformly
distributed and may be viewed as noise relative to the more global
positional signal. Therefore we approximate €2(x;) by a quadratic
polynomial over the coordinates of x;, and perform a simple least
squares fit to find the coefficients of the polynomial. Then we can
remove the approximate positional influence simply by subtracting
the polynomial from w;, but adding in its place the average value.
Figure 4c shows the result, with a range of roughly 20°. We
find that tilt tends to vary by position the way rotation does,
but pressure is more consistent. Positional influence varies from
library to library. Nevertheless, we have not found these effects to
have a strong impact on the visual quality of the synthesis results.
Therefore, our libraries have not been modified using the regression
fit for any of the results that follow.

3.3 General Observations

Here we note a few general observations we found when studying
the data in the example libraries supplied by our artists:

o Continuity. Pose tends to change smoothly along strokes.

e Directionality. Strokes drawn from left to right are not identical
to strokes drawn right to left, for example.

e Gravity. Statistics of stroke paths are not rotationally symmet-
ric; up, down, left and right are not interchangeable.

e Endpoints. Special care must be taken for the beginnings and
endings of strokes because the physical act of drawing makes
these parts look different from the middle of the path.

4 Algorithm

Data analysis in Section 3.1 tells us strokes with similar trajectory
are drawn with similar hand pose. Given a query stroke trajectory,
we can “hallucinate” plausible hand pose from segments of library
strokes that have locally similar trajectory. The synthesis algorithm
operates on a stroke by stroke basis, processing each stroke in iso-
lation, so inter-stroke effects are not considered. In an interactive
painting program, on mouse-up after a stroke is drawn, the synthe-
sis algorithm is run and the new stroke replaces what the user drew
(in a fraction of a second for typical strokes).

In both handwriting and line drawings, the hand pose attributes
themselves do not fully represent an artist’s style. We observe that
one of the most important cues is the trajectory itself. Given a query
trajectory that might be drawn with the shaky hand of an amateur
user, we can find a new trajectory that follows the user’s overall
intention but has the style and expertise of the artist who drew the
library. This application relies on the same algorithm developed for
pose hallucination. We replace the query trajectory with similar, but
not identical, patches from the library (striking a balance between
following query intent and preserving library style).

The algorithm operates in a series of stages, where for each stage,
we consider different implementations to support various data and
performance tradeoffs. These stages are: computing feature vec-
tors (Section 4.1), selecting approximate nearest neighbors (Sec-
tion 4.2), and post processing (Section 4.3). Figure 5 offers a con-
cise overview of these stages and implementation options.

4.1 Feature Vectors

Our process begins with an offline step, where for each sample
in the library we compute a feature vector that describes the local
shape, using either shape contexts (Section 4.1.1) or filtered veloci-
ties (Section 4.1.2). Then online, for a given query stroke, synthesis

Preprocess:
e Compute feature vectors for library samples: (84.1)
hoi o shape contexts (84.1.1)
choice { o filtered velocities (§4.1.2)
Online:
e Compute feature vectors for queries, as above (84.1)

e Find k nearest neighbors (k-NN) of each sample  (§4.2)
o Select neighbors from k-NN for synthesis:

o closest neighbor (84.2.1)
choice { o weighted average (§4.2.2)
o optimal sequence (84.2.3)
e Post process:
o for optimal: transition blending (84.3.1)
o for trajectory: shape optimization (64.3.2)

Figure 5: Algorithm overview.

begins by computing feature vectors for the query samples, and then
searching for similar features in the library.

One goal of the feature vector is to characterize the local trajectory
of the query (or library) strokes. Therefore, our feature vector takes
into account samples in the “recent history” and “near future” as in
the patch construction from Section 3.1. The pose attributes at the
start or end of a stroke have different distributions than those in the
middle (Section 3.3). Therefore, a second goal for the feature vector
is to encode closeness to the endpoints, where appropriate. We
define the scalar ; = min(1, y/d/dn) where d is the arc length
distance to the start of the stroke and dj, is the size of our recent
history window. Likewise we have acj' measuring distance to the
end of the stroke relative to the future window. These values are
clamped such that the interiors of the strokes are undifferentiated.
Putting this all together we have feature vector F;:

Fi:{x;vmjaw{fj} ‘-7} M

where {f;} is the set of shape features and W is a weight that
balances between the relative importance of shape features versus
end features. The next two subsections consider alternatives for the
shape features.

