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1. INTRODUCTION

Many problems in computer graphics, computer vision, and geo-
metric modeling require reasoning about which regions of a surface
are most important. For example, in an object classification system,
a query might be compared only against the most important regions
of a target object to provide more discriminating matches. Also in
a mesh simplification algorithm, the importance of vertices might
be used to determine the order in which they are decimated. In an
icon generation system, the viewpoint might be chosen so that the
important regions of an object are maximally visible.

Although there has been significant progress in algorithms for de-
termining important regions of polygonal meshes, most prior work
has focused on geometric properties of every mesh in isolation. For
example, Lee et al. [2005] defined a measure of mesh saliency using
a center-surround operator on Gaussian-weighted mean curvatures.
Related measures of mesh importance have been defined by Gal
et al. [2006], Li et al. [2005], Novotni et al. [2005], Gelfand et al.
[2005], and others. However, almost all of these methods simply
select regions where the curvature of a surface patch is different
than in its immediate neighborhood.

Intuitively, the important regions of an object for recognition are
not the ones with specific curvature profiles, but rather the ones that
distinguish it from objects of other types, i.e., the distinctive regions.
For example, consider the biplane shown in Figure 1. Any five-year-
old will tell you that the important features of the biplane are the
wings and tail (Figure 1). Those features are unique to biplanes and
thus distinguish the biplane from other types of vehicles. Gener-
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alizing this idea, we define the distinction of a surface region as
how useful it is for distinguishing the object from others of different
types.

This definition has an interesting implication: in order to deter-
mine how distinctive a surface region is, we must not only consider
its properties, but we must also consider how consistent those prop-
erties are within other instances of the same object type and how
unique those properties are with respect to other object types under
consideration. For example, if we consider the biplane among other
types of airplanes, we find that the wings are the most distinctive
features. However, if we consider it as a biplane among other types
of objects (tables, animals, cars, etc.) many of which have large flat
regions, we find that the tail is most distinctive (Figure 1). In gen-
eral, the distinctive regions of a surface will be different depending
on the granularity and range of object types under consideration.

In this article, we describe methods for defining, computing, and
utilizing surface distinction. Our approach is motivated by shape-
based retrieval measures. We define the distinction of a surface re-
gion based on a measure of how well a shape-based search of a
database with that region as the query produces a ranked retrieval
list with objects of the same type near the front of the list. To
compute this measure of importance, we generate a random set
of points on the surface of a mesh. Then, for each point, we com-
pute Harmonic Shape Descriptors (HSD) [Kazhdan 2004] at four
different scales and match them to all others of the same scale in a
database of meshes partitioned into object classes. The distinction
of every point at every scale is computed as the discounted cumu-
lative gain (DCG) [Jarvelin and Kekalainen 2000] of the retrieval
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Fig. 1. Distictive regions of the plane correspond to the important regions that define the object type and distinguish the plane from other types of objects.
Regions shown in red are the most distinctive, blue are least distinctive, and green are in the middle. This result corresponds to our intuition that the wings and
tail are important features of a plane.

list generated by ranking the best matches from every object in the
database and measuring how often objects from the same class ap-
pear near the front of the list [Shilane and Funkhouser 2006]. The
distinction values are then optionally mapped onto the vertices of
the mesh and used for a variety of visualization and processing
applications.

The contributions of this article and its associated conference pa-
pers [Funkhouser and Shilane 2006; Shilane and Funkhouser 2006]
are threefold. First, we provide a definition of surface distinction
that captures how distinguishing every region of a surface is with re-
spect to object classes in a database. Second, we describe a practical
method for computing surface distinction using shape matching al-
gorithms and evaluation methods derived from information retrieval.
Third, we demonstrate the utility of our surface distinction measure
for shape matching and several graphics applications including mesh
visualization, icon generation, and mesh simplification.

2. RELATED WORK

There has been a long history of related work in cognitive psy-
chology, computer vision, computer graphics, geometric modeling,
statistics, and pattern recognition. In this section, we focus on tech-
niques for selecting important local regions of 3D surfaces for shape
matching and their applications for computer graphics.

Perceptual Criteria. There have been several attempts to select
regions of 3D shapes that humans find visually important in object
recognition, perceptual psychology, and computer vision. For ex-
ample, Howlett et al. [2004] used an eye-tracker to record where
a person looks at a 3D model and then used that information to
assign importance to vertices in a mesh simplification algorithm.
While this method captures a useful notion of surface importance,
it is viewpoint-dependent and requires human analysis of every 3D
mesh, which is impractical for the large databases of 3D meshes
targeted by our system.

Several psychophysical experiments have found that the human
visual system quickly processes regions of high curvature (e.g.,
Hoffman and Singh [1997]). These findings have been applied ex-
tensively for object recognition in computer vision [Lowe 1999;
2004]. For example, combinations of filters measuring edges and
local maxima of curvature in 2D images have been used to fo-

cus scene recognition algorithms [Frintrop et al. 2004]. More re-
cently, they have also been applied to define measures of saliency
for mesh processing applications. For example, Lee et al. [2005]
used a center-surround filter of curvature across multiple scales to
select salient regions for mesh simplification and viewpoint selec-
tion. Similarly, Gal and Cohen-Or [2006] computed the saliency
of a region based on its size relative to the whole object, its cur-
vature, the variance of curvature, and the number of curvature
changes within the region, and they used this measure to guide
partial shape matching, self-similarity detection, and shape align-
ment. Li and Guskov [2005] computed surface signatures describ-
ing the curvature and other properties for local regions and only
keep the ones with significantly nonzero magnitude. Novotni et
al. [2005] selected points found as local extrema of the differ-
ences of Gaussian filters applied to the characteristic function of the
surface.

