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Abstract
This paper presents a novel, highly distinctive and robust local surface feature descriptor. Our descriptor is predicated on a simple
observation: instead of describing the points in the vicinity of a feature point relative to a reference frame at the feature point, all
points in the region describe the feature point relative to their own frames. Isometry invariance is a byproduct of this construction.
Our descriptor is derived relative to the extended convolution – a generalization of the standard convolution that allows the filter
to adaptively transform as it passes over the domain. As such, we name our descriptor the Extended Convolution Histogram of
Orientations (ECHO). It exhibits superior performance compared to popular surface descriptors in both feature matching and
shape correspondence experiments. In particular, the ECHO descriptor is highly stable under near-isometric deformations and
remains distinctive under significant levels of noise, tessellation, complex deformations and the kinds of interference commonly
found in real data.

Keywords: 3D shape matching, modeling, curves and surfaces, modeling, computer vision – shape recognition, methods and
applications

1. Introduction

Local feature descriptors play a critical role in both image and
shape recognition applications. Generally, the initial step in such
paradigms involves identifying a number of keypoints on a 2D im-
age or 2D manifold. The purpose of local feature descriptors is to
provide a distinctive characterization of the region surrounding each
keypoint, which can then be compared to establish point-to-point
correspondences between images or surfaces. Successful image de-
scriptors, such as SIFT [Low99, Low04] and SURF [BTVG06,
BETVG08], are both highly descriptive, in that characterizations of
different neighbourhoods are sufficiently unique so as to differenti-
ate between the two without ambiguity, repeatable, in that descrip-
tions of regions that are fundamentally the same are nearly identi-
cal, and robust under nuisance parameters including noise and affine
transformations. Similarly, popular surface descriptors, e.g. SHOT
[TSDS10b, STDS14] and RoPS [GSB*13], are insensitive to noise,
mesh resolution and rigid transformations.

For both images and surfaces, the majority of successful descrip-
tors rely on a local frame to encode the neighbourhood about a key-

point. Typically, the construction of these descriptors consists of first
defining a rotationally equivariant frame at the keypoint and then
describing the neighbouring region relative to that frame; such ap-
proaches ensure that the region can be encoded without discarding
discriminating information and that the descriptor is itself rotation-
ally invariant. For shapes, the use of repeatable and noise-robust lo-
cal frames significantly improves descriptor performance [PD11].

In this paper we present a novel, highly descriptive and robust
surface feature descriptor based on a simple observation: instead of
describing the local region relative to the frame at the feature point,
we have all points in a local region describe the feature point relative
to their own frames.

To this end, we leverage an operation called extended convolu-
tion which allows the convolution filter to adaptively rotate as it
passes over a Euclidean domain. Extending the operation to 2D
manifolds, we derive an optimal surface filter, Extended Convolu-
tion Histogram of Orientations (ECHO). Our code is freely avail-
able at https://github.com/mkazhdan/EchoDescriptors.
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Contribution. The proposed surface descriptor is highly descrip-
tive and is invariant to isometric deformations. It exhibits superior
performance, in terms of both descriptiveness and insensitivity to
noise and tessellation, relative to SHOT and RoPS.

2. Related Work

Image descriptors

Owing to its high descriptiveness, insensitivity to changes in
both illumination and viewpoint, and remarkable success in a
variety of applications, the SIFT descriptor [Low99, Low04] has
distinguished itself as one of the premier image feature descriptors.
One of the key contributions of SIFT was the achievement of
invariance under the action of 2D similarity transformations. In
the SIFT pipeline, the scale corresponding to an image keypoint
is determined by the point’s location in scale-space and the orien-
tation is determined by the direction of the gradient at the point.
The point’s neighbourhood is then encoded relative to the frame
corresponding to the assigned scale and orientation to achieve
invariance.

Surface descriptors

The success of SIFT has helped to establish the construction of a
descriptor relative to a local reference frame as the de facto stan-
dard amongst techniques used to achieve rotation invariance. How-
ever, unlike images, surfaces have no inherent signal to facilitate
the construction of frames. To achieve invariance under rigid trans-
formations, prior surface descriptors defined relative to intrinsic pa-
rameterizations, such as ISC [KBLB12], have sacrificed descriptive
potential. In this context, it is not surprising that surface descrip-
tors able to define frames generally exhibit superior overall descrip-
tor performance [PD11]. Of these descriptors, SHOT [TSDS10b]
RoPS [GSB*13], and USC [TSDS10a] are the most popular, and
have been shown to outperform competing methods in terms of de-
scriptiveness and robustness under a variety of nuisance parameters
[STDS14, GBS*16].

The effectiveness of these descriptors is underpinned by the con-
struction of frames based on the surface’s principal curvature di-
rections. Specifically, SHOT, RoPS, and USC compute a weighted
covariance matrix centred at the point of interest. The eigenvectors
of the resulting matrix can be interpreted as a smoothed version of
the principal curvature directions. As long as the principal curvature
values are distinct, a rigid frame can be constructed from the eigen-
vectors, though it is unique only up to sign. Each of these descrip-
tors employ techniques to eliminate this ambiguity so as to produce
a single repeatable frame.

A number of contemporaneous learned surface descriptors have
been shown to significantly outperform SHOT and other hand-
crafted descriptors in certain applications [KZK17, WGY*18,
DBI18, DBI19, SSS19, CPK19]. However, most of these meth-
ods learn local descriptors from existing handcrafted techniques
[KZK17, DBI18], rather than input data [SSS19]. More generally,
many state-of-the art pipelines for shape registration and corre-
spondence directly incorporate ”deterministic” descriptors such as
SHOT in some capacity [VLB*17, LYLG18, DSL*19] and out-

perform learned approaches with the proper settings [DSL*19,
SSDS19].

