
Fast Triangle Reordering for Vertex Locality and Reduced Overdraw

Pedro V. Sander Diego Nehab Joshua Barczak
Hong Kong University of Science and Technology Princeton University 3D Application Research Group, AMD

(a) Lin and Yu [2006]

4.76sec, 0.63 ACMR

(b) Hoppe [1999]

226ms, 0.65 ACMR

(c) Our work

51ms, 0.69 ACMR

(d) Nehab et al. [2006]

40sec, 1.21 MOVR, 0.73 ACMR

(e) Our work

76ms, 1.18 MOVR, 0.72 ACMR

Figure 1: Vertex cache efficiency and overdraw. Views of a 40k triangle Dragon model are shown, where red regions represent cache misses, and dark regions

represent high overdraw rate. As a preprocessing stage, real-time rendering applications optimize the order triangles are issued to reduce the average post-

transform vertex cache miss ratio (ACMR) (a-c). Recent algorithms also minimize the overdraw ratios (OVR) (d-e) with little cache degradation. We present

novel algorithms that result in excellent vertex cache efficiency (c) as well as low overdraw (e). Our methods are significantly faster than previous approaches

(compare timings), and are suitable for run-time execution.

Abstract

We present novel algorithms that optimize the order in which trian-
gles are rendered, to improve post-transform vertex cache efficiency
as well as for view-independent overdraw reduction. The resulting
triangle orders perform on par with previous methods, but are or-
ders magnitude faster to compute.

The improvements in processing speed allow us to perform the
optimization right after a model is loaded, when more information
on the host hardware is available. This allows our vertex cache opti-
mization to often outperform other methods. In fact, our algorithms
can even be executed interactively, allowing for re-optimization in
case of changes to geometry or topology, which happen often in
CAD/CAM applications. We believe that most real-time rendering
applications will immediately benefit from these new results.

1 Introduction

Modern rendering pipelines accept input in a variety of formats, but
the most widely used representation for geometry is based on vertex

and index buffers. A vertex buffer provides the 3D coordinates and
attributes for a set of vertices. The index buffer defines a set of
triangles, each given by the triad of indices of its vertices in the
vertex buffer.

As each triangle is processed for rendering, referenced vertices
are processed by a vertex shader in an operation that can be com-
putationally expensive. The cost comes from a combination of the
bandwidth required to load the data associated to each vertex (i.e.,
position, normal, color, texture coordinates, etc), and the instruc-

tions required to process them (i.e., transform and lighting). Ap-
plications whose rendering cost is dominated by this bottleneck are
said to be vertex-bound.

Another potential bottleneck exists during rasterization. Each
generated pixel is processed by a pixel shader, which might per-
form expensive operations in the process of computing the final
pixel color. Once again, the cost comes from bandwidth associ-
ated to texture lookups and from the ALU instructions executed by
the GPU. When this cost dominates the total rendering cost, ap-
plications are said to be pixel-bound (or fill-bound). The growing
complexity of per-pixel lighting effects has progressively increased
concerns with this bottleneck.

Naturally, modern GPUs employ a variety of optimizations that
attempt to avoid unnecessary computations and memory references.
Two such optimizations are the post-transform vertex cache, used
during vertex processing, and early Z-culling, used during pixel
processing. Interestingly, the effectiveness of both optimizations is
highly dependent on the order on which triangles are issued. Given
the new unified shader architectures, reducing vertex and pixel load
at run-time is beneficial for both vertex- and pixel-bound applica-
tions. It is therefore desirable to generate a triangle order that is
suitable for both optimizations.

The post-transform vertex cache holds a small number of trans-
formed vertices in a FIFO queue. When a triangle references a
vertex found in the cache, results are reused directly, without any
external data transfers or further processing required. The average
cache miss ratio (ACMR) can be greatly reduced if triangles are
ordered to increase vertex reference locality. The ACMR in turn
has a strong impact on the frame rate of vertex-bound applications
(see figure 2a). Many algorithms have therefore been proposed to
generate low-ACMR triangle orders (section 2).

Early Z-culling is an optimization by which the GPU tests the
depth of each pixel against the Z-buffer before executing its pixel
shader. If the depth is such that the results would be discarded, no
additional work is performed. This optimization is most effective
when there is little overdraw. Overdraw can be defined as the ra-
tio between the total number of pixels passing the depth test and
the number of visible pixels (a ratio of 1 means no overdraw). The
graph in figure 2b illustrates the dependency between overdraw ra-
tios and rendering times, in a pixel-bound scenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

R
e
n
d
e
ri
n
g
 t
im

e
 r

a
ti
o

ACMR ratio

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.6 0.7 0.8 0.9 1 1.1

R
e
n
d
e
ri
n
g
 t
im

e
 r

a
ti
o

OVR ratio

Figure 2: ACMR and overdraw impact on rendering times. (a) In a com-

pletely vertex-bound scenario, the dependency between ACMR and render-

ing time is almost linear. (b) The same is true of overdraw ratios and render-

ing times, when pixel shading is the bottleneck (although our measurements

were more noisy).

The task of determining a static triangle order that produces low
overdraw without harming the vertex cache locality has been the
topic of recent research [Nehab et al. 2006]. The basic insight is to
partition each model into triangle clusters, or contiguous patches.
Since clusters contain many triangles, preserving vertex locality
within clusters is enough to guarantee a low overall ACMR. These
clusters can then be atomically sorted according to a metric that
minimizes overdraw. Surprisingly, it is possible to design view-
independent metrics that result in a static cluster order that greatly
minimizes overdraw. The facts that vertex cache performance is
not harmed, and that nothing else must be changed in a rendering
pipeline, make the idea very attractive.

In this paper, we present novel, extremely efficient algorithms
for post-transform vertex cache optimization (section 3), for split-
ting meshes into triangle clusters that do not significantly worsen
the ACMR (section 4), and for sorting these clusters into a view
independent order that reduces overdraw (section 5). The main fea-
tures are the following:

• Our methods are orders of magnitude faster than previous pro-
posals, and thus can be executed interactively;

• As far as quality is concerned, our methods perform on par with
previous methods;

• In order to simplify integration with existing applications, our
methods operate directly on vertex and index buffers;

• Therefore, unlike many previous methods, our algorithms oper-
ate transparently on non-manifold models;

• They are also substantially simpler to implement than most pre-
vious methods.