4.1.1 Shape Contexts

Introduced by Belongie et al. [2001], a shape context is a log-
polar histogram of sample positions on the curve, relative to the
current sample. We have adapted a variant that performs well for
our application, with two modifications. First, we consider local
shape by using only a small number of history and future samples.
Second, we further divide these into two separate histograms, one
for history and one for future; this division allows us to distinguish,
for example, a stroke drawn left to right versus right to left.

In our experiments we have used from 25 to 40 history and future
samples each, depending on the data set. The shape features f; are
then the histogram bins, of which we use 6 angular bins and 5 radial
bins for a total of 2 X 6 x 5 + 2 = 62 dimensions for F';.

4.1.2 Filtered Velocities

Here we describe a feature vector that is based on velocity rather
than shape. We use the sample velocities {v;}, where v; =
X; — Xi—1,vo = 0. A naive implementation of the feature vector
would have each tap correspond directly to a velocity sample from
the stroke: f; = v;. Because of the high sampling rate, this
approach would require many taps to capture a significant portion of
the trajectory, and would apply equal weight to samples regardless
of how near or far they are to the current sample.



Instead, each filter tap is obtained by
applying a discrete triangle filter to the
velocity samples, f; = > wg vy, where
wy, are the triangle filter weights, for
(1—N)<j<(i+ M) taps. N and
M are the number of history and future taps, respectively. The
triangle filters overlap so that the start index and the end index of
a triangle are the center indices of the adjacent triangles, which
ensures that all the weights applied to a single velocity sample in a
feature vector sum to one. The filter width increases exponentially
with distance from sample ¢, which means individual samples that
are distant contribute relatively less to the feature vector. When
synthesizing the query samples near the start or the end of the query
stroke, some of the feature taps will cover hypothetical samples that
are outside of the query stroke. In that case, we only average the
velocity of the samples that are valid. If all the samples under a
triangle centered at j are located outside of the valid range, then we
use f; = 0. Using triangle filters reduces the dimensionality of the
feature vector needed to represent a large local neighborhood and
filters out noise present in the raw samples.

history f; future
f_H J'

stroke path

Results in this paper use triangle filters with equal sized history
and future windows M = N = 7. Thus, considering 2D velocity
and two extra “endpoint” dimensions, the overall dimension of
the feature vector F; is 2 x (2 x 7+ 1) + 2 = 32. We also
use a weight W = 0.3 balancing shape features against endpoint
features. In our experiments we have found the method to be
relatively insensitive to these parameters, and robust through a
broad range. Section 6 discusses the relative merits of the two
feature vectors we investigated.

4.2 Selecting Among Nearest Neighbors

Once we have computed a feature vector for each sample in a query
stroke, we find its k nearest samples in the library as potential
samples for synthesis. Brute force search is not practical because
the library is potentially large and the search must be performed
for many samples. Acceleration structures like K-D trees are
known to lose efficiency in high dimensional searches, as in the
case of our feature vectors. Therefore, we resort to algorithms for
finding approximate k nearest neighbors, the output of which we
have found acceptable in the stages that follow. We experimented
with two algorithms, the FLANN implementation of Muja and
Lowe [2009], and an adaptation of the PatchMatch algorithm
of Barnes et al. [2011]. The PatchMatch approach requires a
straightforward modification to search over the 1-D domain of
samples, and we found that with our data the algorithm converges
to a reasonable approximation in ~5 passes (as Barnes et al. found
for image patches). Overall, the two approaches offer roughly
equivalent performance for equivalent quality of output. The major
tradeoff between the methods is that FLANN expends time and
memory to build auxiliary structures during the offline library
construction phase; on the other hand PatchMatch is only efficient
when processing the entire query stroke at once and therefore is not
suitable for on-the-fly synthesis during stroke input.

Once we have the k£ neighbors (k-NN) for each query sample
i, the next step is to synthesize a new sample {x';,h’;} from
them. The synthesized attributes should look like those of similar
shapes in the library, especially at the start and end of strokes,
and vary smoothly in time. We consider three approaches—closest
neighbor, weighted average, and optimal sequence—discussed in
the following subsections.