Beyond standard convolution

Convolution incorporating rotational steering has been recognized
as an effective tool for template matching since the early work of
Freeman and Adelson [FA91, SF96, THO99], and has been ex-
tended to incorporate the actions of larger groups [KC99a, KC99b,
CK16]. More recently, the advent of deep learning in imaging, vi-
sion and graphics has coincided with the development of group
equivariant [CW16a, WHS18, BLV*18, WB18, WW19] and steer-
able [CW16b, WGTB17, WGW*18, EABMD18, WC19] convolu-
tional neural networks (CNNs), which present a general notion of
equivariant convolutions on homogeneous spaces. The majority of
these techniques are concerned with convolutions over either flat
Euclidean spaces or the transformation groups themselves, and most
relevant to our work are a number of contemporary approaches for
defining equivariant convolutions on surfaces. Generally speaking,
these methods can be grouped into two categories: convolutions de-
fined with respect to local geodesic parameterizations of the surface
and graph-based convolutions.

The primary challenge in performing convolution on surfaces lies
in resolving the ambiguity between the orientation of the local sur-
face and that of the filter or kernel. Convolutions defined in terms of
geodesic parameterizations have addressed this issue by either pool-
ing over the responses corresponding to a discrete set of filter ori-
entations [MBBV15, MBM*17, PO18] or defining local reference
frames relative to the extrinsic properties of the surface [BMRB16,
SDL18]. The former approach limits discriminative potential while
the latter can be unstable under deformations.

Most graph-based convolutions eliminate orientation ambiguity
by utilizing radially isotropic filters [PDKS19, ZXW*19]. An ex-
ception are gauge equivariant convolutions [CWKW19] and their
generalization to triangular meshes [dHWCW20], which achieve
equivariance to transformations of the frame field by placing spe-
cific constraints on the filter which, when applied to higher-order
tensors, are not as restrictive as the constraint of radial symmetry.
While graph-based methods can be computed efficiently [KW17,
DBV16], their applications are limited as the size of the filter can-
not exceed that of the immediate graph neighbourhood.

3. Method Overview

The proposed descriptor is derived from an operation called ex-
tended convolution [MBK*20]. This is an extension of standard con-
volution that allows the filter to adaptively transform as it travels
over a Euclidean domain. The extended convolution is similar to
earlier works on steerable filters [FA91, SF96, THO99] though it
differs in that its formulation is defined independently of the choice
of filter. Here, we expand the extended convolution framework to
2D manifolds, fixing the class of transformations to rotations.

Given a point of interest on a surface and surrounding neighbour-
hood, our proposed surface descriptor corresponds to the filter that
maximizes the response of the extended convolution at the keypoint.
We derive the optimal filter for the keypoint and describe how the
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optimal filter can be discretized as a two-dimensional array. The
construction is straightforward: we attach frames to all points inside
the neighbourhood using the gradient of an intrinsic signal defined
on the surface. Then, we describe the position of the keypoint in the
tangent space of each neighbour point using the logarithm map.

4. Extended Convolution

We begin by reviewing extended convolution for processing im-
ages and then describe how it can be extended to process signals on
surfaces.

4.1. Extended convolution on images

Extended convolution generalizes the standard convolution by al-
lowing the filtering process to take into account local transforma-
tions. Consider functions h, f : R2 → R, which we call the ‘sig-
nal’ and ‘filter’, respectively, and a frame field R, which we define
to be a mapping such that Rq specifies a rotation in SO(2), for all
q ∈ R

2. The planar extended convolution of a signal h and frame
field R with a filter f , evaluated at p ∈ R

2 is given by [MBK*20]

({h,R} ∗ f )(p) =
∫
R2
h(q)

[
Rq( f )

]
(p − q) dq. (1)

The expression [Rq( f )](p − q) denotes the evaluation of the func-
tion Rq( f ) at the point p − q and the rotation of f by R ∈ SO(2) is
defined in the usual manner as

R( f ) ≡ f ◦ R−1.

Equation (1) can be interpreted as setting the value at p by iter-
ating over all points q in the domain and summing the value of the
signal h(q) weighted by the evaluation of the filter f at the position
of p in the frame of q.

4.2. Extended convolution on surfaces

Here, we introduce an analogous definition of the extended convolu-
tion for surfaces, which will be the focus of our subsequent analysis.
The key idea is to note that for points p and q on a surface, one can
express the position of p relative to q by using the logarithm at q.

Given an oriented Riemannian manifold S, we define a frame field
R to be a mapping associating to each point q ∈ S an orthonormal
map from Euclidean 2-space to the tangent space at q. Formally, if
FS is the fiber bundle with FSq the group of orthonormal transfor-
mations fromR

2 to TqS, thenR ∈ �(FS) is a section of this bundle.

Then, given a signal h : S → R, a frame field R ∈ �(FS), and a
filter f : R2 → R we define the extended convolution of h and R
with f as the function on S with

({h, R} ∗ f )(p) =
∫
q∈S

h(q)
[
Rq( f )

](
logq(p)

)
dq, (2)

with logq(p) the logarithm of pwith respect to q, giving the position
of the point p relative to its neighbour q.

As the logarithm function is one to many, we use the tangent vec-
tor defining the shortest geodesic from q to p. This makes the in-

tegrand well-defined as long as p is not on the cut-locus of q. In
practice we have not found this to be a problem as the cut-locus is
a set of measure zero and the integrand is bounded, so the integral
is well-defined.

Relationship to frame-less methods

Prior approaches for defining convolutions on surfaces are predi-
cated on the assumption that there is no way to define a repeatable
frame field on a surface. As a result, the convolution operation is de-
signed so that the response is independent of the choice of reference
orientation. In contrast, the extended convolution is specifically de-
signed such that the response depends on the choice of frame field
R, which is treated as an input parameter. This approach provides
it with a degree of flexibility that makes it well-suited for a variety
of different applications in image processing [MBK*20].