In several application domains, such as games and CAD/CAM
applications, models frequently undergo changes in geometry and
topology. It is desirable to re-optimize such models, and in that
case the efficiency of the optimization process is very important.
Our work allows these systems to bring the optimization stage to
run-time. At run-time, the exact post-transform vertex cache size
might be available, and we can therefore target the correct value.
Alternatively, when used as a pre-processing stage, our algorithms
can greatly reduce processing time. For these reasons, we believe
that many real-time rendering applications, vertex- or pixel-bound,
will immediately benefit from our results.

2 Previous work

Vertex cache optimization The first practical approaches to
tackle the vertex bandwidth problem were based on triangle
strips [Akeley et al. 1990; Evans et al. 1996; Speckmann and
Snoeyink 1997; Xiang et al. 1999]. Even early GPUs supported
strips natively (with a 2-entry cache), so these methods resulted in
ACMR values close to 1, as long as the mesh could be encoded with
relatively few strips. Substantial effort was therefore dedicated to
the NP-complete problem of finding single-strip representations for

meshes [Garey et al. 1976; Dillencourt 1996; Arkin et al. 1996; Es-
tkowski et al. 2002].

In order to reduce bandwidth even further, Deering [1995] pro-
posed a geometry compression scheme based on generalized trian-
gle meshes. What set Deering’s work apart from other approaches
to geometry compression [Taubin and Rossignac 1998; Gumhold
and Straßer 1998; Touma and Gotsman 1998] was that the decom-
pression stage was designed to be easily implemented on hard-
ware [Deering and Nelson 1993].

Generalized triangle meshes explicitly manage a fixed size
cache, with instructions to replace cached vertices or to reference
them to define triangles. Chow [1997] later provided algorithms
to encode triangle meshes into this representation, achieving near
optimal results (ACMR 0.6–0.7). Bar-Yehuda and Gotsman [1996]
proved that for a cache size of k, the optimal ACMR was bound by
0.5+Ω(1/k), whereas to ensure each vertex in a n-vertex mesh is
processed only once, a cache size of O(

√
n) was required. Other

encodings reaching near optimal ACMR were proposed that break
away from strip-like structures [Mitra and Chiueh 1998], but hard-
ware trends followed the path of simplicity.

This was mostly due to the pragmatic approach proposed by
Hoppe [1999]. He noticed that a FIFO cache, without any explicit
management (i.e., transparent), was enough to match the results re-
ported by Chow. This was possible by maximizing vertex locality
with the use of parallel short strips. Besides being easier to imple-
ment on hardware, his approach was tailored to match established
graphics APIs, and therefore modern GPUs include a post trans-
form vertex cache in this fashion.

The use of index buffers to specify connectivity further changed
the panorama. It is true that longer strips minimize the length of
the index buffer. However, each index takes a small fraction of the
amount of information required by each vertex (i.e., position, nor-
mal, color, texture coordinates, etc). Hence, the vast majority of
memory bandwidth is used on random access to vertex data. More-
over, a considerable share of rendering time is spent processing ver-
tex data, which can only be reduced with higher cache hit rates. In
this context, minimizing the ACMR is much more important than
compressing the connectivity information. Nevertheless, with high-
performance rendering in mind, substantial effort was invested on
generating single-strip representations for triangle meshes [Gopi
2004; Diaz-Gutierrez et al. 2006], or on minimizing the number
of strips [van Kaick et al. 2004].

Many related methods were also designed that preserve a cer-
tain level of locality in dynamic meshes, for applications such as
progressive refinement or view-dependent rendering [El-Sana et al.
1999; Velho et al. 1999; Ribelles et al. 2000; Belmonte et al. 2001;
Stewart 2001; Shafae and Pajarola 2003; Ramos and Chover 2004;
Ripollés et al. 2005]. Instead, we focus on making our method as
fast as possible, so it can be executed at run-time.

Lin and Yu [2006] were the first to propose a practical approach
that results in lower ACMR than Hoppe [1999]. Their work is also
the most closely related to ours. Neither method attempts to gen-
erate triangle strips, or perform any type of global analysis or op-
timization. Triangles are issued based on a greedy, local strategy,
based on a simulation of the cache, and driven by vertex adjacency.
Therefore, both methods work transparently on non-manifolds. Al-
though their results are slightly better than ours (by about 5–10%),
their method takes orders of magnitude longer than ours to optimize
the same input (often 100 times longer).

Alternative orderings that are oblivious to cache sizes have been
recently proposed. These are driven by the multi-resolution local-
ity properties of space-filling curves [Bogomjakov and Gotsman
2002], or by the minimization of objective functionals that push
the triangle ordering in that direction [Yoon et al. 2005]. Although
use of these methods is advantageous when cache size is not known
a priori, or in combination with progressive meshes, given a reason-

(a) K-Cache-Reorder

Lin and Yu [2006]

(b) D3DXMesh

based on [Hoppe 1999]

(c) OpenCCL

Yoon and Lindstrom [2006]

(d) dfsrendseq

Bogomjakov et al. [2001]

(e) Our work

Figure 3: Triangle ordering paths. The figures show the patterns generated by a variety of different triangle order optimization algorithms. Adjacent triangles

are connected by a blue line, so that the paths are visible. The structure in the triangle orders allows us to generate satisfactory clusters by simply breaking

the optimized sequence into smaller, contiguous subsequences of triangles.

able estimate of the cache size, other methods perform much better
(including our own) [Hoppe 1999; Lin and Yu 2006].

Nevertheless, the vertex cache size does vary with the hardware,
and could potentially depend on the amount of information being
passed from the vertex shader to the pixel shader (see figure 10).
In order to perform the optimization during a pre-process stage,
Lin and Yu [2006], and Hoppe [1999] must therefore underestimate
this value. The efficiency of our method allows us to bring the
optimization to run-time, and this gives our method an edge over
previous alternatives. Finally, we can also re-optimize models to
reflect changes, and this makes our method especially useful for
CAD/CAM applications.

Overdraw reduction A common approach to overdraw reduc-
tion exploits early Z-culling with two rendering passes. On the first
pass, using no pixel shader, the geometry is rendered to prime the
Z-buffer. On the second pass, pixel shading is enabled, and the
scene is rendered again, except this time the depth test is changed
to less then or equal. Since only visible pixel will pass that test,
the expensive shading computations will only be executed on them.
For pixel intensive applications, it might be well worth it to render
geometry twice in order to reduce the pixel load. However, when
geometry is also complex, this solution is not acceptable.