While these approaches are able to select regions that may be
visually noticable, they focus on curvature and other measures ap-
propriate for manifold surfaces. Thus, they cannot be used effec-
tively for the majority of 3D computer graphics models which often
contain disjoint and intersecting polygons. More importantly, they
measure how much a region sticks out from the rest of the ob-
ject rather than how important the region is for defining the object
type.

Statistical Criteria. Numerous techniques have been developed
for selecting important features in the realm of statistical analy-
sis and pattern recognition, which are covered in several classical
books [Duda et al. 2001; Hastie et al. 2001; McLachlan 1992]. The
classical problem is, given a set of feature vectors and labeled train-
ing data, to select a subset of features that is most useful for classifi-
cation. Many techniques from this field can also produce real-valued
importance scores for each feature. Discriminant analysis [Lachen-
bruch and Goldstein 1979] or analysis of variance (ANOVA) [Miller
1997] selects feature vectors that are consistent within a class and
have a large separation from other classes of objects. Using regres-
sion analysis, a subset of features can be selected with stepwise
selection that either grows or shrinks a subset of features to op-
timize a function [Copas 1983; Frank and Friedman 1993]. The
problem we address differs from classical statistical analysis be-
cause these approaches assume a correspondence between features,
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Fig. 2. Partitioning a surface into regions and computing how distinctive the regions are with respect to a set of object classes provided in a database.

and they select dimensions of a feature vector rather than positions
on a surface.

In the shape matching literature, the relative rarity of local sur-
face patches has been used as a measure of importance to guide
several shape matching systems without requiring correspondences
between patches. Typically, representations of local shape (shape de-
scriptors) are computed for many regions of a surface, and then they
are weighted according to a measure of uniqueness when point sets
are aligned and/or matched. For example, Chua and Jarvis [1996]
found selective points on a surface by comparing their descriptors
to others in a local neighborhood and used the descriptor that was
most unique for shape matching [Chua and Jarvis 1996]. Johnson
[2000] computed the likelihood of each shape descriptor based on
a Gaussian distribution of the descriptors for each mesh and then
selected only the least likely ones to speed up surface matching.
However, these methods only find descriptors that are rare—they
do not specifically find ones that are distinctive of an object class.

Shan et al. [2004] used shape descriptor matching to define the
importance of points on a mesh after calculating correspondences in
a database. This method selects points based on how well they match
multiple points on one object (e.g., a spherical region will be selected
if there is an object with many spherical regions in the database),
and thus it provides a measure of stability for shape matching rather
than a measure of importance for object classification as is provided
by our method.

This article provides an extended discussion of the methods first
proposed in Shilane et al. [2006] and Funkhouser et al. [2006].
In Shilane and Funkhouser [2006], the idea of using retrieval per-
formance metrics to measure shape distinction was first proposed.
That paper focused on predicting the distinction of regions on a
query shape, while this article focuses on the analysis of shapes
in a classified database. In Funkhouser and Shilane [2006], the
method described in this article was used to improve multipoint
shape matching. This article provides further analysis of the bene-
fit of using distinctive points for matching as well as visualization
and mesh processing applications that utilize a measure of surface
importance.

3. METHODS

In this article, we describe methods for defining, computing, and
utilizing surface distinction, a measure of how precisely a local sur-
face region indicates a particular class of objects. Intuitively, regions
that are common among many object classes are not distinctive (e.g.,
planar regions, spherical regions, etc.), while others that are found in
only one object class are very distinctive (e.g., the ears of a bunny,
the wheels of a motorcycle, the handle of a guitar, the head of a
wrench, etc.). In our system, we assign a continuous value of dis-
tinction to every surface region at multiple scales, with 0 indicating
that the region is not distinctive at all (i.e., that region could be
found equally well in any object class), 1 indicating that the region

is perfectly distinctive (i.e., that region is found in only one object
class), and values in between representing the degree to which the
region distinguishes the object class (Figure 1).

Computation of surface distinction proceeds in our system as
shown in Figure 2. Given a database of meshes partitioned into ob-
ject classes, we first generate for each mesh a set of random points
that are the centers of spherical regions covering its surface at mul-
tiple scales. Then, for every region, we compute a shape descriptor
representing the distribution of surface area within that region. Next,
we compare the difference between all pairs of shape descriptors to
produce a ranked list of matches for each descriptor ordered from
best to worst. The ranked lists are then analyzed to produce measures
of how distinctive different local regions are, that is, how many de-
scriptors from the same class of objects appear near the front of their
ranked lists. These measures can be directly used to improve shape
matching applications and can also be mapped from the regions back
onto the vertices of the mesh and used to guide mesh visualization,
processing, and analysis. The following sections describe each of
these steps in detail.

3.1 Constructing Regions

The first step of our process is to define a set of local regions covering
the surface of the object. In theory, the regions could be volumetric
or surface patches; they could be disjoint or overlap; and, they could
be defined at any scale.

In our system, we construct overlapping regions defined by spher-
ical volumes centered on points sampled from the surface of an ob-
ject (Figure 3). This choice supports robust processing of arbitrary
surface meshes with degenerate topology, and it naturally supports
overlapping regions at multiple scales. Formally, the database con-
sists of a set of meshes {M1, . . . , Mm}, each mesh M j has a set of
points {p1, j , . . . , pn, j } where p ∈ R3, and each point has a set of
scales {s1, . . . , sr }, where a spherical region ri, j,k has center pi, j and
radius sk . We have experimented with two different point sampling
methods, one that selects points randomly with uniform distribution
with respect to surface area and another that selects points at vertices
of the mesh with probability equal to the surface area of the vertices’
adjacent faces. However, they do not give significantly different per-
formance, and so we consider only random sampling with respect
to surface area in the remainder of this article. Of course, other
sampling methods that sample according to curvature, saliency, or
other surface properties are possible as well. In most of our exper-
iments, we consider four different scales for every point where the
smallest scale has radius 0.25 times the radius of the entire object,
and the other scales are 0.5, 1.0, and 2.0 times, respectively. Note
that the biggest scale is just large enough to cover the entire object
for the most extreme position on the surface, and the smallest scale
is large enough to contain easily recognizable shape features.

