
Structure-Aware Hair Capture

Linjie Luo1 Hao Li2 Szymon Rusinkiewicz1

1Princeton University
2Industrial Light & Magic / University of Southern California

(a) An image of (b) Point cloud with (c) Failure of (d) Color-coded (e) Synthesized (f) A frame from
captured hairstyle 3D orientation field previous method reconstructed wisps hair strands hair simulation

Figure 1: Our system takes a collection of images as input (a) and reconstructs a point cloud with a 3D orientation field (b). In contrast to
previous methods (e.g. [Paris et al. 2008]) that straightforwardly grow hair strands from the scalp following the orientation field and hence
cannot reconstruct complex hairstyles with convoluted curl structures (c), we reconstruct complete, coherent and plausible wisps (d) aware
of the underlying hair structures. The wisps can be used to synthesize hair strands (e) that are plausible for animation or simulation (f).

Abstract

Existing hair capture systems fail to produce strands that reflect
the structures of real-world hairstyles. We introduce a system that
reconstructs coherent and plausible wisps aware of the underlying
hair structures from a set of still images without any special light-
ing. Our system first discovers locally coherent wisp structures in
the reconstructed point cloud and the 3D orientation field, and then
uses a novel graph data structure to reason about both the connec-
tivity and directions of the local wisp structures in a global opti-
mization. The wisps are then completed and used to synthesize hair
strands which are robust against occlusion and missing data and
plausible for animation and simulation. We show reconstruction
results for a variety of complex hairstyles including curly, wispy,
and messy hair.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms;

Keywords: Hair reconstruction, hair modeling, multi-view stereo

Links: DL PDF WEB

1 Introduction

Shared between culture, nature, and sculpture, the hairstyle is
a medium that creates a unique expression of self. A person’s
hairstyle is a vital component of his or her identity, and can provide
strong cues about age, background, and even personality. The same
is true of virtual characters, and the modeling and animation of hair
occupy a large portion of the efforts of digital artists. Driven by
increased expectations for the quality of lead and secondary charac-
ters, as well as digital doubles, this effort has only been increasing.

Acquiring complex hairstyles from the real world holds the promise
of achieving higher quality with lower effort, much as 3D scan-
ning has revolutionized the modeling of faces and other objects
of high geometric complexity. This is especially true for digital
doubles, which require high fidelity, and secondary animated char-
acters, which may appear by the dozens and must receive less per-
sonalized attention from 3D modeling artists. However, even for
lead characters that are modeled largely by hand, it is frequently
easier to start with scanned data than to begin modeling from a
blank canvas. This allows the digital hair to exploit the full talents
of real-world stylists, who express their creativity through cutting,
shearing, perming, combing, and waxing.

Despite the potential benefits of capturing real-world hairstyles,
there is a large gap between the data produced by existing acquisi-
tion techniques and the form in which a hairstyle must end up to be
incorporated into a production pipeline. Hair animation, whether
done by hand or via physical simulation, typically operates on a
collection of guide strands. Each of these is a curve through space,
starting from a point on the scalp and going to the tip of the hair.
The guide hairs must not intersect, and the entire collection must
not be overly tangled. The hair model consists of tens of thousands
of strands, whose motion is interpolated from the guide strands.

How close are existing hair capture systems to this representation?
The raw output of 3D acquisition devices is typically an unstruc-

http://doi.acm.org/10.1145/2461912.2462026
http://portal.acm.org/ft_gateway.cfm?id=2462026&type=pdf
http://gfx.cs.princeton.edu/pubs/Luo_2013_SHC/

Input images Point cloud & orientation field Ribbons Wisps Synthesized strands

Covering
Connection
& direction

analysis

SynthesisReconstruction

Figure 2: Overview of our method. We start with a collection of input images, reconstruct a point cloud with 3D orientation field, and cover
the point cloud with ribbons that reveals the locally coherent wisp structures. A connection and direction analysis is then performed on the
ribbons to determine their directions and connect them up into long wisps. Finally the wisps are used to synthesize the strands.

tured point cloud or a partial surface. Prior research on hair capture
has typically augmented this geometry with a 3D orientation field,
computed from orientations observed in a number of images. Given
these two types of data, it is possible to grow a set of strands from
the scalp whose position is constrained to the reconstructed geom-
etry and whose direction follows the orientation field.

There are two major difficulties with this approach. First, the ge-
ometry will always suffer from missing regions and noise because
of the complex occlusion patterns of hair. Second, the orientation
field is necessarily extrapolated from what was observed on the out-
ermost layer of hair. As a result, the grown hair strands exhibit a
variety of undesirable artifacts: they may suddenly reverse direction
and form implausible U-shapes, diverge wildly from their neigh-
bors, exhibit variations in density, or simply fail to reach all parts of
the visible hair volume (see, for example, Figure 1c). Moreover,
these independently-grown strands have no natural and coherent
grouping structure that allows them to be controlled by guide hairs.
As a result, it is impossible to incorporate these systems, based on
naive strand-growing, into animation pipelines.

We describe a system that reconstructs structured hair models plau-
sible for hair animation and simulation (Figure 1) by performing
a higher-level analysis of the hair’s structure. The system incor-
porates four key insights. First, it grows groups or wisps of hair
coherently. This not only matches the structure of real hairstyles,
which frequently contain strands that run nearly parallel to many of
their neighbors, but also allows each wisp to be associated with a
guide strand for animation. Second, it builds up a connection graph,
allowing strands to span regions of missing geometric data. As long
as two curvature-compatible portions of hair have been acquired,
our system is able to connect across the gap between them. Third,
it explicitly resolves the 180-degree ambiguity of orientation fields
by performing a global Markov Random Field (MRF) optimization
on the directions associated with nodes in the graph. This keeps
strands from performing sudden U-turns. Finally, it ensures that
each portion of visible surface is connected back to the scalp along
some path. This allows our system to work for arbitrarily com-
plex hairstyles, even if a naive strand-growing method would have
difficulty reaching the end of, e.g., a complicated curl, by strictly
following the orientation field.

Our algorithm begins with a point cloud and orientation field ob-
tained from a collection of still images (Sec. 4) and extracts a set
of local strand segments. These are clustered into “ribbons” that
cover sets of parallel strands (Sec. 5), and connected across gaps
in the point cloud (Sec. 6.1). Following a global direction analysis
(Sec. 6.2), we connect up the ribbons to each other, and to the scalp
(Sec. 7.1), to obtain complete wisps with plausible topology. These
not only drive the final strand synthesis (Sec. 7.3), but also can be
used as guide strands for hair simulation (Sec. 8).