4.2.1 Closest Neighbor

The most straightforward approach is to select the one neighbor
with the smallest distance. That is, just use the closest neighbor

to the query sample. While simple, this method does not lead to
good coherence properties along the length of the stroke. Suppose
library sample L; is the 1-NN of query sample Q;. For strong
coherence we want L;; to be the 1-NN of Q;41, which is only
sometimes true (and it becomes more rare as the library size grows).
However, L; 1 is usually among the k-NN, which means there is
an opportunity to do better.

Nevertheless, we retain this case for comparison with the other
methods in Section 5. Moreover, this case may be thought of
as a stand-in for the general non-parametric texture synthesis ap-
proaches following that of Efros and Leung [1999]. In particular,
we also experimented with choosing randomly among the k-NN,
and also the variant proposed by Ashikhmin [2001] (which proba-
bilistically chooses L;1 in the scenario above). However, in our
experiments, none of these led to results as coherent as those of the
methods that follow.

4.2.2 Weighted Average

Building on the intuition of the closest neighbor approach, interpo-
lation is a way to provide smooth transitions. Given k neighbors
n;, with distances d; from the query sample in feature space, we
synthesize a sample as their weighted average using weights 1/d;.
This produces consecutive samples that vary smoothly, creating a
continuous output stroke. However, the library typically contains
many similar strokes (say multiple versions of the letter ‘a’), each
with slightly different pose and trajectory. The weighted average
method therefore generates a stroke that is a compromise among
the distinctive features of the library strokes, not quite reproducing
any of them well. The result is that this method produces strokes
that tend to be smoother than the artist’s style.

4.2.3 Optimal Sequence

Both closest neighbor and weighted average are local solutions that
have difficulty reproducing the smoothness and distinctiveness of
the artists’ style. To achieve both of these qualities, we propose
a (per-stroke) global optimizing solution, which we solve using
dynamic programming for efficient computation. One goal of the
optimization is to select a few long segments of library strokes
(sequences of near-consecutive samples) to be matched to segments
of the query (Figure 6), avoiding many potential discontinuities.

We optimize for the sequence of transition indices {c; = (ai, b;) |
1 =1,2,---,s} by minimizing a total synthesis cost over the s
samples in the query stroke. For the i-th query sample: a; is
the index of the selected library stroke, and b; is the index of
the selected sample on stroke a;. We seek the optimal sequence
{C;} that minimizes the sum of four error terms, ey, e:, es, and
em. These terms address, respectively, matching features, choosing
good transitions between segments, avoiding short segments, and
matching stroke endpoints—discussed below.

Matching Features. The term ey simply sums (over all query
samples ¢) the distance in feature space to the selected neighbor c;.
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Figure 6: Optimal matching visualization. Query strokes ‘q’ and
‘my’ are broken into parts that map to segments of library strokes.




If all other terms in the optimization had no impact then this term
would drive the solution to the closest neighbor selection method
(Section 4.2.1). However there is typically a different neighbor
among the k-NN that is almost as good as the closest neighbor and
that has other desirable properties that would cause it to be selected
over the closest neighbor, based on the terms that follow.

Transition Penalty. The term e; encourages using fewer seg-
ments. For consecutive query samples, we encourage selecting
samples that are consecutive on a library stroke, since they have
natural coherence in the hand pose attributes and capture the local
style. If that is not possible for other reasons, we still encour-
age repeating the same library sample once, or skipping exactly
one library sample—policies that allow the library segment to be
stretched or shrunk to match the query. Otherwise we call the transi-
tion a jump, and assign a penalty that includes both a large constant
cost and a cost based on pose discontinuity at the jump location.
We compute the transition penalty e; by summing over the query
el, the transition cost of going from c; to c; ;1. According to the
policies above there are four cases:

1. Consecutive: If a; = a;+1 and bjy1 = 1 + b;, then ei =0.

2. One repeat: If a; = @it1 and bi+1 = b; and b; # b;_1, then
ei = C), the cost of stretching.

3. One skip: If a; = a;y1 and b1 = 2 + by, then e = C, the
cost of shrinking.

4. Jump: Otherwise, e¢i = C; + C, Hhci —h¢,, ||, the cost of a
jump with deeper penalty for large pose discontinuities.

We use C, = 3, Cs = 3, Cy = 50, and C, = 10. To synthesize

trajectory instead of pose, we modify the transition cost e; slightly.

Rather than penalizing pose difference at the jumps, we penalize

direction changes. The term ej becomes:

4b. Trajectory jump: e; = Cy + Cp, (1 — v, - VlCi+1) where v,
is the normalized velocity of sample b; in library stroke a;.