Our implementation for selecting random points on a surface as
centers for these spherical regions follows the ideas of Osada et al.
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Fig. 3. Four regions are shown with the same center point but different scales. At the 0.25 scale, the tail is included, and at larger scales, progressively more
of the plane is included. At the 2.0 scale, the entire plane is included, even when the region is centered on the end of the plane.

[2002]. We have modified their algorithm slightly to make sampling
more efficient and to stratify samples in meshes with large triangles.
Specifically, in the first stage, we allocate a number of points to
every triangle in proportion to its surface area. Then, in the second
stage, we sample the allocated number of points from every triangle
uniformly with respect to its surface area. This method is faster than
Osada’s method, taking O(n) rather than O(n log n) for a mesh with
n triangles.

3.2 Describing Shapes

In the second step of our process, for each spherical region ri, j,k ,
we generate and store a shape descriptor xi, j,k which has dimension
d. There will be many such regions for every surface, so the shape
descriptors must be quick to compute and concise to store. Since we
will be matching all pairs of the shape representations, they must be
indexable and quick to compare. Also, our methods should work for
any input object representation, they must be independent of shape
description, insensitive to topology, and robust to common input
file degeneracies. Finally, since we aim to model how distinctive
the shape of each surface region is, they must be discriminating of
similar versus dissimilar shapes.

There are many shape descriptors that meet some or all of these
goals (see surveys in Bustos et al. [2005]; Iyer et al. [2005]; Tan-
gelder and Veltkamp [2004]). For example, Belongie et al. [2002]
have used shape contexts for describing local regions of 2D im-
ages, and Kortgen et al. [2003] have extended their method to 3D.
However, shape contexts are dependent on a particular orientation,
and thus require alignment within a global coordinate system [Kort-
gen et al. 2003] or searching possible rotations as they are matched
[Frome et al. 2004]. Johnson and Hebert [1999] have used spin
images to represent the shapes of local regions with orientation de-
pendence on just the normal to the surface at a sample point, and
Vranic et al. [2003] have described Fourier descriptors that can be
used to provide invariance to all rotations except those around the
surface normal. However, those methods are sensitive to normal
orientation, which is highly variable in sparsely sampled point sets
considered in this article. Finally, Kazhdan et al. [2003] have de-
scribed a Harmonic Shape Descriptor (HSD) that is invariant to all
rotations. The main idea is to decompose a spherical region into
concentric spherical shells of different radii, compute the spherical
harmonic decomposition for a function describing the shape in each
of those shells, and then store the amplitudes of the harmonic coef-
ficients within every frequency (order) to form a feature vector for
indexing and matching (see Funkhouser et al. [2003] for details).

In our system, we describe the shape of every spherical region
by a Harmonic Shape Descriptor with 32 spherical shells and 16
harmonic frequencies. We chose this shape representation for sev-
eral reasons. First, it requires only 512 floating point values (2048

bytes), and thus it is concise enough to store in memory for hundreds
of points at several scales for thousands of meshes in a database.
Second, it is rotation invariant, and thus two HSDs can be com-
pared quickly without a priori alignment or searching all possible
rotations. Third, it is fairly discriminating, according to tests by Shi-
lane et al. [2004]. Finally, the L2 (Euclidean) difference between any
two HSDs provides a lower bound on the L2 difference between their
corresponding shapes, and thus HSDs can be combined with other
shape descriptors as a conservative prefilter in a later version of this
system.

Our method for computing the HSD for all regions of a single sur-
face starts by computing a 3D grid containing a Gaussian function
of the surface’s Euclidian Distance Transform (GEDT) [Kazhdan
2004]. This function, which is one at the surface and falls off grad-
ually with Euclidean distance, provides a soft penalty function for
matching surfaces by comparison of volumes. The GEDT grid res-
olution is chosen to match the finest sampling rate required by the
HSD for regions at the smallest scale; the triangles of the surface
are rasterized into the grid, and the squared distance transform is
computed and stored. Then, for every spherical region centered on
a point sampled from the surface, a spherical grid is constructed
by computing the GEDT at regular intervals of radius and polar
angles; the Spharmonickit software [SpharmonicKit 2.5 1998] is
used to compute the spherical harmonic decomposition for each ra-
dius, and the amplitudes of the harmonic coefficients within each
frequency are stored as a shape descriptor.

Computing 128 shape descriptors at four scales (0.25, 0.5, 1.0, and
2.0) for a single mesh takes approximately three minutes overall.
One minute is spent rasterizing the triangles and computing the
squared distance transform at resolution sufficient for the smallest
scale descriptors, and two minutes are spent computing the spherical
grids and constructing the 512 harmonic shape descriptors.