2 Related Work

Hair capture. Most existing hair capture methods generate a
strand set model by growing hair strands independently, constrained
by the captured hair orientations and geometry. Paris et al. [2004]
proposed a method to estimate 3D hair orientations from highlights
under a moving light source with known trajectory. They grow
strands along the estimated orientations, starting at the scalp. Wei
et al. [2005] introduced a technique to create a strand model from
the visual hull constructed from many views. The strands are grown
constrained by the orientation consistency across the views. Paris
et al. [2008] introduced an active acquisition system capable of
accurately capturing the positions of the exterior hair strands. A
strand model is generated by growing the strands within the dif-
fused orientation field from the scalp to the captured exterior hair
layer. Jakob et al. [2009] proposed a system to capture fiber-by-
fiber hair assemblies by growing hairs through the intersecting rib-
bons created by back-projecting the 2D strands with shallow depth-
of-fields. Chai et al. [2012] showed how to create an approximate
strand model from a single image using the inter-strand occlusion
relationships and the head model fit to match the face in the image.
Beeler et al. [2012] introduces a system to capture facial hairs using
multi-view stereo matching. Their method employs a refinement
method to improve the connections between the captured strand
segments and remove outlier hairs. Luo et al. [2012] proposed a
method to grow a strand model in the orientation field constrained
by the geometry constructed from hair orientation fields. Herrera
et al. [2012] applied thermal imaging to generate a strand model by
growing strands on the boundary of the captured hairstyle. Their
method joins the loose ends of nearby segments with smooth cur-
vature and connects the strands to a user-defined ellipsoid as the
scalp.

Geometry-based hair modeling. Structured models are com-
monly used in geometry-based hair modeling. A more complete
survey on hair modeling techniques can be found in [Ward et al.
2006], here we only enumerate a few recent work relevant to ours.
Ward et al. [2003] used a high level skeleton representation to con-
trol various low level representations for level-of-detail hair mod-
eling. Kim and Neumann [2002] employed a hierarchy of general-
ized cylinders to model and edit hair in multi-resolution. Yuksel et
al. [2009] introduced “Hair Meshes” to model hair using polygonal
meshes with various topological operations. Wang et al. [2009] in-
troduced a method to synthesize new hair styles from guide strands
based on texture synthesis techniques.

Model-based reconstruction. Model fitting methods have been
applied to the reconstruction of a variety of objects, e.g., architec-
ture, furniture and trees. Livny et al. [2010] uses a tree skeletal
model to reconstruct tree structures from point cloud input. Nan
et al. [2010] introduced “SmartBoxes” to interactively reconstruct
urban architectures with regular box-like structures. Li et al. [2010]

uses “Arterial Snakes” to reconstruct delicate interleaving man-
made structures.

Comparison to our method. We build upon many of the ideas
pioneered by the papers above, including matching hair strands to a
reconstructed orientation field, exploiting a constant-curvature prior
to hypothesize connections between partial strands, and connecting
reconstructed strands to the scalp. However, we achieve a more
plausible reconstruction that better matches the structures of real
hair by focusing on wisp reconstruction, performing a global direc-
tion analysis, and using a connection graph data structure to find
long connected paths between visible hair strands and points on the
scalp. As a result, we are able to reconstruct complex hairstyles
including curly and messy hair, and produce hair models that are
plausible for animation and simulation.

3 Overview

Our method is shown in Figure 2. Its input is a set of images cap-
tured from multiple views for a real hairstyle (or, for some of our
examples, a wig). We key the images to separate foreground and
background, and use the Patch-based Multi-View Stereo (PMVS)
[Furukawa and Ponce 2010] algorithm to reconstruct a raw point
cloud with normals. We perform Moving Least Squares (MLS) fit-
ting to filter the points and normals and compute the 3D orientation
field on the points according to the 2D orientation maps (Sec. 4).

We then identify locally coherent wisp structures and group them
into ribbons that cover the input point cloud. To achieve this goal,
we first grow strand segments on the point cloud, following the
3D orientation field and stopping at discontinuities in orientation.
(Sec. 5.1). Then we cover the grown strand segments with ribbons
to expand the local regions into coherent wisp structures (Sec. 5.2).

Because of occlusion and missing data, the ribbons are discon-
nected from each other and do not form complete wisps. We
discover missing connections between adjacent ribbons by trying
to fit circular arcs to the covered strand segments of the ribbons
(Sec. 6.1). Good fits indicate plausible connections between rib-
bons, which we encode in a connection graph. We also associate
a growth direction with each ribbon by globally optimizing for
compatible connections and local hints of ribbon direction using
a Markov Random Field (MRF) formulation (Sec. 6.2). Following
the connections and optimized directions, the ribbons can be con-
nected up to form complete wisps (Sec. 6.3).

We attach the wisps to the scalp of a manually fit head model
(Sec. 7.1), then generate interior wisps to fill in the empty re-
gions inside the hair volume, which had been occluded in the input
(Sec. 7.2). Finally we synthesize strands using the complete at-
tached wisps and the interior wisps (Sec. 7.3).

4 Reconstruction

We begin by reconstructing an initial point cloud and 3D orienta-
tion field from a set of input images, acquired under unconstrained
lighting. We semi-automatically segment out the hair from the
background, then use PMVS [Furukawa and Ponce 2010], a state-
of-the-art multi-view stereo algorithm, to reconstruct a point cloud.
We use around 30 ⇠ 50 input images for the reconstruction.

Filtering. The initial point cloud and the estimated normals from
PMVS can be noisy, so we smooth them with Moving Least Squares
(MLS) [Levin 1998]: for each point, we fit an optimal plane to the
locally-weighted neighbors near that point. The normal of the plane
and the point’s projection on the plane are then used to update the
point’s original normal and position. We use a sigma of 2mm to
achieve plausible filtering results.

(a) (b) (c) (d)

Figure 3: Point cloud and orientation field generation. From a
set of input images (a) we compute a point cloud (b) using PMVS
[Furukawa and Ponce 2010]. We then apply moving least squares
fitting to smooth out the reconstruction noise (c) followed by com-
puting a 3D orientation field (d) based on the point cloud and the
input images.

2D orientation maps. We compute an orientation map for each
input image using the method of Luo et al. [2012], which uses a
bank of rotated filters to detect the dominant orientation at each
pixel. The orientation map is then enhanced with 3 passes of itera-
tive refinement for better signal-to-noise ratio, as proposed by Chai
et al. [2012]. To further reduce noise in regions with low confi-
dence, we apply the bilateral filtering method of Paris et al. [2004]
to diffuse orientations from high-confidence regions.

3D orientation field. We use the 2D orientation maps to compute
a 3D orientation field on the technique of Wei et al. [2005]. How-
ever, it is challenging to determine the visibility of each point in a
point cloud to all the input views. We find the following scheme
effective in our situation without having to apply the more sophis-
ticated methods such as [Mehra et al. 2010].