Critically, we show it is relatively straightforward to define a re-
peatable frame field R on a given surface under which the response
of the extended convolution remains consistent between different
locations and meshes. Moreover, the extended convolution can be
made invariant to isometries of the local surface by appropriate
choices of the signal h and transformation field R, without any re-
strictions on the filter f .

5. Application to Surface Feature Detection

The matching of local surface descriptors can be characterized as
a feature detection problem; our strategy is to design a filter whose
extended convolution will have a high response wherever the local
surface resembles the target. We then define the ECHO descriptor
to be (the discretization of) this filter.

5.1. Deriving the optimal filter

Given a surface S and an associated frame field R and signal h, we
consider a feature point p ∈ S. Our first objective is to define a filter
f p ∈ L2(R2) which, of all possible filters, maximizes the extended
convolution (up to scale) at p.

With R and h fixed, the extended convolution can be thought of
as a map E : L2(R2) → L2(S) from the space of filters to the space
of functions on S. From Equation (2) it is clear that E is linear, as
must be the map Ep( f ) ≡ [E ( f )](p) = ({h, R} ∗ f )(p), obtained
by evaluating the function returned by E at a point p ∈ S.

Using the fact that the space of filters, L2(R2), is an inner-product
space (with the inner-product of two filters defined by integrat-
ing their product) and applying the Riesz Representation Theorem,
there exists a filter ω p ∈ L2(R2) such that

Ep( f ) =
∫
R2
f · ω p, ∀ f ∈ L2

(
R

2
)
.

In particular, up to scale, the filter f p that maximizes the response
of the extended convolution at p must be ω p.

This naturally leads to the question:

What is the value of ω p at different points x ∈ R
2?
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To answer this question, we note that one way to evaluate ω p at
a point x is to integrate it against the delta function at x, which we
showed above is the evaluation of the extended convolution with the
delta function, at the point p:

ω p(x) =
∫
R2

δx · ω p = Ep(δx) = ({h, R} ∗ δx)(p)

(2)=
∫
q∈S

h(q) · [
Rq(δx)

](
logq(p)

)
dq. (3)

In practice, we would like the descriptor of the keypoint p to be
local. To this end we note that if we restrict ourselves to filters that
are supported within a disk or radius ε, the filter maximizing the
response to the extended convolution at p is still, up to scale, ω p,
restricted to the disk of radius ε.

Using compactly supported filters, we are only interested in
evaluating Equation (3) at points |x| ≤ ε. Since the evaluation of
δx(logq(p)) will only be non-zero if the geodesic distance between
p and q is less than or equal to ε, we can write out the value of the
maximizing filter for |x| ≤ ε, up to scale, as:

f p(x) =
∫

{q∈S | dg(p, q)≤ε}
h(q) · δx

(
C p
g (q)

)
dq, (4)

where dg : S× S → R≥0 is the function giving the geodesic distance
between pairs of points on S andC p

g : S → R
2 is the function giving

the coordinates of the logarithm of p in the tangent space of points
on S, expressed relative to the frames at those points:

C p
g (q) = R−1

q · logq(p).

Equation (4) can be interpreted as a recipe for constructing the
optimal filter f p as a histogram. Specifically, f p can be obtained
by having every point on the surface q lying in the geodesic ε-disk
around p “cast a vote” into the histogram bin corresponding to the
position of p in the tangent space at q with a weight equal to h(q).

Maximizing convolution vs. minimizing L2-difference

Given points p and q on S, and the associated optimal filters f p

and f q, we can compare the regions about p and q in one of two
ways: We can compute Ep( f q), the evaluation of the extended con-
volution with f q at the point p; or, we can compute ‖ f p − f q‖, the
L2-difference between the filters. Using the above derivation, the
former can be expressed as:

Ep( f q) = 〈 f p, f q〉
while the latter can be expanded as:

‖ f p − f q‖2 = ‖ f p‖2 + ‖ f q‖2 − 2〈 f p, f q〉.
Thus, if the filters were normalized to have unit length, finding the
filter maximizing the extended convolution would be equivalent to
finding the filter minimizing the L2-difference.

In our implementation, we leave the filters un-normalized. For ex-
ample, this implies that different scalar multiples of the signal h give
rise to different optimal filters. As such, the value of the extended
convolution is not a meaningful measure of regional similarity as a
large value of Ep( f q) could reflect the fact that the signal around

q has large magnitude, not that the signals about p and q are well-
correlated. Instead, we use the L2-difference.

5.2. Local isometry invariance

The form of f in Equation (4) does not by itself ensurRelationship to
frame-less methodse invariance of the filter under intrinsic isome-
tries of the local surface, as the expression for f depends on the
definition of the signal h and frame field R. To this end we follow
the approach of [MBK*20], choosing an isometry invariant signal
φ : S → R on the surface and using the gradient and gradient mag-
nitudes of φ to define a frame field R and signal h.

As in the Euclidean domain, given a vector field �V ∈ �(TS), we
may define a frame field R

�V ∈ �(FS) on the surface via

R
�V
q ≡ 1

||�V (q)||
[
�V (q) J · �V (q)

]
, (5)

where J is the counter-clockwise rotation by 90◦.

Since the gradient of the signal φ is covariant, it provides a natural
reference for defining h andR. As in [MBK*20], we define h : S →
R to be the magnitude and set R to be the frame field defined by the
gradient of φ:

h(q) ≡ ‖∇φ(q)‖ and Rq ≡ R∇φ
q . (6)

The choice of h ensures that at points where the gradient vanishes
there is no contribution to the extended convolution, avoiding prob-
lems resulting from the singularity in the definition of R�V .

Choosing φ to be an intrinsically defined function, the frame field
R and signal hwill be as well. Since the logarithm map is also intrin-
sic, it follows from Equation (4) that if the signal φ is intrinsically
defined, the optimal filter will be invariant under global isometries.
An exposition of the properties h and R must satisfy to ensure local
isometry invariance can be found in the appendix.