In such cases, visibility sorting and occlusion culling tech-
niques [Airey 1990; Teller and Sèquin 1991; Greene et al. 1993]
are recommended. In order to determine visibility, modern meth-
ods [Hillesland et al. 2002; Bittner et al. 2004; Govindaraju et al.
2005] use hardware-based occlusion queries, and some can take
advantage of predicated rendering [Blythe 2006]. Although these
methods can reduce overdraw, they traditionally operate at coarse
levels, grouping primitives together. Our overdraw reduction strat-
egy could therefore be used to find an appropriate order in which to
render the primitives in each group that passes the occlusion test.

Interestingly, in the presence of early Z-culling, the amount of
overdraw is determined by the order on which the primitives are
traversed. When predicated rendering is used, a group can only
be culled if none of its pixels passes the depth test. In that case, al-
though rendering the primitives would certainly be wasteful, the ac-
tion would not incur any additional overdraw. Furthermore, due to
the use of proxy geometry in occlusion queries, the Z-buffer band-
width would not change significantly either.

As far as ordering is concerned, the best strategy is to draw tri-
angles in front-to-back order. The most direct way to achieve this
is to use view-dependent sorting. Although there are efficient ap-
proaches to visibility sorting [Govindaraju et al. 2005], it would be
convenient to find a view-independent order that reduces overdraw
without requiring any changes to the application.

This is the problem addressed by Nehab et al. [2006]. To produce
such an ordering, they cluster the mesh into planar patches, and sort
the resulting patches by approximating a solution to the minimum
feedback arc set problem on the partial order graph that represents

pairwise cluster occlusions. Each patch can later be independently
optimized for vertex cache efficiency, using any method of choice.
Since the patches include a considerable number of triangles, the
technique does not harm vertex bound applications.

This method was also designed to operate off-line, and little con-
sideration was given to running times. In fact, the clustering and
partial order graph generation stages can each take in the order of
minutes to complete. Our new method follows a different strat-
egy. We design a metric that is extremely efficient to evaluate. This
allows us to use a much larger number of clusters, which in turn
causes their shape to be less relevant. We can therefore design a
fast clustering method. In order to prevent these smaller clusters
from harming the vertex cache, we generate them during the vertex
cache optimization itself, taking into account the state of the cache.

3 Post-transform vertex cache optimization

Vertex and index buffers provide no explicit adjacency information.
Worst of all, models so defined can contain multiple disconnected
components and even represent non-manifold meshes. Triangle ad-
jacency information (the dual graph), generally required by strip-
based methods, can be awkward to maintain for non-manifolds. We
are looking for an algorithm that runs to completion in a time budget
comparable to that of generating this information. We therefore re-
strict ourselves to considering only vertex-triangle adjacency. This
information is efficiently captured by an offset map into an array
that lists the triangles for each vertex.

Basic idea Given this vertex adjacency, we could directly out-
put the triangle lists for each vertex (issuing each triangle only
once, of course). Intuitively, the operation clusters triangles around
common vertices, much like triangle fans. However, triangles are
ordered randomly within each fan (see figure 4a). Interestingly,
within a small neighborhood, the relative order on which the tri-
angles are generated does not matter, as long as the post-transform
vertex cache is large enough to hold the entire neighborhood (i.e.,
7 vertices in regular meshes). We therefore do not have to sort the
triangles before issuing them. This gives us the freedom to explore
triangle orders that are locally random or, in other words, tipsy.

When considering variants of this idea, it is hard to predict the
expected cache hit ratio, especially in non-uniform models. Nev-
ertheless, we can gain valuable insight by analyzing the algorithm
under certain simplifying assumptions, which we call steady state.
For that, assume a large cache size, and an infinite, regular tessella-
tion. For the example in figure 4a, it is easy to see that the steady
state ACMR is 7/6. Naturally, in real models, the final ACMR will
be worse. This is due to the fact that triangle fans will start collid-
ing, and at some point we will be forced to reference n+1 vertices,
while issuing only n triangles, for n < 6. Fortunately, we can do
much better than n+1

n
by carefully selecting the order on which ver-

tices are fanned (i.e., their triangles are emitted).

Fanning vertex sequence While a vertex is being fanned, each
issued triangle references other vertices. These form a subset of the
1-ring of the fanning vertex. For efficiency reasons, we select the
next fanning vertex from among this subset, which we call the 1-
ring candidates. Among them, we consider those that would still
be in the cache, even after being fanned themselves. If there are
multiple options, we pick the candidate that entered the cache the
earliest. Otherwise, we arbitrarily pick the first 1-ring candidate.

When the algorithm reaches a point where all 1-ring candidates
have already been fanned (i.e., a dead-end), we select the most re-
cently referenced vertex that still has non-issued triangles. In many
cases, this vertex is still in the cache. Therefore, this choice is bet-
ter than picking an arbitrary vertex based on the input order alone,
which we do only as a last resort.

The linear time algorithm The complete pseudo-code for the al-
gorithm is presented below, followed by a discussion.

Tipsify(I, k): O

A = Build-Adjacency(I) Vertex-triangle adjacency

L = Get-Triangle-Counts(A) Per-vertex live triangle counts

C = Zero(Vertex-Count(I)) Per-vertex caching time stamps

D = Empty-Stack() Dead-end vertex stack

E = False(Triangle-Count(I)) Per triangle emitted flag

O = Empty-Index-Buffer() Empty output buffer

f = 0 Arbitrary starting vertex

s = k+1, i = 1 Time stamp and cursor

while f >= 0 For all valid fanning vertices

N = Empty-Set() 1-ring of next candidates

foreach Triangle t in Neighbors(A, f)

if !Emitted(E,t)

for each Vertex v in t

Append(O,v) Output vertex

Push(D,v) Add to dead-end stack

Insert(N,v) Register as candidate

L[v] = L[v]-1 Decrease live triangle count

if s-C[v] > k If not in cache

C[v] = s Set time stamp

s = s+1 Increment time stamp

E[t] = true Flag triangle as emitted

Select next fanning vertex

f = Get-Next-Vertex(I,i,k,N,C,s,L,D)

return O

Get-Next-Vertex(I,i,k,N,C,s,L,D)

n = -1, p = -1 Best candidate and priority

foreach Vertex v in N

if L[v] > 0 Must have live triangles

p = 0 Initial priority

if s-C[v]+2*L[v] <= k In cache even after fanning?

p = s-C[v] Priority is position in cache

if p > m Keep best candidate

m = p

n = v

if n == -1 Reached a dead-end?

n = Skip-Dead-End(L,D,I,i) Get non-local vertex

return n

Skip-Dead-End(L,D,I,i)

while !Empty(D) Next in dead-end stack

d = Pop(D)

if L[d] > 0 Check for live triangles

return d

while i < Vertex-Count(I) Next in input order

i = i + 1 Cursor sweeps list only once

if L[i] > 0 Check for live triangles

return i

return -1 We are done!