3.3 Measuring Distinction

In the third step of our process, we compute how distinctive every
shape descriptor is with respect to a database containing multiple
classes of objects. Our goal is to compute a continuous measure that
reflects how well the shape descriptor for a local region of a sur-
face matches others within the same class of objects relative to how
well it matches descriptors in other classes. Descriptors whose best
matches are all from its own class are distinctive, while ones that
match descriptors in a wide variety of classes equally well are not.
While we would ideally like to calculate the distinction value for all
combinations of local descriptors and at all scales, this is computa-
tionally infeasible. Instead, we make an independence assumption
and calculate distinction for each descriptor independently, model-
ing distinction with an information retrieval metric.
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Given the distance from the i th feature of M j to the closest de-
scriptor of every other mesh in the database,

dist(xi, j,k, Mt ) = min
b

|xi, j,k − xb,t,k |,
we sort the distances from smallest-to-largest to create the retrieval
list for xi, j,k . We then compute the distinction of the descriptor by
evaluating a retrieval performance metric that measures how well
meshes in the query’s class appear near the front of the list. There are
numerous evaluation metrics that could be used to convert a retrieval
list into a numeric score including the nearest neighbor, precision
for a fixed-length retrieval list, first or second tier, e-measure, f-
measure, discounted cumulative gain (DCG), etc. that are described
more thoroughly by Leifman et al. [2003] and Shilane et al. [2004].
Each of these measures has trade-offs in terms of how much of the
retrieval list is included in the calculation (nearest neighbor uses the
first retrieval result, while DCG requires the full list) versus the time
necessary to calculate the results (nearest neighbor could be quickest
using an indexing structure to find the closest result and DCG the
slowest). We have selected the DCG [Jarvelin and Kekalainen 2000]
retrieval measure because it has been shown to provide the most
stable retrieval measure in previous studies [Leifman et al. 2003;
Shilane et al. 2004].

Intuitively, the DCG measure of retrieval performance gives credit
to matches within the same class at every position in the rank list
but weights matches near the front of the list more than ones near
the end of the list. More formally, to calculate the DCG for a query
descriptor, a ranked list L of the best matches from each object
is converted to a binary list G, where element Gi has value 1 if
element Li is in the same class as the query descriptor, and value
0 otherwise. Discounted cumulative gain is then computed with the
following recursion:

DCGi =
{

G1, i = 1
DCGi−1 + Gi

log2(i) , otherwise

}
.

The result is then divided by the maximum possible DCG, which is
achieved if the first C elements are in the correct class, where C is
the size of the class:

DCG = DCGN

1 + ∑|C |
j=2

1
log2( j)

,

where N is the number of shapes in the database. Thus, the DCG for a
descriptor is between zero and one with better retrieval performance
corresponding to DCG values closer to one. The distinction score
for a descriptor xi, j,k associated with position pi, j and scale sk is
the DCG score calculated for the retrieval list when using xi, j,k as a
query.

D(xi, j,k) = D(pi, j , sk) ≡ DCG.

In our system, we compute and store this measure of distinction
for every shape descriptor of every object during an offline process-
ing phase. Comparing two descriptors takes 2.5E-6 seconds on a
2.2GHz computer running Linux, and in general takes O(Sn2m2)
time to make all pairs of comparisons, where S is the number of
scales, n is the number of descriptors per-mesh, and m is the num-
ber of meshes in the database. This process takes 37 hours for
128 points at four scales for 907 meshes in the Princeton Shape
Benchmark [Shilane et al. 2004]. However, it must be done only
once per-database during a batch processing phase, and thus we
have not found computing time to be an issue—we computing the
distinction for each descriptor once, and then stored it in a file for
use multiple times in various applications.

3.4 Mapping to Vertices

The final step of the process is to map the computed measure of class
distinction back onto the vertices of the mesh. While this step is not
required of all applications (e.g., shape matching), it is useful for
several mesh processing tasks (e.g., mesh simplification) that need
to have a measure of importance associated directly with every ver-
tex. An alternative to mapping distinction scores from samples on
the surface is to calculate shape descriptors at each vertex and cal-
culate distinction directly, but we have typically been working with
a vastly smaller number of descriptors than the number of vertices
per-mesh.

Our approach to this problem is quite straightforward. We simply
model distinction as a mixture of Gaussians. For every vertex, we
estimate how distinctive it is by computing a weighted average of the
DCG values that have been computed for nearby shape descriptors
for a given scale where the weights are determined by the value of a
Gaussian function of the distance between the vertex and the middle
of the surface region.

Consider mesh X consisting of a set of shape descriptors each
with a center position p ∈ R3 and distinction score defined for each
scale, where D(p, s) is calculated as described in Section 3.3. For
every vertex v on the mesh of X , distinction is defined as follows.

D(v, s) =
∑

p∈X D(p, s)e
−‖p−v‖2

2σ2

∑
p∈X e

−‖p−v‖2

2σ2

.

While using the Euclidean distance instead of geodesic dis-
tance ignores connectivity information, it is robust to disconnected
meshes. Also, since the regions selected on each shape are generally
overlapping and nearby descriptors tend to be similar, it is reason-
able to assume that distinction scores change smoothly across a
mesh, and we have found that our technique for computing distinc-
tion per-vertex works well in practice. In all of the following results,
we set σ = 0.1 times the mesh radius.

4. RESULTS

The methods described in the previous section have been tested on
several databases of 3D meshes. In this section, we present images
depicting mesh distinction for several examples and investigate (1)
which regions of meshes are found to be most distinctive, (2) how
mesh distinction compares to previous measures of importance (i.e.,
saliency), and (3) how sensitive our results are to different parameter
settings.