Short Segment Penalty. We find that short segments often lead
to visual discontinuities in the synthesized result. To avoid them
we impose a penalty e taken as the sum of (C; + (Lmin — li))2
over all segments of length {; < Luin. In our experiments, we use
C; = 3 and Lyin = 12 samples.

Endpoint Penalty. As noted in Section 3.3, ends of strokes have
unique characteristics. Therefore we prefer where possible to
synthesize the beginning of a query stroke with the beginning of of
a library stroke, and the same for ends. We impose a penalty term
em = Ce((b1 — 1) + (s’ — bs)) where by is index of the neighbor
selected for the first sample, b is the index for the last query, and
s’ is the number of samples in the library stroke as. This term
essentially measures how far the neighbors selected for the ends of
the query are from the ends of their respective strokes. Ce is the
cost of not matching endpoints, which we set to C. = 3.

Optimization. We solve the optimization with dynamic program-
ming over a transition table with k£ rows for the k-NN by n columns
for the stroke samples. To fill each entry in column ¢, we consider
all the entries in ¢ — 1. Once full, we recover the optimal sequence
by selecting the lowest cost path through the table.

4.3 Post Processing

After selecting a sequence of neighbor samples, we post-process
them to create the final stroke data. For the case of optimal neighbor
selection we apply transition blending, and for the case of trajectory
synthesis we perform shape optimization, both discussed below.

4.3.1 Pose Transition Blending

The optimal sequence method (Section 4.2.3) can still have dis-
continuities at the jump locations, despite the penalty term e; that

2,
b by

Figure 7: Trajectory stylization of tentatively-drawn input curves,
in black. (a) Integration of the output velocities results in drift,
shown in blue. (b) Anchor points define tangent and velocity
constraints. (c) Optimizing to satisfy the constraints results in the
final stylized trajectory, in red. (d) More examples.

attempts to minimize them. Therefore, we employ blending to re-
move remaining artifacts. We gather as many as 6 samples (if they
exist) on either side of the jump from both library strokes that abut
the jump, and perform a simple cross fade between their attributes
(pose and/or trajectory) in this overlap region.

4.3.2 Trajectory Shape Optimization

When synthesizing trajectories, the result can “drift” away from the
query shape, so we correct it using shape optimization. Suppose
T = {x;} is the input query trajectory. If we simply integrate the
synthesized velocity V = {v;} starting from the position of the
first sample x;, we get a new trajectory that looks like the library,
but deviates from the query (Figure 7a black vs. blue).

We therefore design a simple linear optimization that attempts to
simultaneously preserve the synthesized shape while matching a
few key features of the query. We identify a set of anchor points on
the query, of which we have three types. We place the first type of
anchor point a few samples from the start and end locations (blue
dots in Figure 7b). Second, we add locations with very rapid change
in orientation, as follows. For each query sample, we calculate the
stroke turning angle in a local window. We find all local maxima
above a threshold angle (we use 60°) and call them angle points
(magenta dots). Finally, between successive pairs of end points
and angle points we approximate the path as a polyline using a
dynamic programming optimization similar to that of McCrae and
Singh [2009]. The added vertices of the polylines are the third kind
of anchor point (green dot).

Next we set up a system of equations composed of three constraints,
each of which we wish to satisfy in a least-squares sense, in order
to construct the final curve (red in Figure 7c-d). The first constraint
attempts to match the final velocities ¥; to the synthesized veloc-
ities v;. The second constraint attempts to match the positions of
the anchor points. To avoid second order discontinuities induced
by optimization at the anchor points, the third constraint attempts
to match the local curvature of the result to that of the synthesized
velocities, near the anchors. With known synthesis velocities v; and
query positions x; we seek the unknown positions X; via a system
of equations:
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Figure 8: Handwriting pose synthesis. Query strokes (a) are
ground truth strokes (b) without the pose data. (c) Our synthesis
results are visually indistinguishable. (d) Applying another artist’s
style yields characteristically different visual appearance.

where v; = X; — X;_1, and H(Xi) = X;+1 + Xi—1 — 2%;. The set
A contains the indices of the anchor points. ¢ is the number of
surrounding samples involved in the second order constraints. In
our experiments, we use € = 2, C, = 0.25, and C}, = 2.