The function Tipsify() receives an index buffer as input, and
outputs an optimized index buffer containing the same triangles,
reordered according to the algorithm we outlined.

(a) Tipsy fans (b) Tipsify

Figure 4: Tipsification. The red line shows the order on which the triangles

are issued. The blue line shows the fanning vertex sequence. (a) Randomly

choosing the fanning vertices yields 7/6 ACMR. (b) With the zig zag pattern

of period 2n, we reach the nearly optimal steady state of n+2
2n+2 → 0.5 ACMR.

The first step in the algorithm is to build the sets of all triangles
adjacent to each vertex. Build-Adjacency() can be efficiently
implemented with three linear passes over the index buffer (much
like the counting-sort algorithm). On the first pass, we count the
number of occurrences of each vertex. Then, with a pass over the
counted values, a running sum is computed that produces the offset
map. The array with the triangle lists can finally be produced with
another pass over the index buffer.

Tipsify() also uses an array L that maintains, for each vertex,
the number adjacent live triangles, i.e., the number of neighbor-
ing triangles that have not yet been written to the output buffer.
Init-Live-Triangles() initializes this array directly from the
adjacency structure A.

The remaining required data structures are very simple. The ar-
ray C holds, for each vertex, the time at which it last entered the
cache. The concept of time is given by a time-stamp counter s that
is incremented each time a vertex enters the cache. Given this in-
formation and the current time stamp, we can compute in constant-
time the position of a vertex v in the FIFO cache. Simply subtract
both numbers to get s-C[v]. The dead-end stack D helps the al-
gorithm recover from the absence of good next candidates within
the 1-ring of the current fanning vertex. Finally, the array E flags
triangles that have already been emitted.

After arbitrarily initializing the fanning vertex f to the first input
vertex, the algorithm enters its main loop. This loop will eventually
issue all triangles in the input, by selecting an efficient sequence
of fanning vertices. The loop itself is very simple, and only takes
care of minor bookkeeping. The interesting part of the algorithm is
captured by the function Get-Next-Vertex().

Get-Next-Vertex() considers all 1-ring candidates and selects
the best next fanning vertex according to our metric. Naturally, a
good candidate must have live triangles, and only those are con-
sidered. Next, we ignore vertices that would not be in the cache
after being fanned themselves. Instead of looking ahead to decide
which candidates fall within this category, we rely on a constant-
time, conservative approximation.

Recall the position of a vertex v in the cache is given by the
expression s-C[v]. We also know that v has L[v] live triangles.
If we were to fan this vertex, each triangle would at most gener-
ate two cache misses. This would cause v to be shifted into po-
sition s-C[v]+2*L[v] in the cache. Therefore, to remain in the
cache it is sufficient that s-C[v]+2*L[v] > k. Of the candidates
passing this test, we choose the one that has entered the cache the
earliest, because it is still useful, but is about to be evicted.

When there are no suitable candidates, we have reached a dead-
end and might have to jump to a non-local vertex. This is the task of
the Skip-Dead-End() function. To increase the chances of restart-
ing from a vertex that is still in the cache, we keep a stack D of
recently issued vertices. This allows us to efficiently search among
these vertices, in reverse order, until we find a vertex with live tri-
angles. Finally, if we exhaust the dead-end stack without producing

a fanning vertex, we simply take the next vertex with live triangles,
in input order.

Amortized run-time analysis Unlike most previous approaches,
our method runs in time that is linear on the input size. The running
time does not depend on the target cache size k. This is clear from
the fact that k only appears in constant-time expressions.

For the run-time analysis, it is easier to initially exclude the cost
of Get-Next-Vertex(). In that case, the main loop in Tipsify()

runs in time O(t), where t is the number of input triangles. Each
vertex is fanned at most once, and each fanning operation only vis-
its the vertex’s neighboring triangles. Therefore, each triangle is
visited at most three times (one for each of its vertices). Further-
more, for each visited triangle, all operations are constant-time.

As for Get-Next-Vertex(), notice that along its entire life-
time, the dead-end stack D receives only 3t indices. This is be-
cause each triangle is emitted only once, and each triangle pushes
only its three vertex indices on D. Therefore, the first loop in
Get-Next-Vertex() can only be executed 3t times. Next, con-
sider the second loop. Index i gets incremented, but it is never
decremented. Therefore, this loop also can only be executed 3t
times, and this completes the proof.

Steady state analysis Interestingly, after an initial spiraling pat-
tern, our method converges to a zig zag pattern, as shown in fig-
ure 4b. Intuitively, this zig zag occurs because the fanning sequence
tries to follow the previous strip of vertices, since they are still in
the cache (remember the algorithm encourages fanning vertices that
have entered the cache earlier). Eventually, it reaches a point where
the adjacent vertices from the preceding strip are not on the cache.
The sequence is then forced to turn around again in order to fan a
recently processed vertex that is still in the cache.

Counting the number of issued triangles versus the number of
newly transformed vertices at each cycle, we reach the steady state
performance of n+2

2n+2 ACMR. Whenever n > 2, this improves on
the 7/6 ACMR we had before. Furthermore, the larger the n, the
closer we get to the optimal value of 1/2.

4 Fast linear clustering

The larger the clusters, the smaller the impact on ACMR when we
later change the relative order between them. Unfortunately, given
only a few large clusters, the ordering stage might not have enough
freedom to reduce overdraw. Hence, there is a trade-off. Our ap-
proach is to take advantage of the wealth of information produced
during the vertex cache optimization process, and break the model
into a multitude of small clusters, carefully delimited not to signifi-
cantly penalize the vertex cache.

Due to locality requirements, the sequence of triangles issued
by most vertex cache optimization algorithms follows wide paths
along the mesh (see figure 3). Naturally, triangles issued sequen-
tially tend to be spatially adjacent. Given this structure, we can
reduce the clustering stage from a 2-dimensional problem to a 1-
dimensional problem. We simply break the output of the vertex
cache optimization into contiguous, smaller subsequences, in a pro-
cess we call fast linear clustering. Each subsequence then becomes
a cluster.