4.1 Mesh Distinction Examples

To help the reader understand which regions are found distinctive
by the proposed methods, we show a sampling of images depicting
which regions are found to be distinctive for a variety of object
classes in a variety of databases. In all images, regions shown in red
are the most distinctive, blue regions are least distinctive, and green
regions are in the middle. For example, in Figure 4, the ears of the
Stanford Bunny are unique to rabbits (red) and thus distinguish the
bunny from other classes of animals, while the shape of the body
is not very distinctive (blue). Similarly, the head of the wrench,
wheels of the vehicles, vase with the plant, and struts of the guitar
are important parts for distinguishing each class of objects within
the Princeton Shape Benchmark.

Our next example shows the distinctive regions found for three
helicopters (all except the right-most image of Figure 5). In this case,
shape descriptors were computed at the 0.25 scale at 1,024 points
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Fig. 4. Distinctive regions of meshes correspond to the important regions that define their class of objects. In all images, regions shown in red are the most
distinctive, blue are least distinctive, and green are in the middle.

on each surface, and distinction was measured with respect to a
database of flying vehicles dominated by airplanes. The propellers
are red (the most distinctive region) in every case, which matches
our intuition that the part that distinguishes a helicopter from other
flying vehicles is its propeller. For comparison sake, we show the
mesh saliency values computed by Lee et al. [2005] for the heli-
copter third from the left. The areas predicted to be salient by their
approach highlight portions of the cockpit and tail due to variations
of curvature there and do not detect the importance of the propellers.

A second example shows the regions that distinguish cars from
other classes of vehicles (Figure 6). In this case, shape descriptors
were computed at the 0.25 scale at 1,024 points, and distinction was
measured with respect to a database containing cars, planes, and
jeeps. The wheels are most distinctive (red) in all cases, although
for the top-left car, the front and rear of the car are equally distinctive
probably because of the different aspect ratio of this car relative to
other cars. Again, for comparison sake, we show the mesh saliency
values computed by Lee et al. [2005] for the top-right car—the
regions predicted to be salient by their approach do not correspond
as well to distinguishing parts.

A third example shows the regions found to be distinctive for a
set of humans standing in a spread-eagle pose (Figure 7). In this
case, only 256 shape descriptors were computed for each mesh at
the 0.25 scale, and their distinction was measured with respect to

all classes in the test database of the Princeton Shape Benchmark
(PSB). For thirteen of the fifteen examples, the arms are found to be
the most distinctive region. For the other two, the top of the head is
most distinctive (those two people have wider arms and a slightly
different pose than the others). This result is interesting because the
region found to be most distinctive is not obviously what a human
might choose as the distinguishing feature of this class at first glance.
However, the PSB test database has 92 different classes, including
“humans in a standing pose,” “humans in a walking pose,” “faces,”
“heads,” “skulls,” “hands,” etc., and thus it is indeed the pose of the
arms that best differentiates this class from the others. This example
points out both an advantage and disadvantage of our approach:
our method can automatically determine the differences between
classes in a database, but the distinctive regions may not correspond
to semantic parts.

4.2 Effect of Database

A key feature of our formulation for mesh distinction is that the
results depend on the database under consideration and how it is
partitioned into object classes. In this section, we investigate how
the distinctive regions of a surface might be affected by changes in
the database.
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Mesh Saliency 

Fig. 5. Visualizations of distinctive regions (red) on three helicopters with respect to a database of flying vehicles. The two right-most images show a
comparison of distinction to mesh saliency as computed by Lee et al. [2005] for the same helicopter model.

Mesh Saliency

Fig. 6. Visualizations of mesh distinction for five cars as computed with our method at the 0.25 scale. The right-most column shows a comparison between
distinction and saliency for the same car model. Note that the tires are consistently distinctive, but not particularly salient.

Fig. 7. Visualizations of mesh distinction for fifteen humans. Note that the distinctive regions for humans in this pose are typically around the elbow area.
This region best differentiates this class of objects from other classes of human models in the Princeton Shape Benchmark.

Figure 8 shows four images of the same biplane, the first three of
which are colored by mesh distinction as computed with our method
at 1024 positions at the 0.25 scale, while the fourth image (bottom
right) shows the mesh colored by mesh saliency. The difference be-
tween the first three images is only that different databases were
used to evaluate the DCG measure during the computation of mesh
distinction. The left-most image shows that the wings and tail are
most distinctive with respect to the other 91 classes in the Princeton
Shape Benchmark. The second image shows that the tail is most dis-
tinctive with respect to a smaller database containing other classes
of vehicles (cars, jeeps). The third image from the left shows that
the struts between the wings and cockpit are most distinctive with

respect to a database containing different classes of planes (com-
mercial jets, fighter planes, etc.).

In short, the distinctive area of the biplane changes depending on
the database under consideration. This is a very useful feature of
our method, as it allows the measure to adapt to finer differences in
databases with more similar object classes.

4.3 Effect of Scale

Another factor affecting the distinction of surfaces is the scale (size
of the region) covered by each spherical shape descriptor. Figure 9
compares the mesh distinction computed for a model of a dog with
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Plane DBPrinceton Shape 

Benchmark

Vehicle DB Mesh Saliency

Fig. 8. The distinctive surfaces of the biplane depends on the database under consideration.

0.25 0.5 1.0 2.0

Fig. 9. As the scale of the shape descriptor increases, different surfaces become distinctive.

respect to other quadrupeds with shape descriptors covering 0.25,
0.5, 1.0, and 2.0 of the mesh radius. Please note that as the scale
of the shape descriptors vary, the distinctive regions vary. At the
smallest scale, the head is the most distinctive region, while at the
largest scale, the most distinctive region is centered on the front feet.
Compared to other quadrupeds in this database, at a small scale, the
head is the most distinguishing local feature. At larger scales, the
aspect ratio of dogs versus taller animals such as horses causes an
extremity to be the center of the most distinguishing region. This
result is typical, smaller scales usually choose a region with a small
part having a distinctive shape, while larger scales usually choose
an extremity that provides a distinctive center point for describing
the global shape of the mesh.