4.4 Synthesizing Both Pose and Trajectory

The output of our synthesis process so far is a sequence of poses
and/or trajectories that can drive a virtual brush model. However,
our pose synthesis framework uses trajectory as input. If both
pose and trajectory are being synthesized, the algorithm can be
run in either one or two passes. In the one pass version, the
query trajectory is used to directly synthesize both the pose and
new trajectory and thus the combined output does not have ideal
correlation. In the two pass version, first the input stroke is used to
synthesize a new trajectory, and then that output trajectory is used to
synthesize pose data, which creates a data dependency but produces
better correlation. Another advantage to the two-pass version is that
it allows us to use separate parameters for synthesizing trajectory
and pose. For example we generally tune for fewer segments in
trajectory synthesis than in pose synthesis in the two-pass case.

5 Results and Evaluation

The running time of our synthesis algorithm is sublinear with the
number of library samples, due to the approximate k-NN search.
We found through experimentation that 150 strokes is sufficient for
generating plausible results, and confirmed this through correlation
analysis similar to that of Section 3. For such a library, the average
running time for both pose and trajectory synthesis is 0.08 seconds
per stroke. We experimented with “enriching” the library up to
about 1000 strokes by including the same strokes scaled to different
sizes (£50%), to increase matching scale-invariance, but did not
see a significant improvement, and performance was reduced. We
also tried using very small (fewer than 10) and very large (more
than 500) libraries. With small libraries, feature matching cannot
find similar enough trajectories and therefore picks random strokes
to copy. Since the optimal sequence algorithm encourages long
segments, the pose results still look plausible, but for trajectories,
poor matches may result in complete loss of semantics in the
results. Large libraries do not affect pose synthesis, whereas

Figure 9: Line drawing pose synthesis with two different styles.

trajectory modification is more likely to find very similar patches
to the query, reducing the effect of style transfer.

All the results shown here are rendered using Adobe Photoshop’s
bristle brush tool [DiVerdi et al. 2010] with the same brush settings.
The differences in the synthesized pose data induce the visibly
different shape and texture of the strokes.

Figure 8 shows the plausibility of pose synthesis on handwriting.
An artist’s 6-DOF strokes are stripped of their pose data and
the trajectories are used as queries with the same artist’s library
applied. The synthesized output is visually indistinguishable from
the ground truth, whereas applying another artist’s library creates
a visually distinct result. Pose synthesis on line drawings is
demonstrated in Figure 9.

Examples of trajectory stylization are in Figure 15. We show
robustness to noisy input and the utility of trajectory stylization
by demonstrating how it can neaten mouse-written text, which has
characteristic shakiness. Similarly, a line drawing made by an artist
with an unsure hand can be made to have more confident strokes.
Our algorithm can also apply stylistic flourishes such as serifs or
block lettering. Figures 1, 14, and 15 show the two-pass algorithm
stylizing both pose and trajectory.

The remainder of this section describes the studies we conducted to
evaluate our results. As a quantitative measure of the pose synthesis
quality, we computed the correlation between the synthesized
results and ground truth. However, there is no equivalent measure
for trajectory synthesis and ultimately we care most about how
users judge our results. Therefore, we also conducted user studies
on both pose and trajectory synthesis.

5.1 Quantitative Analysis

Section 3.1 shows that an artist exhibits some natural variation in
hand pose even when drawing the same path multiple times. There-
fore, there is no “gold standard” that we can compare our synthesis
results against—Lo measurement of reconstruction error against
the ground truth is not a good indication of success. Correlation
on the other hand is a better evaluation metric in this case. For pose
synthesis, we can apply analysis similar to Section 3.1 to evaluate
our results. If the style of the library is successfully transferred onto
the query strokes, every local patch of the output should have a sim-
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Figure 10: Pose synthesis correlation. We apply ArtA to ArtB, and
vice-versa, and see that the output is well correlated with the library
and not the query, and optimal sequence performs best.
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Figure 11: Example images from pose study. (b-c) are algorithms
being tested, and (e-f) have pose transferred from other artists.
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ilar pose profile to similar patches in the library. We compared the
closest neighbor, weighted average, and optimal sequence variants
of our algorithm (Section 4.2). Figure 10 contains the correlation
results. It shows that the optimal algorithm achieves the highest
pose correlation in both synthesis cases. Furthermore, since we
have ground truth pose data for the query strokes, we compare them
to the synthesis and find they are not well correlated, as expected.
Note that we have no analogous quality measure for trajectory syn-
thesis because the goal is a blend of local features with global shape,
and a fair objective function is more difficult to formulate.