In the case of our algorithm, each dead-end results in a path dis-
continuity. These discontinuities naturally cause the vertex cache to
be flushed, and we can therefore safely break the sequence at these
hard boundaries. Nevertheless, in the absence of hard boundaries,
long continuous paths must still be broken into smaller pieces. This
is done with the addition of soft boundaries.

Assume we are scanning a contiguous sequence of triangles and
must decide whether to place a soft boundary before triangle i. Our
algorithm breaks the sequence when following expression is true:

Mi < λ (1)

(a) λ < 0.5, no penalty (b) λ at 0% markup, 4% penalty

(c) λ at 6% markup, 11% penalty (d) K-means clustering

Figure 5: The effect of λ . (a) Setting λ lower than the global ACMR results

in breaks only on hard boundaries. (b-c) Reducing λ produces more clus-

ters, but results in higher losses to vertex processing. (d) In contrast, Nehab

et al. [2006] use fewer, larger clusters.

Mi is the local ACMR for the current subsequence, and therefore
decreases from 3 towards 0.5. This estimate is available nearly for
free during the vertex cache optimization process, so the clustering
process is extremely efficient.

Smaller subsequences, which have only recently paid the price
of a complete cache flush, have a higher local ACMR Mi, and are
therefore less likely to be broken off. Higher values of λ allow
even these sequences to be broken, and result in a greater number
of clusters, at the cost of a stronger impact on the global ACMR.
Conversely, lower values of λ reduce the number of soft bound-
aries, and thus affect the global ACMR to a lesser extent. In fact,
λ is a close lower bound for the ACMR of the clustered model. In
particular, choosing λ < 0.5 eliminates soft boundaries and leaves
the ACMR unchanged. Any value λ ≥ 3 will generate individual
triangles as clusters, potentially ruining the ACMR.

Even before clustering, the ACMR can vary substantially be-
tween different models (see figure 9). It therefore makes sense to
choose λ relative to the ACMR each model has right before cluster-
ing affects it. This allows us to bound the penalty in vertex process-
ing due to clustering. We have found that, for a variety of models, a
markup of only < 5% in the value of λ results in a sufficient num-
ber of clusters, while incurring a small (∼5–10%) penalty in vertex
processing.

Figure 5 shows examples of the Turtle model clustered by our
algorithm, with different values of λ . As expected, increasing
the value of λ results in more clusters, and has a higher impact
on ACMR. Also as expected, comparing with the results of the
k-means chartification used by Nehab et al. [2006], the fast lin-
ear clustering method results in a much larger number of smaller
clusters. This in turn allows us to use a view-independent metric
that simply assigns a numeric rank to each cluster. We can then sort
the clusters with regard to its rank, which is at the same time very
effective and extremely efficient to compute.

The clustering stage also substantially reduces the number of el-
ements to be sorted. In fact, the O(n log n) complexity is now for
n clusters, not t triangles. As long as the average cluster size is

(a) occlusion potential integral (b) fast approximation

(c) fast approximation on clusters (d) Nehab et al. [2006]

Figure 6: View independent triangle orders. Bright regions should be

drawn first. (a) The occlusion potential integral (equation 2). (b-c) The

fast approximation of equation 4, at the triangle level (b) and at the cluster

level (c). Notice how the approximation respects the relative order dictated

by the integral. (d) Unsurprisingly, Nehab et al. [2006] produces a similar

order, although at a much coarser level.

greater than log t, the complexity is sub-linear on the number of tri-
angles. In practice, this is always the case. For instance, even with
a tiny average cluster size of 20 (which would definitely harm the
vertex cache performance), it would take a model with t > 20 · 220

triangles before n logn > t.

5 View-independent cluster sorting

To minimize overdraw in a view-independent way, we should start
by drawing surface points that are more likely to occlude other sur-
face points, from any viewpoint. This likelihood is captured by the
occlusion potential integral O(p,M) of an oriented point p, relative
to model M. It is defined as the area of M that can be occluded by
point p, and is given by the following equation:

O(p,M) =

∫
q∈M

R(〈p−q,np〉)R(〈p−q,nq〉)
〈p−q, p−q〉 dq (2)

where R(x) =
x+|x|

2 is the unit ramp function, 〈 ,〉 is the dot product,
and np and nq are the normals at points p and q, respectively.

u

p

r

q
v

In order to understand the integral, consider
the diagram on the left. A point p can only oc-
clude a point q if neither of them is back-face
culled when p is in front of q. In other words,
〈p− q,np〉 and 〈p− q,nq〉 must both be posi-
tive. In the diagram, points r, u, and v fail one
or both these tests, and therefore do not con-

tribute to p’s occlusion potential. Point q passes both tests. In that
case, the contribution reflects the foreshortening of both p and q, as
seen by an orthographic camera. This is the role of the cosine terms
arising from the dot products and normalized by the denominator.

Ideally, we would like to sort individual surface points based on
their occlusion potentials (points with higher potentials drawn first).
However, to preserve the vertex cache, we must instead sort triangle
clusters atomically. We therefore extend the definition of occlusion
potential to surface patches P, as follows:

O(P,M) =
∫

p∈P
O(p,M) dp (3)

Unfortunately, computing the occlusion potential integral
takes O(t2) time, where t is the number of triangles in the mesh.
Instead, we resort to an O(t) approximation that can be efficiently
calculated. Intuitively, points with high occlusion potential will be
on the outskirts of a model, and will be pointing away from it.

We therefore define the approximate occlusion potential of a sur-
face patch P with regard to model M, as

O
′(P,M) = (C(P)−C(M)) ·N(P) (4)

where C is the centroid function, and N(P) represents the average
normal of patch P.

In general, the value of the approximate occlusion potential will
not be close to the value of the integral. In fact, the approxima-
tion can produce negative values. Nevertheless, the relative order
of the values produced tend to be very similar. Figure 6a shows the
Bunny model, on which each vertex has been shaded according to
equation 2. The vertices were sorted, and then colored from black
to white in decreasing order of occlusion potential. Figure 6b was
instead ordered and shaded according to equation 4 (at the triangle
level). Notice the dark regions between the ears, and also above
the tail, paws, and thighs. These regions do not occlude any part
of the model, regardless of viewpoint, and are therefore drawn last.
Conversely, the top of the head cannot be occluded, and is there-
fore drawn first. The same approximation can be performed at the
cluster level. Figures 6c shows the results of sorting the fast linear
clusters described in the previous section. The clusters are so small
that results are similar to the triangle level sorting. Comparing with
figure 6d, we can see that the overall order followed by Nehab et al.
[2006] is similar, although at a much coarser level.