5.3. Choosing φ

To define the extended convolution, we need to select a function φ

whose gradient and gradient magnitudes will define the frame field
and signal. We would like to choose φ so that the derived descriptor
is both stable and distinctive.

In our applications, we have found that the Heat Kernel Signa-
ture (HKS) [SOG09] provides a good balance between responsive-
ness and robustness; it captures subtle changes in the surface and
is insensitive to sources of interference commonly found in mesh
representations of surfaces such as noise and tessellation quality. In
addition, the HKS provides a description of the intrinsic properties
of the surface, ensuring that the proposed descriptor is invariant un-
der isometric deformations of the surface.

5.4. Expression of the keypoint in the frames of its neighbours

The major computational step in the construction of our pro-
posed surface descriptor is evaluating the logarithm, giving an ex-
pression of the keypoint as a vector in the tangent spaces of its
neighbours. State-of-the-art algorithms for computing the logarithm
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map parameterize the region about a given point through approaches
based either on heat diffusion [SSC19, HA19] or on Dijkstra-like
traversal [MR12]. A naive incorporation of one of these meth-
ods into our descriptor would entail computing a parameteriza-
tion about every point in the support region, which is obviously
undesirable.

To avoid this, we follow [SGW06, Rus10, HA19] and exploit a
convenient relationship between the gradient of the geodesic dis-
tance function and the logarithm map. Setting d p

g (q) ≡ dg(p,q) to
be the geodesic distance from p and using the symmetry of geodesic
distances, the logarithm at q and geodesic distance from p are re-
lated by

logq(p) = −d p
g (q) · (∇d p

g (q)
) = −d p

g (q) ·
( ∇d p

g (q)

‖∇d p
g (q)‖

)
, (7)

where the last equation follows from the fact that the the distance
function d p

g satisfies the Eikonal equation. Thus we can compute a
single (local) geodesic distance function at p and use the distance
function d p

g and its gradient to determine the logarithm of p in the
tangent spaces of all neighbours q.

More generally, letting d : S× S → R≥0 denote any distance
function on S, and setting d p(q) ≡ d(p,q), Equation (7) can be used
to compute coordinate function giving the position of p in the coor-
dinate frame of q as:

C p(q) = −d p(q) · R−1
q ·

( ∇d p(q)

‖∇d p(q)‖
)

. (8)

This gives the feature descriptor a remarkable degree of flexibility
in that the distance function can be treated as an input parameter that
is chosen based on its suitability for the desired application.

6. The ECHO Surface Descriptor

The construction of the ECHO surface descriptor at a keypoint
p ∈ S follows from the discretization of the optimal filter f p, as de-
fined in Equation (4), relative to the signal and frame field given in
Equation (6).

6.1. Discretization

We address the computation of the ECHO descriptor with respect to
a discrete representation of surfaces as triangle meshes, S = (V, T ).
As is standard, a signal f : V → R is represented by its values at
the vertices and is extended by linear interpolation to the interior
of triangles. Vector fields and frame fields are represented using a
constant value per triangle. We represent a tangent vector at triangle
t = (v0, v1, v2) ∈ T intrinsically using a pair of values, α and β,
corresponding to the tangent vector α · (v1 − v0) + β · (v2 − v0). A
frame field is then represented by the map R : T → R

2×2, with Rt

an orthogonal transformation from R
2 (with the standard Euclidean

inner-product) into the tangent space at triangle t ∈ T (with inner-
product given by the Riemannian metric).

6.2. Implementation

Given a vertex p ∈ V , we would like to compute the discretized de-
scriptor f p ∈ R

(2n+1)×(2n+1), sampled on a (2n+ 1) × (2n+ 1) grid.
To do this, we need to compute the discretized coordinate function
Cp : V → R

2 and discretized signal h : V → R≥0, and we need to
estimate the integral in Equation (4).

Defining the coordinate function and signal

To define a discretized coordinate function and signal, we need to
represent Cp and h by their values at vertices. As both functions
are defined in terms of the gradients of scalar function, which are
represented as constant values per triangle, we use area-weighted
averaging to define the values at the vertices.

Specifically, letting Tq = {t ∈ T | t � q} denote the subset of tri-
angles incident on q ∈ V , we define the coordinates of the position
of vertex p in the tangent space of vertex q (relative to the prescribed
fame field) as:

Cp(q) = −dp(q) ·
∑

t∈Tq |t| · R−1
t ·

(
∇dp (t)

‖∇dp (t)‖
)

∥∥∥∑
t∈Tq |t| · R−1

t ·
(

∇dp (t)
‖∇dp (t)‖

)∥∥∥ , (9)

where |t| is the area of triangle t.

Similarly, we define the vertex-based signal h : V → R≥0 by tak-
ing the area-weighted average of the magnitudes of tangent vectors
adjacent to a vertex q:

h(q) =
∑

t∈Tq |t| · ‖∇φ(t)‖∑
t∈Tq |t| . (10)

Estimating the integral

Discretizing the integral in Equation (4) requires making two ap-
proximations. First, since we will be sampling at discrete positions
on a regular grid, we replace the delta function with a wider kernel.
Second, as the integral does not have a closed-form expression, we
approximate it using discrete sampling.

To replace the delta function, we use a compactly supported ker-
nel that approximates a Gaussian with deviation σ:

k x,σ (y) =
{

exp(−‖x−y‖2

σ 2 ) if ‖x − y‖ ≤ 2σ

0 otherwise
.