5.2 User Studies

We conducted two user studies with the goal of evaluating whether
a user can distinguish between our results and ground truth. Pose
and trajectory are studied separately because users are overwhelm-
ingly sensitive to trajectory over pose, which would make pose
evaluation difficult if combined. Both studies use the same method-
ology; only the images are different.

Study Design. We show the subject three lines of English text from
an artist’s library—the exemplar (we used two libraries from each
of the artists shown in Figure 2a-b). Below the exemplar appear two
test images containing the same (3-9 letter) phrase—one ground
truth originally written by the artist, and one forgery synthesized by
one of our algorithms. The subject is instructed that one image is an
“original” and the other is a “forgery,” and is asked to identify the
original by comparing both with the exemplar. In the pose study, the
ground truth and forgery have the same trajectory (Figure 11). In
the trajectory study, the ground truth trajectory is used for synthesis,
and pose data is omitted from all images (Figure 12).

One trial consists of 26 such tasks (each with the same exemplar)
comparing (a) a random ground truth phrase, and a forgery selected
from one of five conditions: (b) optimal sequence, (c) weighted
average, (d) closest neighbor, (e) style transfer, and (f) style transfer
for validation. Conditions (b-d) are the algorithms being tested,
whereas (e-f) are baselines that synthesize the forgery with another
artist’s library (so should be very easy to identify). Of the 26
tasks, four are from each of (b-e) and ten are from (f), randomly
shuffled. For any particular subject, (e-f) are selected from two
different library styles, randomly. We only retain data from a trial

correct / count (%)
method pose study trajectory study
average | 153 /322 (48%) 96 /302 (32%)
optimal | 169/316 (53%) | 172 /305 (56%)
closest | 269/304 (88%) | 220/292 (75%)
transfer | 293 /301 (97%) | 274 /288 (95%)

Table 1: Results for pose and trajectory user studies. Each entry
is the number of times ground truth was correctly chosen out of a
number of paired comparisons for each condition.
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Figure 12: Example images from trajectory study, organized as in
Figure 11.

when 9 out of 10 of the validation conditions (f) are correct, so we
know the user understands the task and is actually trying to succeed
(p = 0.01). Then style transfer results are only reported for (e).

Subjects were “workers” on the Amazon Mechanical Turk, a micro-
job marketplace that has been used for a growing variety of such
studies [Cole et al. 2009]. Our studies were restricted to US-only
workers who were paid $0.20 per task (a “HIT” containing the 26
comparisons, which they typically completed in a few minutes).
Across the two studies, 70 workers completed a total of 214 HITs.
Subjects were allowed to complete as many as 10 HITs per study,
but most workers did just one. For cases where a particular pair was
repeated by a particular worker due to the randomized selection, we
only retained the first such response, for total of 4,170 responses.

Study Results. The results are reported in Table 1 as the frequency
with which the ground truth was correctly identified. A Bonferroni
corrected, randomized permutation test on the distributions for each
consecutive pair of rows in the table shows that they are different
with statistical significance (p < 0.01) except in the case of the
average and optimal conditions in the pose study (p = 0.34).

The ideal forgery is indistinguishable from ground truth so subjects
will choose randomly, resulting in a correct answer near 50% of
the time. When the forgery is easy to identify (Figure 12e), we
expect scores near 100%. The transfer condition is near 100%
in both studies, which shows people can perform the task in easy
cases. People tend to identify the closest method (88% and 75%),
so it is generally implausible. In the pose study, average and
optimal are both near 50%, and therefore plausibly synthesize
pose data. Optimal performs well in the trajectory study, but
average is significantly below 50% which means subjects tend to
incorrectly identify the forgery as the “original.” As mentioned
in Section 4.2.2 the weighted average method produces a very
smooth output trajectory, and we believe people have a bias towards
smoother curves. In such cases people choose average over ground
truth, even though it is actually smoother than the exemplar and
thus fails to mimic the exemplar’s style.