6 Results

Running times Figure 7 (left) shows the running times, in log-
arithmic scale, of Tipsify() and several other vertex cache op-
timization methods. Tests were run on an Intel Pentium 4 2GHz
processor. The Dragon model was decimated into 20 uniformly
spaced resolutions ranging from 40k to 800k triangles. A variety
of algorithms (the original authors’ implementations) were used to
optimize each model for vertex locality. Note that our method is
considerably faster than all other methods, and runs approximately
100x faster than K-Cache-Reorder, which produces the best trian-
gle orders. The ratios would be even larger when optimizing for
large cache sizes (the plot uses a cache size of 12), since our run-
ning time depends only on the number of triangles. Figure 7 (right)
compares the running times (also in logarithmic scale) of our entire
system with that of Nehab et al. [2006], which is the only previous
method that optimizes for vertex cache and overdraw. In this case,
our new approach is approximately 1,000 times faster.

Due to the significant reduction in processing time, which al-
lows us to optimize models at load time, we can take advantage of
the actual host hardware post-transform vertex cache sizes and the
amount of information stored per vertex to generate a triangle order
optimized for these particular settings. Until this information is di-
rectly available through official APIs, the best parameters for each
configuration can be tabulated and looked up at run-time.

Vertex cache optimization To avoid cache flushes, previous
methods must optimize for conservative cache sizes (K-Cache-
Reorder, based on [Lin and Yu 2006] and D3DXMesh, based on
[Hoppe 1999]), and yield suboptimal performance in systems with a
large cache size. The graphs in figure 9 show that K-Cache-Reorder
yields the best ACMR results when optimizing for cache size 12.
However, if the run-time cache size increases above 20-24, mod-
els optimized at load time with Tipsify() can achieve even bet-
ter ACMRs. In contrast, cache oblivious methods (dfsrenseq [Bo-
gomjakov and Gotsman 2002] and OpenCCL [Yoon and Lindstrom
2006]) only surpass K-Cache-Reorder at much larger cache sizes.

To verify that improvements in ACMR translate into higher
frame rates, we tested a vertex bound application on different hard-
ware. We also varied vertex format configurations, since larger ver-
tices (i.e., with more attributes) consume more cache space, and can
reduce the number of entries available. In each test, a model was
optimized with K-Cache-Reorder, assuming cache sizes 12 (rec-

 0.01

 0.1

 1

 10

 100

 1000

800k700k600k500k400k300k200k100k
T

im
e

 (
s
)

Triangle count

Running time dependency on model size (vertex cache optimization)

Tipsify
D3DXMesh

dfsrenseq
K-Cache-Reorder

OpenCCL
 0.01

 0.1

 1

 10

 100

 1000

 10000

800k700k600k500k400k300k200k100k

T
im

e
 (

s
)

Triangle count

Running time dependency on model size (full pipeline)

Our method
Tootle

Figure 7: Running times as a function of model size (in logarithmic scale). The Dragon model was decimated into 20 uniformly spaced resolutions ranging

from 40k to 800k triangles. (Left) Vertex cache optimization only. (Right) Running times including the overdraw reduction stage. Notice our methods are much

faster than the alternatives.

ommended by ATI) and 24 (recommended by NVIDIA). The same
model was then optimized with Tipsify() at run time, given a va-
riety of different cache sizes. Figures 10 and 11 show the rendering
time ratios between the models optimized with K-Cache-Reorder
and the models optimized with Tipsify(), so that ratios above one
indicate that Tipsify() should be used instead.

Figure 11 shows the results for the ATI X1900XTX graphics
card. Regardless of vertex format, results suggest that the effec-
tive cache size is 12. Accordingly, the best alternative is to use
K-Cache-Reorder with this cache size. However, if the model was
optimized with K-Cache-Reorder for cache size 24, our method can
result in frame rate improvements of approximately 30%.

Interestingly, both the NVIDIA 7900GTX and 8800GTX seem
to have larger caches (see figure 10). Consider the 7900GTX (top
row). In nearly all cases, Tipsify() produces the greatest im-
provements by optimizing for a very large cache size. For a vertex
output size of 2 to 7 vector attributes, it consistently peaks when
optimizing for a cache size of 44–48. As the number of vector at-
tributes increases, we notice a decrease in the optimal choice for
cache size.

On the 8800GTX (bottom row), the peak occurs at lower cache
size values, and we get little gain by re-optimizing at run-time. In
fact, with few vector attributes, surprisingly any value between 12
and 24 yield satisfactory results. A notable exception happens when
many attributes are used (9 or more), which seems to cause the
card to support only 12 cache entries. In this case, we can improve
rendering times by nearly 30% when compared against K-Cache-
Reorder optimizing for cache size of 24, which is recommended by
NVIDIA.

As shown in the above analysis, if the application is aware of
the GPU type and vertex format configuration, Tipsify() can pro-
vide competitive results, and often improve rendering time at a very
small processing cost.

Overdraw reduction Figure 8 shows that the results of our over-
draw reduction algorithm are comparable with those produced by
the ATI Tootle library (based on [Nehab et al. 2006]), which re-
quires between 300x-10000x more processing time for the same
models. Our algorithm can also trade-off between vertex cache ef-
ficiency and overdraw reduction through the λ parameter. Note in
figure 8 that as λ increases, the cache efficiency decreases, while
overdraw efficiency increases. We have found that by setting λ

between 0.7 and 0.8, or to a small fraction higher than the post-
Tipsify() vertex cache efficiency, we get excellent results for both
vertex cache and overdraw. However, if one is particularly con-
cerned with one of the optimizations, results can be be further im-
proved by adjusting λ accordingly.

View-dependent sort strategies that dynamically change the or-
der in which triangles are rendered have the potential to completely
eliminate overdraw, although at the expense of additional process-
ing. We therefore compared our view-independent, static cluster
sort method against a front-to-back rendering strategy that updates
the cluster order when the viewpoint changes. After experimenting

 0.5

 0.75

 1

 1.25

 1.5

A
C

M
R

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

beethoven

blob
bunny

cow
dolphin

dragon-043571

face
fandisk

gam
eguy

m
annequin

venus-711

venus

M
O

V
R

λ=0
λ=0.7

λ=0.8
λ=1

λ=3
Nehab 2006

Figure 8: The trade-off between vertex cache and overdraw. Notice how the

choice of λ dictates ACMR penalty directly. If the application can afford a

higher ACMR (higher choice of lambda), then overdraw results are lower.