For each point p in the point cloud with normal n, we find a ref-
erence view Y among all the views which has the minimum angle
between n and the line-of-sight vector v = hc � pi, where c is the
view’s projection center and h·i is the normalization operator (i.e.,
hAi = A/kAk for any vector A 6= 0). We then compute a reference
3D orientation oY = hvY ⇥ dY ⇥ ni, where dY is the orientation at
p’s projection on Y ’s orientation map and vY is Y ’s line-of-sight
vector. We can determine a view V as one of the visible views
V to p if V ’s derived 3D orientation oV = hvV ⇥ dV ⇥ ni at p is
compatible with oY , i.e., |oV · oY | > To, where vV is V ’s line-of-sight
vector and dV is the orientation at p’s projection on V ’s orientation
map. To = 0.5 is a threshold to reject outlier views invisible to p.
The final 3D orientation o at p can be computed by maximizing

r = max
o

Âv2V wV (o · oV)2

Âv2V wV
, subject to kok = 1, (1)

where wV = max(n · vV , 0). This can be solved efficiently by sin-
gular value decomposition. r is defined as the confidence of the
3D orientation o. Note that our formulation ensures that the 3D
orientation o for each point p is normal to the point’s normal n.

With the 3D orientation defined at each point in the point cloud, the
3D orientation o(p) at any point p can be computed as:

o(p) = arg max
o Â

q2N (p)
exp

✓
kp � qk2

2sd

◆
rq(o · oq)

2,

subject to kok = 1, (2)

(a) (b) (c)

Figure 4: The steps of covering. Strand segments are first grown to
cover the input point cloud (a). A ribbon is then expanded to cover
adjacent strand segments (b). The covering continues until all the
strand segments are covered by ribbons and thus reveals the locally
coherent wisp structures (c).

where N (p) is the set of neighboring points around p and sd the
parameter to control interpolation smoothness (2mm in our experi-
ments). oq and rq are the orientation and confidence of a neighbor-
ing point q respectively. See Figure 3.

5 Covering

We begin the process of analyzing the hair’s structure by proceeding
bottom up: we first grow local strands, and then group coherent
groups of strands into ribbons. In this way, we cover most of the
point cloud with ribbons, omitting only those portions where we
did not find coherent structures (Figure 4).

5.1 Covering by Strand Segments

We grow a number of strand segments S from a set of seed points.
Typically we use all the points in the point cloud as seed points. A
strand segment S 2 S is a chain of vertices (p1, . . . , pN) connected
by line segments in 3D space.

Growing. Starting from a seed point q we grow S in both direc-
tions t(q) = ±o(q), constrained by the 3D orientation field as well
as the point cloud. For each growing direction, we repeatedly per-
form forward Euler steps to extend S from the current growing ver-
tex pi: p0

i = pi + t(pi)d , where d is a small increment step (2mm)
and t(pi) the current growing direction. To avoid drifting from the
point cloud during the integration, we apply moving least squares
to project p0

i onto some point p00
i within the point set surface defined

by the point cloud. The growing is terminated, in either growing
direction, if any of the following applies:

1. Incompatible growing direction: |t(p00
i) · t(pi)| < Tt , where

t(p00
i) = sgn

�
t(pi) · o(p00

i)
�

o(p00
i) is the next growing direction

from p00
i consistent with t(pi).

2. Being in holes or out of boundary: |N (p00
i)| < TN .

3. Unreliable MLS projection: |hp00
i � p0

ii · t(pi)| > TMLS. This
happens where the estimated normals are unreliable.

We set Tt = 0.9, TN = 5 and TMLS = 0.5 in all our examples. The
next growing vertex is obtained by pi+1 = p00

i if none of these ter-
mination conditions apply.

Note that in the computation of the next orientation o(p00
i) (Equa-

tion 2), we on-the-fly select N (p00
i) with orientations compatible

with the current growing direction t(pi), i.e., q 2 N (p00
i) only if

|oq · t(pi)| > To. This scheme avoids the orientational ambiguities
at the crossings of multiple hair wisps with different orientations
during strand growing. In contrast, many previous methods [Paris

w
Rwl

Figure 5: A ribbon R is a grid of 3D vertices. The two para-
metric directions w 2 [0,W] and l 2 [0, L] are shown with arrows.
Isocurve Rw goes along the l direction (bold line). The ranges
g�(l), g+(l) of the ribbon is shown in red dashed lines (Sec. 7.3).

et al. 2008; Chai et al. 2012] precompute a diffused 3D orientation
field, and the orientations at wisp crossings are problematic.

Smoothing. The initial grown strand may be noisy because of the
MLS projection step and the noise in the input point cloud. We
therefore smooth the strand by minimizing the following energy:

E =Â
i

a0
��pi � p(0)i

��2
+ a1

��pi+1 � pi � t(p(0)i)d
��2

+ a2
��pi�1 � 2pi + pi+1

��2
,

(3)

where pi is a vertex on a strand, p(0)i is the initial position of pi be-
fore optimization, pi�1 and pi+1 are the predecessor and successor
of pi on the strand and a0, a1 and a2 are weights that control posi-
tional, orientational, and curvature energy terms. We set a0 = 0.1,
a1 = 1 and a2 = 5. (assuming the point cloud is in millimeters).

Covering. After a strand S is grown and smoothed, we remove
the seed points that S covers from the original seed points to avoid
repeated growing. To find if a seed point q is covered by a strand,
we traverse every line segment (pi, pi+1) in the strand and compute
the distance between q and (pi, pi+1) to find the minimum distance.
If the minimum distance is smaller than a designated threshold D
(set to 1.5mm), q is covered by the strand.

We repeat the growing, smoothing and covering steps above until
all the seed points are covered.

Plausibility check. The strand growing may cause implausible
strand segments, such as U-shaped strands with low turning points.
To avoid this, we compute a height value H(p) = p · ddown for each
point p in S, where ddown is a reference down direction, and check
each height difference DH of every pair of consecutive local ex-
trema. If the height difference DH > TH (TH is set to 50mm), then
we split S at the extrema points. Note that the connections between
these split strand segments will be re-discovered in the connection
analysis (Sec. 6.1) for the subsequent connection graph (Sec. 6.2).

5.2 Covering by Ribbons

Intuitively, our goal is to group nearly-parallel strand segments into
ribbons, which will later be connected into complete wisps. Thus,
the coherence present in our final output is a function of the co-
herence we are able to find in the strand-to-ribbon grouping stage.
We proceed greedily, by always working with the currently longest
strand segment that has not been covered by a ribbon.

Ribbon. Formally, a ribbon R is a 2D grid of 3D vertices {Rj
i }

where i = 0, 1, . . . , L and j = 0, 1, . . . ,W . L is the length of the
ribbon and W the width. The isocurves Rj along the length define
the orientation of the ribbon. Isocurve RW/2 is defined as the center
isocurve of the ribbon (Figure 5).

After tessellating the grid of the ribbon, we can use R to define
a local parameterization R(w, l) : [0,W] ⇥ [0, L] 7! R3 , where
w 2 [0,W] and l 2 [0, L]. Also, the inverse projection operator
R�1(p) : R3 7! [0,W] ⇥ [0, L] can be defined for any point p by

(a) (b) (c)

Figure 6: Connection and direction analysis on curly ribbons. We
find possible missing connections between the ribbons by fitting cir-
cular arcs to the covered strands as shown in blue arcs (a). The
direction analysis is performed to determine the directions of the
ribbons in (b) (from blue to red). Notice that the resulting incom-
patible links are colored in red. Finally ribbons are connected up to
form wisps (c). Note that the upper overlapped wisps are removed.

finding the closest point q on the tessellated ribbon and mapping
back to the parametric domain.