These images highlight that distinction is dependent on the scale
selected, and we have specifically preserved these differences as
compared to combining distinction in a multiscale method as was
calculated for saliency [Lee et al. 2005]. For shape matching pur-
poses, descriptors can be calculated at multiple scales, so it is natural
to focus a matching technique on distinctive regions at the appro-
priate scale. We previously explored shape matching by selecting
descriptors using multiscale distinction [Funkhouser and Shilane
2006] and found better results when selecting descriptors at each
scale independently.

4.4 Comparing Distinction to Alternative Heuristics

We next investigate how well distinction scores correspond to al-
ternative heuristics across an entire database of shapes. Instead of
using shape distinction, there are other possible techniques for se-
lecting important regions on a shape by focusing on properties that
are intrinsic to the shape.

Distance. Surfaces of a shape near the center of mass or near an
extremity may represent important regions. We have noticed exam-
ples such as Figure 1 where positions on the extremity have high
distinction which motivates this investigation.

Surface Area. The amount of surface area enclosed within each
region varies across the shape depending on the curvature of the
shape and scale of the descriptor. We might expect that regions that
include a large amount of surface area are more distinctive, while
regions that mostly enclose empty space are less distinctive.

Likelihood. Previous projects [Chua and Jarvis 1996; Johnson
2000] have treated shape descriptors as high dimensional feature
vectors and selected the least likely descriptors for matching, and
thus we have considered shape descriptor likelihood as a good in-
dicator of distinction. We assumed a Gaussian distribution of shape
descriptors to calculate the likelihood in a manner similar to [Shilane
and Funkhouser 2006].

Saliency. Shape saliency finds the regions of shapes that stick out
and are important for visual representation [Lee et al. 2005], so we
considered saliency as a property similar to distinction. Saliency
scores were calculated by the saliency.exe program (provided by
Chang Lee [2005]) on the vertices of a mesh, and saliency scores
were interpolated to the centers of the regions.

We compared each of these techniques to distinction for the 907
test models of the Princeton Shape Benchmark across all descriptor
scales. We created 256 regions on each shape, created shape de-
scriptors at multiple scales, and calculated distinction for each de-
scriptor. We also calculated for each position the distance from the
center of mass of the shape, the amount of surface area (for regions
of each scale), the likelihood based on a Gaussian distribution, and
the saliency score. We then calculated the correlation score [Pitman
1993] comparing distinction values to each alternative technique at
each scale independently:

r = 1

(n − 1)σxσD(M j ,sk )

n∑
i=1

(xi − x)(D(pi, j , sk) − D(M j , sk)),

where xi is one of the alternative techniques calculated at position
pi, j of mesh M j , and D(M j , sk) is the average distinction score
over the n regions of M j at scale sk . We found that, in all cases,
the correlation score was between −0.04 and 0.07 where scores
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Distinction Likelihood

Saliency Random

Fig. 10. Descriptors are selected based on distinction, likelihood, saliency, or are random selection. The coloring of the sphere is based on distinction scores,
indicating that descriptors with poor distinction scores are selected with the other techniques. A similar number of descriptors are selected for all four techniques,
although some appear on the backside of the mesh.

closer to either −1 or 1 indicate a linear relationship (negative
or positive, respectively), and values close to zero indicate little
or no association. These correlation scores for the 1.0 scale indi-
cate that neither distance (r = −0.04), surface area (r = 0.07),
likelihood (r = 0.04), nor saliency (r = 0.03) correlates well to
distinction.

While this study only considers a linear relationship between
distinction and other properties, it is clear that each property is
unable to consistently predict which shape surfaces match within a
class and to distinguish shapes from different classes.

5. SHAPE MATCHING APPLICATION

The motivating application for shape distinction is shape-based re-
trieval of 3D meshes, an important problem for many applications in
computer graphics, mechanical CAD, molecular biology, medicine,
and other fields. For this application, it is common to compute shape
descriptors for many points on a surface, find correspondences be-
tween them, and model shape similarity based on the distances be-
tween corresponding shape descriptors (possibly with geometric
deformation terms based on the alignment of correspondences) [Be-
longie et al. 2002; Berg et al. 2005; Chua and Jarvis 1996; Frome
et al. 2004; Gelfand et al. 2005; Johnson and Hebert 1999; Novotni
et al. 2005; Shan et al. 2004; Funkhouser and Shilane 2006]. In
this section, we investigate whether it might be possible to improve
the performance of local shape matching by focusing the match on
distinctive surfaces of the meshes.

Our general strategy is to represent every target mesh in the
database only by its most distinctive shape descriptors [Shilane and
Funkhouser 2006]. By focusing on distinctive shape descriptors,
there can still be thousands of descriptor correspondences to con-
sider even though many shapes in the database are poor matches
to the query. We use a priority-driven search algorithm to focus the
search efforts on the most promising matches, which is more fully
described in Funkhouser et al. [2006]. To briefly review, the system
maintains a priority queue of partial matches between a subset of

the descriptors on the query with descriptors from target shapes.
The error metric incorporates not only the L2 difference between
corresponding descriptors across all scales, but also the differences
between interfeature distances and surface normals. Only partial
matches that can lead to the best possible matches are popped from
the queue and extended to create a full correspondence of size K , and
thus the system is able to find the optimal matches while focusing
on only a small percentage of all possibilities.