Results from Nehab et al. [2006] are also shown for comparison.

with a variety of models and scenarios, we concluded that dynamic
depth sorting is justified when the pixel shader is expensive enough
to offset the additional overhead. Using an extremely expensive
pixel shader, we were able to obtain a 5% average performance
boost on our models by using depth sorting. However, using a sim-
pler shader that performs basic lighting and texturing (although still
in a pixel bound scenario), our static sorting strategy beat dynamic
sorting by an average of 25%. When the camera is moved further
away from the object, pixel load can be reduced arbitrarily and the
scenario changes from pixel-bound to vertex-bound. In that case,
our method performs only slightly worse than the simple vertex
cache optimization, whereas the degradation caused by dynamic
depth sorting becomes even more evident.

For highly vertex bound and complex scenes, since the vertex
processing component of our algorithm only addresses vertex lo-
cality, we recommend using view-dependent level of detail and oc-
clusion culling methods to generate index buffers which can then
be processed by our algorithms to further reduce vertex and pixel
processing. Note that our methods are completely orthogonal to
these approaches, and entirely transparent to the application at ren-
dering time. It takes direct advantage of already available hardware
computation culling optimizations.

7 Conclusions

In this paper we introduced algorithms that efficiently reorder tri-
angles in a model to take advantage of graphics hardware optimiza-
tions during rendering. Our algorithms are orders of magnitude
faster than previous methods for both vertex cache and overdraw
optimization. Furthermore, because the algorithms can be executed
in a fraction of the time, if we optimize for a the hardware’s vertex
cache size at load time, we show that the vertex-cache optimization

algorithm alone can often yield better results than previous meth-
ods. The overdraw reduction method doesn’t significantly harm
vertex cache efficiency while achieving comparable overdraw re-
sults to previous work. Additionally, the algorithms are general,
simple to implement, and easy to integrate with rendering applica-
tions. We expect these new methods to be very useful for a wide
range of real-time rendering applications, including those that re-
quire interactive optimization, such as CAD applications.

Acknowledgements

We would like to thank Phil Rogers of AMD for his suggestions and
many discussions on an earlier triangle ordering algorithm, which
eventually led us to pursue this work. We also thank the members
of AMD’s 3D Application Research group for their unyielding sup-
port, suggestions, and comments.

References

AIREY, J. M. 1990. Increasing update rates in the building walk-
through system with automatic model-space subdivision and po-
tentially visible set calculations. PhD thesis, UNC-CH.

AKELEY, K., HAEBERLI, P., and BURNS, D. 1990. The tomesh.c
program. Available on SGI computers and developers toolbox
CD.

ARKIN, E. M., HELD, M., MITCHELL, J. S. B., and SKIENA, S.
1996. Hamiltonian triangulations for fast rendering. The Visual
Computer, 12(9):429–444.

BAR-YEHUDA, R. and GOTSMAN, C. 1996. Time/space tradeoffs
for polygon mesh rendering. ACM Transactions on Graphics, 15
(2):141–152.

BELMONTE, O., REMOLAR, I., J. RIBELLES, M. C., REBOLLO,
C., and FERNÁNDEZ, M. 2001. Multiresolution triangle strips.
In Proceedings of IASTED VIIP, pages 182–187.

BITTNER, J., WIMMER, M., and HARALD PIRINGER, W. P. 2004.
Coherent hierarchical culling: Hardware occlusion queries made
useful. Computer Graphics Forum, 23(3):615–624.

BLYTHE, D. 2006. The Direct3D 10 system. ACM Transactions
on Graphics (Proc. of ACM SIGGRAPH 2003), 25(3):724–734.

BOGOMJAKOV, A. and GOTSMAN, C. 2002. Universal rendering
sequences for transparent vertex caching of progressive meshes.
Computer Graphics Forum, 21(2):137–148.

CHOW, M. M. 1997. Optimized geometry compression for real-
time rendering. In Visualization’97, pages 347–354, 559.

DEERING, M. 1995. Geometry compression. In Proc. of ACM
SIGGRAPH 95, pages 13–20.

DEERING, M. F. and NELSON, S. R. 1993. Leo: a system for cost
effective 3D shaded graphics. In Proc. of ACM SIGGRAPH 93,
pages 101–108.

DIAZ-GUTIERREZ, P., BHUSHAN, A., GOPI, M., and PAJAROLA,
R. 2006. Single-strips for fast interactive rendering. The Visual
Computer, 22(6):372–386.

DILLENCOURT, M. B. 1996. Finding hamiltonian cycles in delau-
nay triangulations is NP-complete. Discrete Applied Mathemat-
ics, 64(3):207–217.

EL-SANA, J. A., AZANLI, E., and VARSHNEY, A. 1999. Skip
strips: maintaining triangle strips for view-dependent rendering.
In Visualization ’99, pages 131–138.

ESTKOWSKI, R., MITCHELL, J., and XI-ANG., X. 2002. Optimal
decomposition of polygonal models into triangle strips. In SCG,
pages 254–263.

EVANS, F., SKIENA, S., and VARSHNEY, A. 1996. Optimizing
triangle strips for fast rendering. In Visualization ’96, pages 319–
326.

GAREY, M. R., JOHNSON, D. S., and TARJAN, R. E. 1976. The
planar hamiltonian circuit problem is NP-complete. SIAM J.
Comput., 5(4):704–714.

GOPI, M. 2004. Controllable single-strip generation for triangu-
lated surfaces. In PG’04, pages 61–69.

GOVINDARAJU, N. K., HENSON, M., LIN, M. C., and
MANOCHA, D. 2005. Interactive visibility ordering and trans-
parency computations among geometric primitives in complex
environments. In I3D, pages 49–56.

GREENE, N., KASS, M., and MILLER, G. 1993. Hierarchical z-
buffer visibility. In Proc. of ACM SIGGRAPH 93, pages 231–
238.

GUMHOLD, S. and STRASSER, W. 1998. Real time compression
of triangle mesh connectivity. In Proc. of ACM SIGGRAPH 98,
pages 133–140.