Then, we approximate the integral using m-th degree Gaussian
quadrature samples [Cow73]. Specifically, setting Qm

t ⊂ t × R to
be the (finite) set of quadrature points and quadrature weights of
degree m, we approximate the integral by first writing it out as a
sum of integrals over the individual triangles of the mesh, and then
approximating each per-triangle integral by a weighted summation
over the quadrature samples. Combining the approximations gives:

f p(x) ≈
∫

{q∈S | d(p, q)≤ε}
h(q) · k x,σ

(
Cp(q)

)
dq

=
∑
t∈T

∫
{q∈t | d(p, q)≤ε}

h(q) · k x,σ
(
Cp(q)

)
dq

≈
∑
t∈T

∑
{(q, wq )∈Qm

t | d(p, q)≤ε}
h(q) · wq · k x,σ

(
Cp(q)

)
dq.
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Algorithm 1. ECHO Surface Descriptor

Pseudocode for the computation of the discrete descriptor is
shown in Algorithm 1: we iterate over all triangles t ∈ T which
have at least one vertex within a distance of ε of the keypoint; for
each triangle t, We compute the set of m-th degree quadrature sam-
ples Qm

t ; for each quadrature point q, we compute xp, the position
of p in the coordinate frame of q, scaled to the descriptor resolution;
we also compute Bq – the set of grid points that fall within a disk
of radius n of the origin and whose kernel function supports xp; for
each grid point x ∈ Bq, we increment the value of the descriptor at
x by the value of the signal at the quadrature point, h(q), weighted
by the quadrature weight, wq, and the value of the kernel function
centred at x, evaluated at the position of p in the coordinate frame
of quadrature point, k x,σ (xp).

Defining the distance

In our implementation, we consider three different distance func-
tions: The geodesic distance, the diffusion distance [CL06], and the
biharmonic distance [LRF10].

To compute the distance map dp it is desirable to choose a method
that allows the calculation to be truncated to exclude points whose
distance from p exceeds ε. Assuming that the set of points in S

Figure 1: Visualizations of the input geometry (left), the Heat Ker-
nel Signature and derived frame field (middle), and the geodesic dis-
tances from the keypoint and the keypoint’s logarithm in its neigh-
bours’ tangent frames (right). For the visualization of the signals,
red corresponds to lower values and blue to larger ones. Frames
defined by the gradients of the HKS are visualized by showing the di-
rections of the positive x- and y-axes. Frames generated from larger
magnitude gradients are rendered with higher opacity.

within a distance of ε of the keypoint p is connected, the truncated
distance function can be computed using a flood-fill approach.

For the the diffusion distance and biharmonic distance, the im-
plementation is straight-forward. (We reuse the spectrum com-
puted for the Heat Kernel Signature.) For the geodesic distance,
we use the Dijkstra-like implementation in [MR12] originally pro-
posed in [Rei04]. The authors’ publicly available implementa-
tion provides a fast and accurate approximation of geodesic dis-
tances inside a local neighbourhood. An example of the computed
geodesic distances and derived logarithms is shown on the right in
Figure 1.

7. Evaluation

We compare ECHO against popular surface feature descriptors in
the context of feature matching and sparse shape correspondence.
Descriptors are evaluated in terms of overall descriptiveness and
robustness to rigid articulations, near isometric and non-isometric
deformations, Gaussian noise, varying mesh tessellation, and topo-
logical and geometric changes. We consider the performance of
ECHO – using geodesic, biharmonic [LRF10], and diffusion [CL06]
distances – and several descriptors introduced in the last decade:
SHOT [TSDS10b, STDS14], RoPS [GSB*13], USC [TSDS10a],
and ISC [KBLB12]. The first three have been shown to be among
the most effective descriptors currently in the literature [GBS*16].
Of these, SHOT has seen wide adoption in the context of 3D ob-
ject retrieval, recognition and correspondence [VLB*17, MBM*17,
BBL*17]. We include ISC in our comparisons as unlike SHOT,
RoPS, and USC, it, like ECHO, is intrinsic. Moreover, it is simi-
lar to ECHO in that votes are weighted and binned with respect to
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the HKS and geodesic distances, though it does not incorporate the
use of frame fields.

To perform the evaluations, we use two datasets consisting of tri-
angular meshes: the TOSCA dataset [BBK08] and the SHREC 2019
Shape Correspondence with Isometric and Non-Isometric Deforma-
tions benchmark dataset [DSL*19]. The former consists of a set of
collections of synthetic humanoid and animal figures in different,
near-isometric poses; the latter is made up of 3D scans of real-world
objects exhibiting a wide variety of deformations.

We use the publicly available implementations of SHOT, RoPS,
and USC in the PCL library [RC11] with the default parameters.
For ISC, we use our own C++ implementation based on the Mat-
lab implementation made available by the authors. We attempt to
remain as faithful as possible to the authors’ original implementa-
tion, though we replace their method for computing geodesics with
that used in ECHO as discussed in Section 6.

The size of the support radius ε depends on the mesh, and is
proportional for all descriptors. Specifically, we follow [ZBH12,
GBS*16] and set the support radius for all keypoints to be

ε = 0.08
√
A / π , (11)

where A is the area of the mesh. For the biharmonic and diffusion
ECHO descriptors, A is computed by first using the distance func-
tion to assign lengths to edges and then using Heron’s Formula to
compute the triangle areas from these lengths. All support regions
contain a similar number of vertices.

ECHO descriptors are un-normalized, computed with a descrip-
tor radius of n = 5, a Gaussian deviation of σ = 1.3 /

√− log(0.05),
and a quadrature degree of m = 5 (corresponding to 7 samples
within each triangle) [Cow73]. The HKS is computed once for each
mesh as a pre-processing step using the first 200 eigenvalue-vector
pairs of the Laplace-Beltrami operator and with a diffusion time of
0.1. The spectral decomposition is reused in the calculation of bihar-
monic and diffusion distances, the latter of which is computed with
a diffusion time of 0.1. (Models are rescaled to have unit area prior
to computing the spectrum so that the parameters used for comput-
ing the HKS and the diffusion distances are consistent with respect
to scaling.) We use the same HKS calculation for both ECHO and
ISC, as we find that the latter sees better performance using our se-
lected parameters than those suggested by the authors in [BK10].
An example HKS and the corresponding frame field are shown in
Figure 1 (middle).