We can define the orientation oR of each vertex on the ribbon
as oR(R

j
i) = hRj

i+1 � Rj
i�1i and the normal as nR(R

j
i) = h(Rj+1

i �
Rj�1

i) ⇥ (Rj
i+1 � Rj

i�1)i. These definitions can be extended to all
the points on the ribbon by linear interpolation.

Expansion. Starting from a strand segment S, we add S to R as
the first isocurve R0, then we expand the width of R on both sides
and fit to the input point cloud. The initial expansion offsets are
computed as b(R0

i) = ±oR(R0
i) ⇥ n(R0

i), where n(R0
i) is the normal

at point R0
i . n(R0

i) can be computed as the weighted average of
the normals of the neighboring points N (R0

i). We then initialize a
new isocurve R0 from R0 by: R0

i = R0
i + b(Si)D. We apply MLS

projection to every point of R0 on the input point cloud and smooth
R0 as in Sec. 5.1.

Covering. Now we try to cover more adjacent strand segments
with the expanded ribbon (Figure 4). For each adjacent strand seg-
ment S, we project each point pi of S onto R as q = R�1(pi) and
classify pi as a bad point if any of following applies:

1. Incompatible orientation: |oS(pi) · oR(q)| < Tt , where oS(pi) =
hpi+1 � pi�1i is the strand orientation at pi.

2. Too far away: kpi � qk > D.

S is covered by R if and only if the number of bad points is less
than Tbad (set to 10).

We continue to expand R if there are new strand segments covered
by R . Otherwise, we mark this expansion as failed. If we have 2
consecutive failed expansions, we terminate the expansion on the
current side and try the other side if it has not been expanded.

Note that when the expansion on one side is terminated, we may
have excessive expanded isocurves for covering the strand seg-
ments. We then repeatedly remove the outermost isocurves on both
sides from R given that the set of covered strand segments are un-
affected by the removal. Also, after the first expansion, we can
replace n(Rj

i) with nR(R
j
i) to evaluate the expansion offset b(Rj

i).

6 Connection and Direction Analysis

So far, our bottom-up analysis of the hairstyle has proceeded by
local agglomeration. However, occlusions and missing data force
us to look for more distant connections between ribbons (Sec. 6.1).

(a) (b) (c) (d)

Figure 7: Rejection criteria in connection analysis. Adjacent
strand segments (solid curves) with end vertices (dots) are fit with
circular arcs (dashed curves). (a) Large fitting error. (b) Incompat-
ible curvatures. (c) Large torsion. (d) Large overlap.

These connections, however, may be less reliable, and in fact may
be inconsistent with each other.

This inconsistency becomes apparent when we attempt to assign
a direction to each ribbon: which way strands should traverse the
ribbon as they go from scalp to tip. This direction will be necessary
for final strand synthesis (Sec. 7.3), yet is difficult or impossible
to infer locally from the input, especially for challenging hairstyles
in which hair strands can go in all directions such as the messy
hairstyle illustrated in Figure 13 and the curly hairstyle with helical
wisp structures illustrated in Figure 6.

Therefore, we encode the hypothesized ribbon connections in a
graph, and perform a global direction analysis (Sec. 6.2) to discover
the most consistent direction assignments. We drop any connec-
tions that are inconsistent with the assigned directions, and connect
the ribbons into our final wisps (Sec. 6.3) as illustrated in Figure 6.

6.1 Connection Analysis

We analyze the possible connections between two ribbons by fitting
circular arcs between the strand segments covered by these ribbons.
We use circular arcs as the fitting model because hair strands ex-
hibit low variation in curvature, as suggested by the hair simulation
model [Bergou et al. 2008]. Also, efficient methods [Chernov 2011]
exist to fit circles robustly in the presence of noise and missing
data. Note that one could use helix fitting [Savadjiev et al. 2006]
to explicitly account for hair torsion in the fitting model, however
we found that helix fitting is much more expensive to compute and
tends to overfit for noisy data.

Thus, we test each pair of adjacent strand segments S and S0 cov-
ered by R and R 0, respectively, and having two end vertices p and
p0 within a distance of 30mm. We extract K (set to 10) closest
vertices on S and S0 to p and p0 denoted as P = {p1, . . . , pK} and
P 0 = {p0

1, . . . , p0
K} (p = p1 and p0 = p0

1), from the closest to the
farthest. We also denote Q = {qi} = {pK , . . . , p1, p0

1, . . . , p0
K} as

the concatenation of the input points. We adopt a method in [Cher-
nov 2011] to fit a 3D circle to Q . First, we fit a plane to these points
so that we can project the points on the plane and apply robust 2D
circle fitting methods to initialize the fit. We find that Taubin’s alge-
braic fit [Taubin 1991] works well even in the cases with very small
curvature. We then refine the circle center ĉ, normal n̂ and radius r̂
jointly using Levenberg-Marquardt.

We use a set of criteria to reject bad fits (Figure 7):

(a) Large fitting error. We reject the fit if the Root Mean Square
(RMS) fitting error is larger than 2mm.

(b) Incompatible curvatures. We also compute the curvatures k and
k 0 of P and P 0 by fitting circles and compare with the curvature k̂
of the fit circle. We reject the fitting if |k � k 0|/|k + k 0| > Tcurv
or |2k̂ � k � k 0|/|k + k 0| > Tcurv, where Tcurv is set to 0.4.

(c) Large torsion. We reject the fitting if the angle between any two
of the normals n1, n2 and n̂ is larger than 90 degrees, where n1
and n2 are the normals of the fit circles to P and P 0.

Ribbon

Direction

Incompatible link

Compatible link

Figure 8: A connection graph consists of ribbons connected by
links. The ribbons are assigned with directions (dashed line). The
links can be compatible (blue) or incompatible (red) with the direc-
tions of the incident ribbons.

(d) Large overlap of the input points. We compute the overlap of
the input points as h = 1 � |V/V0|, where the signed sweep-
ing volume V = Âi(qi+1 � ĉ) ⇥ (qi � ĉ) · n̂ and the unsigned
sweeping volume V0 = Âi |(qi+1 � ĉ) ⇥ (qi � ĉ) · n̂|. We reject
the fitting if h > 0.1.

If we accept the fitting, we project p and p0 onto R and R 0 and
define the pair of projected points (R�1(p), R0�1(p0)) as the link
points of a link `. We refer to the link points R�1(p) and R0�1(p0)
as `(R) and `(R 0). See example fitting results in Figure 6.

6.2 Direction Analysis

Connection graph. The major data structure used in direction
analysis is the connection graph (Figure 8). The connection graph
consists of ribbons as vertices and connections between ribbons as
edges. Each connection contains one or more links derived from
the connection analysis (Sec. 6.1).