HILLESLAND, K., A., B. S., D., L., and MANOCHA. 2002.
Fast and simple occlusion culling using hardware-based depth
queries. Technical Report TR02-039, Department of Computer
Science, UNC-CH.

HOPPE, H. 1999. Optimization of mesh locality for transparent
vertex caching. In Proc. of ACM SIGGRAPH 99, pages 269–
276.

LIN, G. and YU, T. P.-Y. 2006. An improved vertex caching
scheme for 3d mesh rendering. TVCG, 12(4):640–648.

MITRA, T. and CHIUEH, T. 1998. A breadth-first approach to effi-
cient mesh traversal. In HWWS’98, pages 31–38.

NEHAB, D., BARCZAK, J., and SANDER, P. V. 2006. Triangle
order optimization for graphics hardware computation culling.
In I3D, pages 207–211.

RAMOS, J. and CHOVER, M. 2004. Lodstrips: Level of detail
strips. Lecture Notes in Computer Science, 3039:107–114.

RIBELLES, J., LÓPEZ, A., REMOLAR, I., BELMONTE, O., and
CHOVER, M. 2000. Multiresolution modelling of polygonal sur-
face meshes using triangle fans. Lecture Notes in Computer Sci-
ence, 1953:431–443.

RIPOLLÉS, O., CHOVER, M., and RAMOS, J. F. 2005. Quality
strips for models with level of detail. In Proceedings of IASTED
VIIP, ACTA Press, pages 268–273.

SHAFAE, M. and PAJAROLA, R. 2003. Dstrips: Dynamic triangle
strips for real-time mesh simplification and rendering. In PG’03,
pages 271–280.

SPECKMANN, B. and SNOEYINK, J. 1997. Easy triangle strips for
tin terrain models. In Canadian Conference on Computational
Geometry, pages 91–100.

STEWART, A. J. 2001. Tunneling for triangle strips in continuous
level-of-detail meshes. In Graphics Interface, pages 91–100.

TAUBIN, G. and ROSSIGNAC, J. 1998. Geometric compression
through topological surgery. ACM Transactions on Graphics, 17
(2):84–115.

TELLER, S. J. and SÈQUIN, C. H. 1991. Visibility preprocessing
for interactive walkthroughs. In Proc. of ACM SIGGRAPH 91,
pages 61–70.

TOUMA, C. and GOTSMAN, C. 1998. Triangle mesh compression.
In Proceedings of Graphics Interface, pages 26–34.

VAN KAICK, O., DA SILVA, M., and PEDRINI, H. 2004. Efficient
generation of triangle strips from triangulated meshes. Journal
of WSCG, 12(1–3):475–481.

VELHO, L., DE FIGUEIREDO, L. H., and GOMES, J. 1999. Hier-
archical generalized triangle strips. The Visual Computer, 15(1):
21–35.

XIANG, X., HELD, M., and MITCHELL, J. S. B. 1999. Fast and
effective stripification of polygonal surface models. In Proceed-
ings of the 1999 Symposium on Interactive 3D Graphics, pages
71–78.

YOON, S.-E. and LINDSTROM, P. 2006. Mesh layouts for block-
based caches. TVCG, 12(5):1213–1220.

YOON, S.-E., LINDSTROM, P., PASCUCCI, V., and MANOCHA,
D. 2005. Cache-oblivious mesh layouts. ACM Transactions on
Graphics (Proc. of ACM SIGGRAPH 2005), 24(3):886–893.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Beethoven (2665 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Blob (8036 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Buddha (543652 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Bunny (35947 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Cow (3066 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Dolphin (287 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Dragon 40K (22342 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Face (12530 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Fandisk (6475 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Gameguy (21412 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

Mannequin (689 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

A
C

M
R

Size of cache used to calculate ACMR

venus (2838 vertices)

Tipsify
D3DXMesh

K-Cache-Reorder
dfsrenseq
OpenCCL

Figure 9: ACMR comparison of Tipsify against several cache optimization methods (using their respective authors’ implementations). Competing methods

were optimized for a cache size of 12, at pre-processing. Tipsify was instead given the cache size used to measure ACMR. In order words, the results are shown

as if Tipsify was used at run-time.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

n
d

e
ri
n

g
 t

im
e

 r
a

ti
o

Vertex cache size passed to Tipsify

NVIDIA 7900 GTX (vertex sizes 2 to 7)

K-Cache-Reorder at 12
K-Cache-Reorder at 24

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

n
d

e
ri
n

g
 t

im
e

 r
a

ti
o

Vertex cache size passed to Tipsify

NVIDIA 7900 GTX (vertex size 8)

K-Cache-Reorder at 12
K-Cache-Reorder at 24

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

n
d

e
ri
n

g
 t

im
e

 r
a

ti
o

Vertex cache size passed to Tipsify

NVIDIA 7900 GTX (vertex sizes 9 to 11)

K-Cache-Reorder at 12
K-Cache-Reorder at 24

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

n
d

e
ri
n

g
 t

im
e

 r
a

ti
o

Vertex cache size passed to Tipsify

NVIDIA 8800 GTX (vertex sizes 2 to 4)

K-Cache-Reorder at 12
K-Cache-Reorder at 24

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

n
d

e
ri
n

g
 t

im
e

 r
a

ti
o

Vertex cache size passed to Tipsify

NVIDIA 8800 GTX (vertex sizes 5 to 8)

K-Cache-Reorder at 12
K-Cache-Reorder at 24

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

n
d

e
ri
n

g
 t

im
e

 r
a

ti
o

Vertex cache size passed to Tipsify

NVIDIA 8800 GTX (vertex sizes 9 to 11)

K-Cache-Reorder at 12
K-Cache-Reorder at 24

Figure 10: Rendering time ratio between K-Cache-Reorder (using cache sizes of 12 or 24), and Tipsify (running on a variety of vertex cache sizes). Lines

above the 1 mean Tipsify is doing better than K-Cache-Reorder. Plot shows one line for each number of vertex attributes (for simplicity, similar lines are

grouped together). Tests were run on two of NVIDIA latest graphics cards.

 0.6

 0.8

 1

 1.2

 1.4

 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

R
e

n
d

e
ri
n

g
 t

im
e

 r
a

ti
o

Vertex cache size passed to Tipsify

ATI XTX 1900 (any vertex size)

K-Cache-Reorder at 12
K-Cache-Reorder at 24

Figure 11: Same as figure 10, but on the latest ATI hardware.