6 Discussion

Many of our results are handwriting samples, though we do not
make special accommodations for them, because handwriting pro-
vides an easy to understand and readily available source of data.
Handwriting is uniquely stylized by the writer’s hand pose, the lo-
cal trajectory variations, and the global features such as slant angle.
Handwriting also provides readily-evaluated test sets; in contrast,
it is more difficult to measure performance on strokes in a draw-
ing. We consider that the pose and local trajectory are stylistic
results of motor reflexes, whereas the global shape is intentional.
Our algorithm attempts to transfer style but maintain intent (via
the trajectory shape optimization). For handwriting, we could use
auxiliary information such as the semantic content of the text to im-
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Figure 13: Failures. (left) Filtered velocities can cause a query
letter (black) to map to a different library letter (blue) with similar
trajectory. (right) Filtered velocities (above) generally produce
more visually pleasing results than shape contexts (below).

prove stylization, but that would not be generalizable to other types
of artistic strokes. Similarly, while an artist’s style may consistently
place higher weight on strokes in a drawing that are nearer to the
viewpoint, we do not attempt to model these variations. In this way,
we provide the most general result possible.

We examined both shape contexts and filtered velocities for feature
vectors. Our results use filtered velocities, though it is difficult to
say which is absolutely better. Figure 13 shows their limitations.
Filtered velocities tend to perform very well, but can sometimes
get “confused” and match a letter to a different but similar letter.
This may be fixable with a handwriting specific algorithm, but we
make no assumptions about the types of strokes being made. Shape
contexts have fewer of these errors, but have difficulty balancing
local style transfer with global shape, resulting in output that
appears less plausible and noisy. Also it is generally more difficult
to select parameters for shape contexts, whereas filtered velocities
are more robust through a broader range of settings. Finally, to
get high quality results, the shape contexts need to have more
dimensions (see Section 4.1.2) and this impacts performance.

We also compared strategies for choosing among nearest neighbors:
closest neighbor, weighted average, and optimal sequence. The re-
sult of our pose evaluations is that quantitatively, optimal sequence
is best, but to the casual observer, weighted average is as effective.
However, careful inspection can reveal subtle differences between
the two (e.g. Figure 11b-c). For trajectory synthesis, weighted av-
erage is obviously more smooth, and in some cases too smooth.
The advantage weighted average has over optimal sequence is that
it does not require the query stroke be completed before it begins
synthesizing, so it can be used in an “on-the-fly” implementation
that synthesizes pose data while the user is still creating the stroke.
Otherwise, optimal sequence results in the highest quality output.

Finally, our approach does not require hand-drawn input. The
method applies to any kind of 2D path, such as Bézier curves (see
Figure 14). The paths are first sampled uniformly in arc length and
then treated as constant-velocity brush strokes by our unmodified
algorithm. This approach would also work for lines extracted from
3D models or other automatic processes.

Limitations and Future Work. Our algorithm considers each
stroke independently, but artistic styles also include interactions
among nearby strokes, both temporally and spatially, which we
hope to model in future work.

Our results are all rendered by Adobe Photoshop’s bristle brush,
which uses all 6-DOF of the stroke data. However the visual impact
of each DOF may not be as obvious as it would be with a real
physical brush. Because our algorithm only generates stroke data, it
can be used with any digital paint engine, so other brush simulations
may be able to use the data more effectively.

Figure 13 highlights some trajectory synthesis failures where the
query shape was poorly matched by our algorithm. Our approach
is local and has no higher-level notion of intent on the part of the
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Figure 14: (left, mtddle) Pose and trajectory stylization. (right)
Pose synthesis for vector line art from Adobe Illustrator.

artist. While the cognitive process is too complex to model there
may be some intermediate levels that could help. Moreover, these
failures could be addressed in our current framework by choosing
different parameter settings. Our approach works well, especially
for pose synthesis for a broad range of settings, but finding the ideal
values for an arbitrary problem is difficult.

Finally, we treat the artist’s library as a single monolithic style. In
practice, artists may choose among multiple styles, even in a single
drawing. A style is really more multi-modal than is characterized
by our process. We can partially address this issue by offering the
user the choice of different styles, but finding an effective interface
for this remains an interesting problem. More challenging would
be to try to characterize the multi-modal nature within a library.

Conclusion. This paper presents a data-driven approach for syn-
thesizing plausible pose data that can be used to generate expres-
sive handwriting and line drawings. The same framework can also
be used to transfer stroke trajectory style. We collect a library of
strokes drawn by artists on a 6-DOF tablet in Adobe Photoshop and
analyze the pose data as insight for future research in this area.
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