7.1. Feature matching

The TOSCA dataset is used to evaluate the descriptors in terms of
overall descriptiveness and robustness to increasing levels of Gaus-
sian noise and mesh decimation. Experiments are performed by
evaluating the performance of the descriptors in matching features
from a set of scene meshes to those from a smaller set of models.

The model meshes consist of the nine ‘null’ meshes from each
shape class (those numbered 0 and the gorilla1 mesh). All other
meshes in the dataset constitute the scenes, which are identical to the
models up to near-isometric deformations and share the same trian-
gulations. Examples of biharmonic ECHO descriptors computed at

corresponding points on two scene meshes from the centaur class
are shown in Figure 2.

To avoid the influence of keypoint detection algorithms in our ex-
periments, we randomly generate corresponding points for both the
models and the scenes in the following manner: First, we randomly
select 1000 keypoints lying on each model mesh. Then, for each
scene, we randomly select 1000 points that match at least one key-
point in the corresponding model. A keypoint on a scene is consid-
ered to match a point on a model if the two belong to the same class
and if, after mapping the scene keypoint to the model, the geodesic
distance between the two is less than the 1/4 the support radius in
Equation (11). Then, for each method, descriptors are computed at
all model and scene keypoints.

Descriptiveness

To evaluate descriptiveness, we compute precision-recall curves for
each descriptor at every scene keypoint, an approach that has been
demonstrated to be well-suited to this task [KS04, MS05]. Given
a scene keypoint, p and corresponding descriptor f p, all keypoints
from across all models are sorted based on the descriptor distance,
giving {q1, . . . , qM} with∥∥f p − f q i

∥∥ ≤ ∥∥f p − f q i+1
∥∥.

We define Mp to be the set of all model keypoints that are valid
matches with p. (Specifically, the points in Mp belong to the same
class as p.) Following [SMKF04], the precision Pp and recall Rp

assigned to p are defined as functions of the top r model keypoints,

Pp(r) =
∣∣Mp ∩ {q i}i≤r

∣∣
r

and Rp(r) =
∣∣Mp ∩ {q i}i≤r

∣∣∣∣Mp

∣∣ . (12)

Note. Our definition of a “match” is conservative in that it can ex-
clude valid correspondences such as matching the right index fin-
ger from the michael model with the right index finger from a
victoria scene.) This has the effect of creating more false neg-
atives, which reduces the overall precision.

Robustness to noise

We test the robustness of each method with respect to various lev-
els of Gaussian noise applied to all meshes in the scenes. Similar
to [BBC*10, BBB*11, GBS*16], we add five levels of Gaussian
noise with variances of

√
i · ε / 200, 1 ≤ i ≤ 5 to the vertices of

each mesh in the scenes. However, we scale the magnitude of the
noise relative to local edge lengths. Namely, the noise added at a
vertex p is scaled by a factor of E p /E where E p is the average
length of the edges incident on p and E is the average length of all
edges in the mesh. This process produces five sets of scenes corre-
sponding to each level of noise; the models are left unchanged. (See
supplementary material for examples.)

Robustness to varying mesh Resolution

We also test the sensitivity of each descriptor with respect to changes
in mesh resolution. Three new sets of scenes are constructed by
decimating the original scene meshes by factors of 2, 4, and 8.
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Figure 2: Visualizations of biharmonic ECHO descriptors computed at corresponding points on two meshes from the centaur class of the
TOSCA dataset [BBK08]. ECHO’s intrinsic construction and use of frame fields enables rich and distinctive characterizations that remain
consistent in the presence of significant local deformations. Descriptors are drawn using the HSV scale – hue encodes the absolute magnitude
(ranging from smaller descriptors drawn in red to larger descriptors drawn in blue) and value encodes the relative magnitude (darker colors
correspond to smaller descriptor values). Saturation is fixed at one.

Specifically, we use OpenFlipper’s [MK10] incremental mesh dec-
imation module with the decimation priority determined by the
distance to the original mesh. (See supplementary material for
examples.)

7.2. Sparse correspondences

We use the SHREC 2019 Shape Correspondence Benchmark dataset
to evaluate the quality of each descriptor under rigid articula-
tions, near-isometric and non-isometric deformations, and topo-
logical and geometric changes in a sparse shape correspondence
regime. The dataset consists of fifty meshes constructed from 3D
scans of real-world objects; as a byproduct, the real-world scans
contain noise, varying trianglulations, occluded geometry and vari-
ous other sources of interference [DSL*19]. The dataset contains
76 pre-defined pairs of meshes partitioned into four increasingly
challenging test sets: (1) articulations and rigid deformations, (2)
near-isometric deformations, (3) non-isometric deformations and
(4) topological and geometric changes. The authors provided the
dense ground-truth correspondences associated with each pair.

Experiments are performed such that each type of descriptor is
used to compute sparse correspondences between the two meshes
in each pair in a naive correspondence regime. Specifically, each
pair in is split into a model and a scene mesh, where the former is
in a relatively simple ‘null’ pose and the latter is in a more complex
pose. As in the feature matching experiments, 1000 keypoints lying

Table 1: Mean descriptor run time over all model keypoints in the feature
matching experiments. The ‘null’meshes contain between 5000 and 53,000
vertices, with an average of approximately 30,000 vertices.

ECHO

SHOT RoPS USC ISC Biharmonic Geodesic Diffusion

(ms) 20 138 108 55 118 58 132

on the scene mesh are randomly chosen. Descriptors are computed
at all scene keypoints and at every vertex on the model mesh. For
a given scene keypoint p, we follow [CRB*16, LRB*16, DSL*19]
and evaluate the correspondence quality by computing the (area-
normalized) geodesic distance between the ground-truth position of
the keypoint on the model mesh, q∗, and the model vertex q with
the smallest descriptor distance,

dg(q∗, q)
√

π /A, (13)

where A is the total surface area of the model mesh.