The direction D(R) of a ribbon R is either consistent with the para-
metric direction along the length 0 ! L or the opposite L ! 0.
We denote that a strand segment S = {p1, . . . , pn} is compati-
ble with the ribbon’s direction D(R) as S ⇠ D(R), if the fol-
lowing expression is false for the majority of the vertices in S:
oS(p) · oR(R�1(p)) > 0 � D(R) = 0 ! L, where p is a vertex of S
and � the exclusive or operator.

We define that a link ` between R and R 0 is compatible with D(R)
and D(R 0) if the following expression is true for strand segments
P = {p1, ..., pK} in R and P 0 = {p0

1, ..., p0
K} in R 0 (Sec. 6.1) used

to fit `: P ⇠ D(R) � P 0 ⇠ D(R 0). Intuitively, a link is compatible
with the directions of two ribbons if a strand can grow from one
ribbon to the other through the link without having an incompatible
direction at the other, as illustrated in Figure 8.

We can then define the set of compatible links between R and R 0

as C(R , R 0) and the set of incompatible links as C(R , R 0).

The strength Y(L) of a set of links L between two ribbons R and
R 0 is defined as the smaller one of the numbers of different strand
segments in R and R 0 used to fit the links in L . Note that this
definition down-weights the outlier case where only one or a few
strand segments in a ribbon are connected by many strand segments
in another ribbon, as often occurs in practice.

For ribbons that overlap each other, we define the overlap h(R , R 0)
of R and R 0 as the ratio of the number of overlapped vertices over
the total number of vertices in R and R 0. A ribbon vertex p is
overlapped with a vertex p0 in another ribbon if kp � p0k < D. The
directions of R and R 0 at p and p0 are compatible if the following
expression is false: oR(p) · oR0(p0) > 0 � D(R) = D(R 0). We de-
note that D(R) is compatible with D(R 0) as D(R) ⇠ D(R 0) if the
directions are compatible at the majority of the overlapped vertices
or as incompatible D(R) ⌧ D(R 0) otherwise.

R R�`�
f�

RW/2 R�f�(W/2)
��

RW/2
0

Figure 9: A ribbon R is connected up to a predecessor ribbon R ⇤.
The feasible link `⇤ that minimizes the mapping distortion in Equa-
tion (10) within the distance s` of vertex RW/2

0 defines a stitching
mapping f ⇤ to map each isocurve of R to that of R ⇤. In particular,
R ’s center isocurve RW/2 is mapped to R⇤ f ⇤(W/2).

MRF formulation. We use a Markov Random Field (MRF) to
optimize the set of directions D for all the ribbons by minimizing
the following energy:

E = Â
R

Eribb(R) + Â
R ,R 0

alinkElink(R , R 0) + acloseEclose(R , R 0). (4)

The ribbon energy Eribb accounts for the fact that the ribbon’s direc-
tion is more likely to be falling down due to gravity or going farther
away from scalp since it originates from the scalp.

Eribb(R) =
1
2h

⇣
H(RW/2

l1)� H(RW/2
l2) + z(RW/2

l1)� z(RW/2
l2)

⌘
, (5)

where H is the height function defined in Sec. 5.1, z(p) is the dis-
tance from a point p to the closest point on the scalp (please refer
to Sec. 7.1), l1 = 0 and l2 = L if D(R) = 0 ! L and l1 = L and
l2 = 0 if D(R) = L ! 0. h is a height threshold (set to 100mm) to
adjust the sensitivity of ribbon’s direction to its height difference or
the scalp distance difference.

The link energy Elink minimizes incompatible links:

Elink(R , R 0) =
Y
�

C(R , R 0)
�

maxR ,R 0 Y
�

C(R , R 0)
� . (6)

Finally, the closeness energy Eclose penalizes incompatible direc-
tions between overlapped ribbons:

Eclose(R , R 0) =

(
0, D(R) ⇠ D(R 0)

h(R , R 0), D(R) ⌧ D(R 0)
. (7)

The total energy E can be effectively minimized using the method
in [Boykov et al. 2001].

6.3 Connecting Ribbons into Wisps

After we determine the ribbon directions, we connect the ribbons
into wisps following the compatible links. For the sake of brevity,
we now assume that each ribbon R is consistent to its optimized
direction, i.e., D(R) = 0 ! L.

For each ribbon R , we connect “up” from the beginning (l = 0) of
the ribbon to the end (l = L) of a predecessor ribbon R ⇤. To sim-
plify the problem, we use the center isocurve RW/2 as the delegate
to the ribbon when we are looking for the predecessor ribbon to
connect up (Figure 9).

We first define a feasible link that can be used to connect the be-
ginning of RW/2 to another ribbon. We require the feasible link to
be close enough to RW/2

0 . To be specific, a link ` is feasible for R
if k`(R) � RW/2

0 k < s`, where s` is a distance threshold (10mm)
to define closeness between the link point and the center isocurve.
We can then define the set of feasible links between R and R 0 as

F (R , R 0). The predecessor ribbon R ⇤ is the ribbon that maximizes
the strength of compatible and feasible links between R and R ⇤:

R ⇤ = arg max
R 0

Y
�

F (R , R 0) \ C(R , R 0)
�
. (8)

Given a feasible link ` 2 F (R , R ⇤) \ C(R , R ⇤), we can define a
stitching mapping f ` : [0,W] 7! [0,W ⇤], where [0,W] is the width
domain of R and [0,W ⇤] of R ⇤ as follows:

f `(w) = min(max(w � `(R).w + `(R ⇤).w, 0),W ⇤), (9)

where `(R).w is the w parameter of `(R) and `(R ⇤).w of `(R ⇤).

Finally, we choose the link `⇤ 2 F (R , R ⇤) \ C(R , R ⇤) for the
stitching mapping f ⇤ that minimizes the mapping distortion:

`⇤ = arg min
`

✓
1 � f `(W) � f `(0)

W

◆
. (10)

Using f ⇤ we can extend every isocurve Rw 2 R to R⇤ f ⇤(w) 2 R ⇤.
To generate a smooth transition between the two isocurves, we first
connect them with a straight line using a discretization step of d ,
then we perform the smoothing step described in Sec. 5.1 accord-
ing to the orientation field. Note that during the smoothing, we fix
the two end points of the line and use a larger sd to compute the
orientation since the transition region lacks data points.

We replace the center isocurve RW/2 with R⇤ f ⇤(W/2) and repeat the
connection process above until we cannot find any predecessor rib-
bons to connect.

However, in order to maximize the chance of finding a predeces-
sor ribbon and connecting up, when no predecessor ribbons can be
found directly from R , we also look for feasible links in the adja-
cent overlapped ribbons R 0 with h(R , R 0) > 0. We compute the R⇤

and f ⇤ with respect to R 0 but change the definition of a feasible link
to any link ` that k`(R 0) � RW/2

0 k < s` as well as replacing the role
of R 0 with R in Equations 9 and 10.