Within this matching framework, we investigate methods for se-
lecting a small subset of important descriptors to represent each
target shape. The focus of our study is to compare distinction to
alternative techniques for selecting important descriptors. Several
previous projects [Frome et al. 2004; Mori et al. 2001] randomly
selected descriptors on the mesh surface. The least likely shape de-
scriptors have been used for matching by Chua and Jarvis [1996]
and Johnson [2000] under the assumption that rare descriptors
correspond to important shape features. Other projects [Gal and
Cohen-Or 2006; Novotni et al. 2005] have focused on salient re-
gions where the shape sticks out or has variable curvature. By an-
alyzing the distinction of the target shapes’ descriptors during an
offline phase, we hope to improve the selection step.

We have implemented a simple feature selection algorithm that
greedily chooses the most distinctive features on a mesh with the
constraint that no two features are too close to one another. Our al-
gorithm iteratively selects the most distinctive remaining descriptor
whose position is not closer than a Euclidean distance threshold,
D, to the center of any previously selected descriptor. This process
avoids selecting many descriptors near each other on the mesh and
provides an easy way to reduce the subset size by increasing the dis-
tance threshold D. While this algorithm is rather simple and could
be improved, it provides a basis for comparing feature distinction
with other measures of importance (e.g. saliency) in shape-based
retrieval. We compare our technique of using the most distinctive
descriptors against the alternatives of selecting descriptors randomly
or based on the likelihood or saliency. Figure 10 shows regions se-
lected on the same helicopter model using the four techniques. The
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Fig. 11. Precision-recall plot for the training set of the Princeton Shape
Benchmark.
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Fig. 12. Precision-recall plot for the test set of the Princeton Shape Bench-
mark comparing distinction to other techniques for selecting descriptors used
in shape matching.

color of the sphere centered on each region indicates the distinction
score associated with the region, where red spheres indicate higher
distinction scores. Selecting regions based on likelihood, saliency,
or random selection leads to representing meshes with regions that
perform poorly in retrieval tasks. A similar number of regions were
selected for the helicoper in all cases, but some selected regions are
not visible in Figure 10 because they appear on the backside of the
mesh.

In this study, 128 shape descriptors were computed for every
mesh and matched against a subset of the descriptors from every
other mesh. In our experiments, we explored a range of values for
K and D and found that the relative performance of the three tech-
niques was consistent across all settings. In the following discus-
sion, we selected values for K and D that optimized the retrieval
performance independently for descriptors selected based on likeli-
hood, saliency, or distinction scores as well as descriptors selected
randomly.

Figures 11 and 12 show precision-recall plots of retrieval results
achieved with the proposed method during a leave-one-out study

with the training and test sets of the Princeton Shape Benchmark
(PSB). Retrieval statistics are also shown in Table I. Column 1 lists
the method used for selecting descriptors for retrieval and Column 2
lists the number of descriptors K selected during matching. Columns
3–6 and 7–10 show several measures of retrieval performance, in-
cluding the nearest neighbor classification rate (NN), the average
percentage of correct matches with the first- and second- tiers of
matches (1-Tier and 2-Tier, respectively), and the average DCG for
each query (in all cases, higher scores are better, see Shilane et al.
[2004] for details).

Looking at both the plots and tables, the first result to notice is
that selecting features based on distinction provides better retrieval
performance than selecting them based on saliency, likelihood, or
at random. When considering multipoint matching (K = 3) with all
four scales on the PSB test set, the nearest neighbor (NN) score for
distinction is 74.3% as compared to 66.5% for both likelihood and
random and 61.6% for saliency, and across all metrics distinction
outperforms likelihood, random, and saliency. For single descriptor
matching, K=1 at the 1.0 scale, distinction (NN=62.4%) also beats
likelihood, random, and saliency with NN scores of 55.5%, 55.6%,
and 53.4% respectively. Distinction shows a sizable improvement
considering that differences between algorithms in other studies
are often a few percentage points [Shilane et al. 2004]. While the
numbers change somewhat for the PSB training set, the qualitative
results are the same.

Besides investigating feature selection methods, we also com-
pared retrieval with distinct descriptors to two other retrieval meth-
ods that provide an informative comparison for retrieval perfor-
mance. The most common shape matching technique [Bustos et al.
2005; Tangelder and Veltkamp 2004] is to use a single shape descrip-
tor centered at the centroid of each shape with a region size large
enough to include the entire shape (centroid). Matching a single de-
scriptor at the 1.0 scale on the surface of a shape has better retrieval
performance than using the centroid with DCG scores of 54.4%
for centroid as compared to 65.3%, 57.8%, 57.8%, and 57.4% for
distinction, likelihood, random, and saliency, respectively, on the
test set. The DCG score for Distinction increases to 70.6% when
matching with three descriptors combined at each of four scales.
Of course, this improved retrieval performance comes at some cost
(retrieval time of 1.2 seconds versus 3 milliseconds), but we believe
that surface descriptors are preferable when retrieval performance
is critical.

We next compared our technique of selecting distinctive descrip-
tors versus a best-case method where an oracle selects a single de-
scriptor from the surface of the query shape across all scales. For
each query shape, the single descriptor with the highest distinction
score (calculated during preprocessing) was selected to use as the
query, and the closest match to each target in the database was found.
Although this process is not usually possible in a real application
(since the class of the query is generally unknown), it provides an
upper bound on the retrieval performance possible with surface de-
scriptors. The oracle technique has a NN score of 89.5% on the test
set, which dramatically outperforms all other selection techniques
we have considered. This result suggests that future work should fo-
cus on improving the selection of descriptors from the query shape
and that using surface descriptors for shape matching has the poten-
tial to achieve highly accurate retrieval results.