7.3. Complexity

The mean run time for each descriptor over all model keypoints in
the feature matching experiments is shown in Table 1. The SHOT
descriptor is fastest, followed by the ISC descriptor and the ECHO
descriptor computed using geodesic distances. While slower, we
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believe that the computational overhead of biharmonic ECHO de-
scriptor is justified by its effectiveness, as we discuss next.

8. Results and Discussion

Here we discuss the results of our evaluations using the TOSCA and
SHREC 2019 Shape Correspondence Benchmark datasets.

8.1. TOSCA

The results of the feature matching experiments using the TOSCA
dataset are shown in Figure 3. The descriptiveness results are ag-
gregated by computing the mean precision and recall across all key-
points in the scenes. The resulting curves for each descriptor are
shown in Figure 3a.

The biharmonic ECHO descriptor achieves the best performance
by a significant margin, followed by SHOT and RoPS, though
the difference between the latter is smaller. Generally speaking,
ECHO, SHOT, RoPS and USC have approximately similar dis-
tinctive potential in the sense that all achieve rotation invariance
without loss of information by incorporating frame fields in their
construction. The superior performance of the ECHO descriptor
is likely due to the stability of the biharmonic distance map and
the fact that the descriptor is intrinsic and thus fully invariant to
isometric deformations. Like ECHO, the ISC descriptor is also
intrinsic, though its poor performance is likely a consequence of its
lower descriptive ceiling as it independently discards per-frequency
and per-radius phase information to achieve rotation invariance.
While the mappings between the TOSCA models meshes and their
corresponding meshes in the scenes are not perfect isometries, it is
clear from the performance of ECHO that an intrinsic construction
confers an advantage provided it can make use of a frame field.
Results obtained using a normalized ECHO descriptor exhibit a
similar trend, though performance was slightly worse compared to
the un-normalized descriptors.

The feature matching robustness results are expressed by plotting
the area under the mean precision-recall curves as a function of nui-
sance severity. Descriptor performance under increasing levels of
Gaussian noise is shown in Figure 3b. The biharmonic ECHO de-
scriptor achieves the best performance at all levels and remains sta-
ble relative to the other descriptors in the sense that it sees a propor-
tional drop in performance at higher levels of noise. The geodesic
and diffusion ECHO descriptors, SHOT, and RoPS all perform sim-
ilarly and are less effective.

Descriptor matching performance relative to changes in mesh res-
olution is shown in Figure 3c, again using the area under the mean
precision-recall curves. The biharmonic ECHO descriptor achieves
the best performance, followed by the geodesic and diffusion ECHO
descriptors. We are uncertain as to why ECHO is more stable when
computed using geodesic distances than either biharmonic or diffu-
sion distances.

8.2. SHREC ’19 Shape Correspondence Benchmark

The results of the sparse correspondence experiments using the
SHREC 2019 Shape Correspondence Benchmark dataset are shown
in Figure 4. For each test set, the curve defined by plotting the

(a)

(b)

(c)

Figure 3: Results of feature matching evaluations using the TOSCA
dataset. Top: Descriptiveness results in the form of the mean preci-
sion and recall curves for each descriptor. Middle and Bottom: Ro-
bustness results in the form of the areas under the mean precision-
recall curves as functions of noise and decimation severity.

percentage of the total number of correspondences for which the
(normalized) geodesic distance between the model point with best-
matching descriptor and the ground-truth model point is below a
threshold value is used as an aggregate measure of descriptor cor-
respondence quality. The resulting curves for test sets 1, 2, and 3,
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(a) (b)

(c) (d)

Figure 4: Results of the shape correspondence evaluations on each test set from the SHREC 2019 Shape Correspondence Benchmark
[DSL*19]. For each descriptor, the percentage of total correspondences is expressed as a function of the normalized geodesic error. Both
axes are plotted on a square root scale.

which correspond to articulated, near-isometric, and non-isometric
shape deformations, are shown in Figures 4a, 4b and 4c, plotted on
a square root scale.

The biharmonic and geodesic ECHO descriptors achieve the best
performance across the first three test sets, followed by SHOT. In
particular, the differences in performance between the ECHO de-
scriptors and the other methods on the second and third test sets,
which concern near-isometric and non-isometric deformations, are
especially significant. That ECHO sees little, if any, difference in
performance between the two tests sets is unexpected. While ECHO
is isometry invariant, it, like the other descriptors we consider, is not
designed to be stable under non-isometric surfaces. Despite this, the
results suggest that combing an intrinsic construction with a frame
field can still be a powerful approach in the presence of more com-
plex deformations. Examples of sparse correspondences found by
the SHOT and biharmonic ECHO descriptors between mesh pairs
from the first and third test sets are shown in Figure 5.

The error curves for test set 4, which considers topological
and geometric changes, are shown in Figure 4d. SHOT and RoPS
achieve a greater number of correspondences with lower errors,
though the biharmonic ECHO descriptor begins to see more cor-
respondences as the error increases. Here, the relatively poor per-
formance of the ECHO descriptors might be explained by its use
of the HKS, which has demonstrated instability under topological
change [DSL*19].

Among other sources of interference we do not explicitly con-
sider are matching and correspondence in the presence of partial
shape data. It is not immediately obvious that the ECHO descriptor
would struggle to a greater extent than popular extrinsic descrip-
tors like SHOT and RoPS in the presence of occlusions or incom-
plete shapes. Regardless, we believe that our evaluations demon-
strate that the ECHO descriptor is more informative than state-of-
the-art methods and remains so under significant noise, changes
in mesh resolution, complex deformations, and in the presence
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Figure 5: Visualizations of sparse correspondences with a normalized geodesic error ≤ 0.08 found by the SHOT (top row) and biharmonic
ECHO (bottom row) descriptors between two example mesh pairs from the first (left column) and third (right column) test sets in the SHREC
2019 Shape Correspondence Benchmark dataset. Both SHOT and ECHO perform well in finding correspondences between meshes differing by
locally rigid articulations (left). However, SHOT’s performance sharply deteriorates in the presence of complex, non-isometric deformations
(right), while ECHO remains relatively stable.

of a variety of challenging nuisance factors commonly found in
real data.