To avoid cycles when connecting up, we store all the ribbons con-
nected and avoid connecting to them again. Also, we try to avoid
local cycles by rejecting connections to a overlapped ribbon R 0 with
h(R , R 0) > 0.1

After all the ribbons are connected up into wisps, we remove all
wisps that are covered by others. To see if one ribbon is covered,
we check if every vertex of the wisp is overlapped by the vertices
of other wisps using the method in Sec. 6.2. We also remove outlier
ribbons that fail to connect to at least one other ribbon, which often
arise from outlier points of the initial point cloud.

7 Synthesis

Once we have found the wisps, we attach them to the scalp. Since
the interior of the hair is occluded, and hence we have no data
there, we need to generate interior wisps to fill in the empty region.
Finally, we use the attached exterior wisps and interior wisps to
generate plausible strands according to the input point cloud and
orientation field.

7.1 Attaching Wisps to the Scalp

Head model and scalp. We manually fit a head model to each
dataset and paint on the model to indicate the possible scalp region.
We also paint a parting line to specify the vertices on the scalp
that parts the hair into different directions according to the captured
hairstyle (Figure 10). Painting on the model can be done in minutes

p

q

pM

r

(a) (b) (c)

Figure 10: (a) Attaching a point q to the scalp (the red area).
p is the closest point to q on the scalp and pM is a point on p’s
closest path to the parting line (the yellow line) that maximizes the
directional compatibility. r is chosen as the root point to attach and
generate the interior strand (green curve). A real attaching example
with internal strands is shown in (b) with a zoom-out view in (c).

using any 3D mesh texture painting software and the scalp region
is reused for all the examples.

Hair growing directions. Human hair has natural growing di-
rections perpendicular to the radial line from the hair whorl on
the scalp. However, in practice it is very difficult to determine
the growing directions for non-trivial hairstyles. Existing methods
either simplify the growing directions to normal directions on the
scalp [Yagyu et al. 2006] or specify the growing directions manu-
ally [Sobottka et al. 2006].

We notice the fact that most common hairstyles have a distinc-
tive parting line to part the hair into different growing directions.
We compute the reference growing directions with the drawn part-
ing line on the scalp. We first compute shortest paths from the
vertices on the parting line to every vertex p on the scalp. For
each p we denote the shortest path from the parting line to p as
G(p) = {p1, p2, ..., pN}, where p1 is the vertex on the parting line
and pN = p. Then the reference growing direction ds(p) at p is
computed as ds = pN � pN�1. We can compute the reference grow-
ing directions at every point on the scalp by interpolation.

Root point assignment. To attach a wisp R to the scalp, we first
need to find a root point r and a growing direction dg on the scalp
for R . Here we again use the center isocurve RW/2 as the delegate
for R to simplify the problem. For notational simplicity, we denote
the vertex RW/2

1 at the beginning of R as the attaching point q. We
find the closest scalp vertex p for q and search along p’s shortest
path from the parting line G(p) = {p1, p2, ..., pN} and find pM with
the maximum directional compatibility:

pM = arg max
pi2G(p)

hq � pii · ds(pi). (11)

To avoid cluttering of the root points we randomly select a point pk
from {p1, p2, ...pM} and sample the root point r around a neighbor-
hood of pk on the scalp. The final growing direction dg is computed
as:

dg =

(
ds(r), n(r) · ds(r) > n(r) · hq � ri
hq � ri, n(r) · ds(r) < n(r) · hq � ri, (12)

where n(r) is the normal at root point r on the scalp. The second
case adjusts dg when the attaching points are above the root points
on the scalp.

Interior strand generation. We use a technique similar to that in
Sec. 6.3 to generate the interior strand between the attaching point
RW/2

0 at the wisp and the root point r. That is, we first initialize the
strand as a straight line and then smooth it. However, it is desirable
to ensure that interior strands are hidden in the interior region, so

Figure 11: The synthesized strands (right) with the wisps (left).

that they have minimum impact on the exterior appearance. To this
end, we use the interior field to regularize the interior strands in the
interior region.

The interior field I is a level set field that smoothly transitions from
0 to 1 from the scalp points to the input data points. Using a reg-
ular grid, we first set the voxels containing input points to 1 and
the voxels on the scalp to 0. Then we apply diffusion constrained
by the values of these set voxels to smoothly generate the interior
values between the input points and the scalp. We add the following
interior energy term Eint to Equation 3 for the interior field:

Eint = Â
i

aintB
✓

i
N

� I(pi)

◆2

, (13)

where N is the number of vertices of the interior strand and B the
diagonal length of the bounding box of the input point cloud. The
weight for interior field aint is set to 0.005. We assume the direction
of the interior strand is from the scalp to the input data points.

To keep the growing direction on the root point of the interior strand
during smoothing with Equation 3, we fix two points nearest to the
root point, to align the strand with the growing direction.

After we compute and attach the interior strand for the center
isocurve RW/2, we offset and attach the interior strand to all the
other isocurves in R to form a complete wisp from the scalp.

7.2 Interior Wisp Generation

Interior wisps are generated in a similar way as the interior strands
in Sec. 7.1. Specifically, we sample the points from the input point
cloud that have greater distances to the scalp than a specified thresh-
old. For each, we generate an interior strand as in Sec. 7.1. To make
the strand completely hidden in the hair volume, we truncate the
farther end of the curve.

We then expand the strand into a ribbon with a designated width.
Note that the initial normals of the ribbon can be derived from the
gradient of the interior field —I.

7.3 Strand Synthesis

We introduce the ranges of a wisp R to fit the input data more accu-
rately when we synthesize the strands. To be specific, the ranges of
R are two functions g�, g+ : [0, L] 7! [0,W]. g�, g+ are the lower
and upper bound of the width parameter defined on [0, L].

To compute the ranges of each wisp R for the input data points,
we project each data point p to R and check if p is covered by R .
Uncovered points are not used to compute the ranges of R . We then
update the ranges with the covered point p as follows:

g�(lp) = min(g�(lp), R�1(p).w)

g+(lp) = max(g+(lp), R�1(p).w)
(14)

Figure 12: We use a robotic gantry to position an SLR camera at 50
views to capture the images for the wigs (left). For real hairstyles,
we use a camera array of 30 SLR cameras (right).

where lp = bR�1(p).l + 0.5c is rounded to the nearest integer
length parameter. We then smooth g�(l), g+(l) by fitting smooth
1D curves to them on [0, L]. To improve realism, we also taper
the ranges towards the strand tips using a quadratically decreasing
function as the tapering factor.

For the interior wisps where no data points can be used to compute
the ranges, we simply set the ranges to the maximum: [0,W].

We can interpolate the ranges by defining the range interpolation
function g(l, t) = g�(l) · (1 � t) + g+(l) · t and a strand S can be
synthesized from R by Rg(l,t)

l for all l 2 [0, L].

Now S is synthesized on the surface of the wisp (Figure 11). To add
thickness to the wisps, we offset S in R ’s inverse normal direction
by a random amount between 0 and Tthick. We find that Tthick = 3mm
works well for all the examples in the paper. Finally, we perform
smoothing on S using Equation 3.

To control the density of the synthesized strands, we record the
number of strands covering the vertices within the ranges of the
wisps during strand synthesis. If the number of covering strands
for a vertex is smaller than a preset threshold Tdensity, the vertex can
initiate the synthesis of one new strand covering it from its wisp,
otherwise the vertex is skipped. We iterate on each vertex until no
vertex can initiate the synthesis of new strands.

8 Results

We present results of our pipeline on five datasets. Three of these
are of wigs, and were captured using a single digital SLR camera
mounted on a motorized spherical gantry and moved to 50 positions
(Figure 12 left). These results are shown in Figure 1 and the first
two rows of Figure 13. Two other results (Figure 13, last two rows)
are of real hair, and were captured using a rig containing 30 cameras
(Figure 12 right).

As shown in Figure 1, our system is capable of reconstructing chal-
lenging hair styles. Our connection graph is able to establish correct
correspondences among the partially-visible portions of curls, and
hence our reconstructed wisps are, in most cases, able to follow
the curls all the way from the scalp to the tips. Figure 14 com-
pares the reconstruction details to the input hairstyle and shows
that our reconstructed hair model can faithfully reveal the intricate
hair structures in the input hairstyle. Figure 13, first row, contains
many crossing wisps that present a challenge to competing algo-
rithms, while the second row illustrates a complicated and disor-
dered hairstyle. Though we are not able to reconstruct each curl
perfectly, many specific curls are captured, and the general im-
pression of the hairstyle makes our reconstructed data suitable for
virtual characters.

Input image (view 1) Synthesized hair (view 1) Input image (view 2) Synthesized hair (view 2) Color-coded wisps

Figure 13: Examples of our pipeline applied to four datasets. For each, we show two views of the reference input images and the synthesized
hairs as well as a color-coded visualization of the reconstructed wisps, where synthesized strands in the same wisp are in the same color.

The third and fourth rows of Figure 13 illustrate hair capture for
a “digital double” scenario. Though the required acquisition ap-
paratus is nontrivial, it consists solely of digital (still) cameras.
Acquisition is thus completely passive and one-shot, meaning that
it would be practical to incorporate a hair capture session into a
movie special-effects workflow (and budget). These hair styles are
simpler than the wigs (which were chosen to illustrate challenging
cases), and our reconstruction is relatively accurate. Though we
have chosen rendering parameters by hand (for the Marschner et
al. [2003] hair scattering model) to roughly match the input images,
a closer match might be obtained using a method such as that of
Bonneel et al. [2009]. Of course, situations in which hair is colored
or highlighted, such as the fourth row of Figure 13, would require

even more sophisticated estimation of hair appearance; we believe
that this is an interesting and necessary direction of future work to
allow hair capture for digital doubles to become practical.

To evaluate the plausibility of our reconstruction results, we created
animations of growing the synthesized strands from the scalp to the
tip to visualize the internal coherent topology of the hair model.
Please see the accompanying video for the results.

Robustness. We evaluate the robustness of our method using in-
puts of varying quality. We apply our pipeline on an input point
cloud of 230K points, about 10 times less than the full resolution
2M points which we used to reconstruct the hair model shown in
Figure 1. We compare our reconstructed hair models for two differ-

Figure 14: Close-up comparison of the hair details between the
reference hairstyle and our reconstructed hairstyle.

(a) (b) (c) (d)

Figure 15: We evaluate the robustness of our method by recon-
structing hairstyles (b) and (d) from the input point clouds of 2M
points (a) and 230K points (c), respectively. Notice the little visual
difference of our results from the inputs of very different quality.

Figure 16: Three frames from a physical simulation in which hair is
tousled through rapid head motion. As with most hair simulations,
this one uses sparse guide strands (About 1K in this simulation,
shown at top), which naturally arise from the reconstructed wisps.
The motion of the guide strands is interpolated onto the full set of
strands (about 30K shown at bottom).

ent inputs in Figure 15. Note that the result from low quality input
faithfully recovers all key hair wisp structures and has little differ-
ence on the visual quality compared to the full resolution result.

Simulation. Our wisp-based hair models are plausible for hair
simulations. We demonstrate a simulation setup using the cen-
ter isocurve of each wisp as the guide strands in a hair simulator
based on articulated rigid curves. The hair motion is driven by
a pre-defined scalp movement and the full motion of the synthe-
sized strands is then interpolated from the guide strands. We use
about 1K guide strands to drive around 30K synthesized strands.
Three frames of the simulation result are shown in Figure 16, and
more results can be found in the accompanying video. More ad-
vanced simulation-specific processing and computation are impor-
tant to improve the realism of the simulation result, including pre-
tensioning for inverse statics and collision correction for complex
hair structures.

Parameter choice. Although our method involves a large num-
ber of parameters, we find most of the parameters insensitive to
the input datasets and we use the provided fixed values throughout
our experiments. One parameter we do find useful to improve the
results for specific hairstyles is the curvature weight a2 for strand
smoothing in Equation (3). For straight hairstyles, we set a2 = 30
to provide stronger regularization against the stereo noise in the re-
constructed point cloud to compensate for the weak regularization
nature of PMVS.

Timings. All the examples are computed on a quad-core Intel i7
machine with 16GB memory. For datasets with 50 views, the recon-
struction of initial point cloud takes about one hour using PMVS.
The computation for 3D orientation field takes 3 minutes. All the
subsequent processing steps are implemented single threaded. For
an input point cloud with 2M points, the covering step takes 3 min-
utes. The connection analysis takes 5 minutes and direction analysis
1 minute. The final strand synthesis takes 2 minutes.

9 Limitations, Future Work and Conclusion

Although our method can be successfully applied to a variety of
challenging hairstyles, the ribbon-based representation and certain
smoothness constraints prevent our method from capturing very
fine-scale stray hairs or extremely disordered hairstyles (This be-
comes clear by looking at the result of messy hairstyle in Figure 13).
The effective amount of regularization, however, could be reduced
by starting with a more accurate initial point cloud obtained using
one of the recent methods such as [Jakob et al. 2009] or [Herrera
et al. 2012]. These more accurate hair reconstruction methods can
also help the cases with smooth hairstyles, for which we find larger
perceivable reconstruction errors in the point cloud due to increased
hair specularity and the weak regularization nature of PMVS. Other
improvements to our method might include making our connection
and direction analysis more physically based, by including gravity,
contact forces, and hair growth models (with estimated stiffness and
“curliness” parameters) as priors. Further image-based analysis can
also be done to estimate the thickness of the wisps automatically.

Another especially difficult class of hairstyles is those in which the
hair does not hang freely but is constrained by braids, dreadlocks,
clips, ties, or support against the body. We believe that most ex-
isting methods, including the one presented here, would have diffi-
culty in generating topologically-correct hair strands in these cases.
Handling these styles may require coupling the hair acquisition pro-
cess with physical simulation, and possibly matching to a database
of exemplars.