8.3. Discussion

The local shape descriptor we compute at the point p can be viewed
as a specific instance of a more general family of descriptors. To this
end consider two intrinsic functions on a surface, d p and h, and an
intrinsic vector field �V . Here d p should depend on the point p be-
ing described. We define a histogram characterizing the point p by
aggregating information from neighbouring points q. Each point q
contributes a vote with weight h(q) into the bin describing the posi-
tion of p relative to q. Expressing the position in polar coordinates,
the radius is given by d p(q) and the angle is defined to be the angle
between the tangent vectors ∇d p(q) and �V (q).

The paper considers several choices of d p including geodesic,
diffusion, and biharmonic distances from p. It takes h = φ and
�V = ∇φ, where φ is the Heat Kernel Signature. It is obvious that
this descriptor is isometry invariant because all of the involved func-
tions and operators are intrinsic. In addition, the improved perfor-
mance with the use of the biharmonic distance becomes clear as

the biharmonic distance is more stable in the presence of noise than
the geodesic distance. The motivation for using the HKS is also ex-
posed. The feature points of a shape are usually local extrema of
the HKS, leading to an anisotropic distribution of weights in the
histogram which produces a more discriminating characterization.
(Alternative choices for φ could include locally averaged Gaussian
curvature, which is qualitatively similar to the HKS for small time-
steps but does not require a spectral decomposition, or the Average
Geodesic Distance Function [ZMT05].)

One could, of course, consider other choices of d p, h, and �V so
long as the derived polar coordinates are well-defined. In particu-
lar, we require that h(q) = 0 whenever q �= p and either ∇d p or
�V vanishes, so that the descriptor remains well-defined even when
the angular component of the polar coordinates of p relative to q
is not.

Finally, we note that this work focuses on the evaluation of the
ECHO descriptor as a stand-alone characterization of local geom-
etry. A natural extension of this work is to incorporate the ECHO
descriptor within a non-rigid registration pipeline, akin to the way
in which SHOT is used to either initialize [LYLG18, DLRT19] or
regularize [VLB*17] the registration process.
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9. Conclusion

In this paper we propose a surface descriptor. We generalize the con-
cept of extended convolution [MBK*20] to surfaces, which allows
a filter to transform as it travels over the surface, and show that the
ECHO descriptors are optimal relative to this framework. We eval-
uate the performance of our proposed descriptor against that of pre-
mier surface descriptors. Using biharmonic distances, the ECHO
surface descriptor significantly outperforms the SHOT, RoPS, USC
and ISC descriptors in terms of overall descriptiveness and remains
more distinctive under significant levels of Gaussian noise, changes
in tessellation quality, and complex deformations.

In the future, we would like to extend the ECHO descriptor to in-
clude invariance to local conformal transformations by baking scale
invariance into the construction in a similar manner as local rotation
invariance. To this point, we are also interested in designing a sur-
face keypoint detection algorithm as a companion to ECHO with
the goal of significantly improving its performance. In particular,
the extended convolution on surfaces provides a natural framework
for such an endeavor.
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Appendix A: Proof of Local Isometry Invariance

As discussed in Section 5.2, invariance of the optimal filter f p in
Equation (4) under intrinsic isometries of the local surface depends
on the choice of signal h and frame field R.

Suppose the surface S contains two features, centered at p0 and
p1 that are locally isometric. That is, there exists a map � : S → S
taking p0 to p1 and satisfying:

dg(q0, q1) = dg(�(q0), �(q1)), ∀ dg(p0, q i) ≤ ε.

It follows that for all q ∈ S with dg(p0, q) ≤ ε,

d�|q · logq(p0) = log�(q)(p1). (A.1)

To ensure local isometry invariance, we need to define h and R
so that the filters f p0 and f p1 defined about p0 and p1 are equal. In
particular, we have equality if, for all q ∈ S satisfying dg(p0, q) ≤ ε,

h(q) = h(�(q)) and Rq = [
d�|q

]−1 · R�(q). (A.2)

To see this, we expand the expression for f p0 , getting:

f p0
(4)=

∫
{q∈S | dg(p0, q)≤ε}

h(q) · δx
(
R−1

q · logq(p0)
)
dq

(A.2)=
∫

{q∈S | dg(p0, q)≤ε}
h(�(q)) · δx

(
R−1

�(q) · d�|q · logq(p0)
)
dq

(A.1)=
∫

{q∈S | dg(p0, q)≤ε}
h(�(q)) · δx

(
R−1

�(q) · log�(q)(p1)
)
dq

=
∫

{q∈S | dg(p1, q)≤ε}
h(q) · δx

(
R−1

q · logq(p1)
)
dq

(4)= f p1 .

where the second to last equality follows from the chain rule and
the fact that d� is an orthogonal transformation. Thus, f p0 and f p1

are equal.

Furthermore, it is not hard to show that if the signal φ : S → R

defined on the surface is such that for all q ∈ S with dg(p0, q) ≤ ε,

φ(q) = φ(�(q)),

i.e. it is locally invariant to the isometry �, then h and R as defined
in Equation (6) satisfy the conditions in Equation (A.2). This follows
from taking the gradient of both sides:

∇φ|q = [
d�|q

]† · ∇φ|�(q)

= [
d�|q

]−1 · ∇φ|�(q),

where [d�|q]† is the adjoint of d�|q and the second equality fol-
lows from the fact that the adjoint of an orthogonal transformation
is its inverse.
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