Looking beyond geometry, a full system for hair capture should
also include measurement of appearance and motion. As men-

tioned above, researchers have already investigated the problem of
estimating the parameters of hair appearance models, but handling
variation from wisp to wisp is likely to require a combination of
inverse rendering and data-driven techniques.

Because our system is one-shot, it could be generalized to video
input just by running independently on each frame. This is likely
to result in flicker, so some method of ensuring temporal coherence
would be needed. This may require coupling a hair simulator with
the reconstruction system, simultaneously using the data to con-
strain the simulation and using the simulation to provide temporal
coherence and fill in parts of the data that could not be observed.

Overall, the results in Figure 13 suggest that our system can gener-
ate hair models of the sort needed for current production pipelines.
For digital doubles and secondary animated characters, only modest
manual editing might be necessary to achieve the required quality.
For primary characters, of course, there are considerably greater
requirements on quality and controllability, but the captured results
may still serve as a reference for hand-modeling by skilled artists.

Acknowledgments

We thank Steve Marschner from Cornell University, Stephane Ne-
gri, Oytun Akman and Tatjana Dzambazova from Autodesk and
Lee Perry Smith for their help with the data acquisition. We also
thank Karin Cooper and Stephen Bowline from ILM and Chris
Twigg from 3Gear for helping with the physical hair simulation.
This work is partially supported by NSF grant CCF-1012147.

References

BEELER, T., BICKEL, B., NORIS, G., MARSCHNER, S., BEARD-
SLEY, P., SUMNER, R. W., AND GROSS, M. 2012. Coupled 3d
reconstruction of sparse facial hair and skin. ACM Trans. Graph.
31, 4, 117:1–117:10.

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B.,
AND GRINSPUN, E. 2008. Discrete elastic rods. ACM Trans.
Graph. 27, 3, 63:1–63:12.

BONNEEL, N., PARIS, S., PANNE, M. V. D., DURAND, F., AND
DRETTAKIS, G. 2009. Single photo estimation of hair appear-
ance. Computer Graphics Forum (Proc. EGSR) 28, 4.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approxi-
mate energy minimization via graph cuts. IEEE Trans. PAMI 23,
11, 1222–1239.

CHAI, M., WANG, L., WENG, Y., YU, Y., GUO, B., AND ZHOU,
K. 2012. Single-view hair modeling for portrait manipulation.
ACM Trans. Graph. 31, 4, 116:1–116:8.

CHERNOV, N. 2011. Circular and linear regression : fitting circles
and lines by least squares. Monographs on statistics and applied
probability. CRC Press/Taylor & Francis, Boca Raton.

FURUKAWA, Y., AND PONCE, J. 2010. Accurate, dense, and
robust multiview stereopsis. IEEE Trans. PAMI 32, 1362–1376.

HERRERA, T. L., ZINKE, A., AND WEBER, A. 2012. Lighting
hair from the inside: A thermal approach to hair reconstruction.
ACM Trans. Graph. 31, 6, 146:1–146:9.

JAKOB, W., MOON, J. T., AND MARSCHNER, S. 2009. Capturing
hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1–
164:9.

KIM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolution
hair modeling and editing. ACM Trans. Graph. 21, 3, 620–629.

LEVIN, D. 1998. The approximation power of moving least-
squares. Mathematics of Computation 67, 224, 1517–1531.

LI, G., LIU, L., ZHENG, H., AND MITRA, N. J. 2010. Analy-
sis, reconstruction and manipulation using arterial snakes. ACM
Trans. Graph. 29, 5, 152:1–152:10.

LIVNY, Y., YAN, F., OLSON, M., CHEN, B., ZHANG, H., AND
EL-SANA, J. 2010. Automatic reconstruction of tree skeletal
structures from point clouds. ACM Trans. Graph. 29, 6, 151:1–
151:8.

LUO, L., LI, H., PARIS, S., WEISE, T., PAULY, M., AND
RUSINKIEWICZ, S. 2012. Multi-view hair capture using ori-
entation fields. In Proc. CVPR.

MARSCHNER, S., JENSEN, H. W., ANDS. WORLEY, M. C., AND
HANRAHAN, P. 2003. Light scattering from human hair fibers.
ACM Trans. Graph. 22, 3, 780–791.

MEHRA, R., TRIPATHI, P., SHEFFER, A., AND MITRA, N. J.
2010. Visibility of noisy point cloud data. Computers and Graph-
ics 34, 3, 219–230.

NAN, L., SHARF, A., ZHANG, H., COHEN-OR, D., AND CHEN,
B. 2010. SmartBoxes for interactive urban reconstruction. ACM
Trans. Graph. 29, 4, 93:1–93:10.

PARIS, S., BRICEÑO, H., AND SILLION, F. 2004. Capture of
hair geometry from multiple images. ACM Trans. Graph. 23, 3,
712–719.

PARIS, S., CHANG, W., KOZHUSHNYAN, O. I., JAROSZ, W.,
MATUSIK, W., ZWICKER, M., AND DURAND, F. 2008.
Hair Photobooth: Geometric and photometric acquisition of real
hairstyles. ACM Trans. Graph. 27, 3, 30:1–30:9.

SAVADJIEV, P., CAMPBELL, J. S., PIKE, G. B., AND SIDDIQI,
K. 2006. 3d curve inference for diffusion mri regularization and
fibre tractography. Medical Image Analysis 10, 5, 799–813.

SOBOTTKA, G., KUSAK, M., AND WEBER, A. 2006. In Proc.
CGIV, 365–371.

TAUBIN, G. 1991. Estimation of planar curves, surfaces, and
nonplanar space curves defined by implicit equations with ap-
plications to edge and range image segmentation. IEEE Trans.
PAMI 13, 11, 1115–1138.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2009. Example-
based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1–
56:9.

WARD, K., LIN, M. C., LEE, J., FISHER, S., AND MACRI, D.
2003. Modeling hair using level-of-detail representations. In
Proc. CASA, p. 41.

WARD, K., BERTAILS, F., YONG KIM, T., MARSCHNER, S. R.,
PAULE CANI, M., AND LIN, M. C. 2006. A survey on hair
modeling: Styling, simulation, and rendering. TVCG 13, 2, 213–
234.

WEI, Y., OFEK, E., QUAN, L., AND SHUM, H.-Y. 2005. Mod-
eling hair from multiple views. ACM Trans. Graph. 24, 3, 816–
820.

YAGYU, K., HAYASHI, K., AND CHANG, S. 2006. Orientation of
multi-hair follicles in nonbald men: perpendicular versus paral-
lel. Dermatologic Surgery 32, 5, 651–660.

YUKSEL, C., SCHAEFER, S., AND KEYSER, J. 2009. Hair
meshes. ACM Trans. Graph. 28, 5, 166:1–166:7.