We also investigated how often the most distinctive region exists
at a particular scale. Table II shows the percentage of time a descrip-
tor from each scale was selected by the oracle technique. On both
the PSB training and test sets, descriptors from every scale were se-
lected as the most distinctive, though the 1.0 scale was selected most
often.
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Table I.
Selecting the most distinctive descriptors from the target set improves retrieval relative to selecting based on likelihood, saliency, or
at random. Retrieval improves when using several local descriptors on the query (K = 3 in this result) as compared to using a single
descriptor. Using the most distinctive descriptors improves over using a single global descriptor (centroid), while there is still room to
improve upon these results since a single descriptor selected by an oracle outperforms any other technique. All experiments are with
meshes from the training and test sets of the Princeton shape benchmark.

PSB Training Set PSB Test Set
Descriptor NN 1-Tier 2-Tier DCG NN 1-Tier 2-Tier DCG
Selection K (%) (%) (%) (%) (%) (%) (%) (%)
Distinction 3 75.4 47.1 58.9 72.4 74.3 45.5 57.0 70.6
Likelihood 3 64.9 37.4 49.2 64.4 66.5 37.0 49.0 64.2
Random 3 68.2 39.0 50.0 65.8 66.5 36.0 47.7 63.4
Saliency 3 61.7 35.1 46.6 62.7 61.6 33.5 44.5 60.9
Distinction 1 68.0 42.4 54.5 68.6 62.4 39.0 51.3 65.3
Likelihood 1 55.8 31.3 43.6 59.5 55.5 29.7 40.9 57.8
Random 1 56.3 31.8 43.6 59.9 55.6 30.0 41.4 57.8
Saliency 1 54.6 30.6 42.8 59.1 53.4 29.2 40.6 57.4
Centroid 1 54.1 28.6 38.1 57.0 53.3 26.3 35.1 54.4
Oracle 1 92.6 54.6 63.4 81.1 89.5 53.5 63.3 79.7

Table II.
With the Oracle selection method, the most distinctive feature was
selected to represent each query shape across all scales. Every scale
was used for matching, though the 1.0 scale was selected most often
for both the PSB training and test databases.

Scale
Database 0.25 0.5 1.0 2.0
PSB Training 18.3% 23.4% 38.5% 19.8%
PSB Test 20.9% 27.0% 34.4% 17.6%

6. OTHER APPLICATIONS

Finding distinctive regions on a mesh may be useful for applications
beyond shape matching. In this section, we consider two applica-
tions: mesh simplification and icon generation.

6.1 Mesh Simplification

For many applications, it is important to create a simplified version
of a complex mesh. For example, consider an online parts catalog
where images of many tools are shown onscreen at the same time. To
improve rendering times, the mesh representing each tool might be
simplified. However, to preserve object recognition and emphasize
differences within a large collection of meshes, the distinctive fea-
tures of each tool should be simplified less than the rest of the mesh.

Most techniques for mesh simplification have focused on mini-
mizing the geometric error in a simplified mesh (e.g., Garland and
Heckbert [1997]), while others have attempted to minimize errors
in the rendered images. In particular, Lee et al. [2005] used their
estimation of mesh saliency to weight vertices in a quadrics-based
simplification scheme. We follow this work by weighting vertices
instead with our mesh distinction scores. Since surface distinction
identifies parts that are consistent within a class and distinct from
other classes, we expect the simplification algorithm to preserve dis-
tinctive features better than other approaches. While features that are
salient to the human visual system may not necessarily be preserved
with our approach, less distinguishing features will be simplified
which, under extreme simplification, will produce a mesh caricature.

To review, quadric error simplification works by contracting the
edge that has the least quadric error. The quadric error for each vertex
is a measure of how far that vertex has moved during simplification.

We augment this basic algorithm by adjusting the error for each edge
based on how distinctive its two vertices are. If Dv is the distinction
of mesh regions mapped onto vertex v as described in Section 3.4,
then the new error for every edge e is Ee = Dv1 Qv1 + Dv2 Qv2 .
To accentuate the difference between distinctive and nondistinctive
regions, however, the D for the lower 65% of vertices was set to the
minimal D value. After each edge is collapsed, the new vertex is as-
signed an error that is the maximum of the two vertices collapsed so
that distinctive regions preserve their scores without being averaged
with nearby areas.

Simplification results achieved with this method are shown in
Figures 13 and 14. For the hammer example shown in Figure 13,
descriptors were computed for 1024 regions at scale 0.25, and their
distinction was computed within the context of a database containing
four hammers among nineteen meshes representing other classes
of tools (screwdrivers, wrenches, and shovels). For a database of
tools, the distinguishing features are generally at the functional end
of the object away from the handle. The mesh for this hammer was
then simplified from 1,700 triangles to 300 triangles (Figure 13)
using the distinction weighted error metric. Note that the head of
the hammer is the most distinctive region of the mesh and remains
well-preserved. For comparison sake, we show simplifications to
the same triangle counts achieved using Garland’s standard quadric
error and using Lee’s method of weighting the quadric error by mesh
saliency in Figure 13. Note that our method preserves the head of the
hammer, the most distinctive part, better than these other methods.

Figure 14 shows similar results achieved when simplifying the
mesh for a horse. In this case, the head was found to be most dis-
tinctive in the context of a database containing four horses among
five other classes of quadrupeds (rabbit, dog, feline, and pig). So,
when the mesh was simplified from 97K triangles to 2K triangles,
the fine details in and around the horse’s head are well-preserved,
while the body is greatly simplified. Since the competing methods
do not identify these important regions of the horse as strongly, they
provide more simplification to the head, while preserving detail in
the creases of the body.

6.2 Icon Generation

With the increasing size of 3D model collections, quickly presenting
models to a user is an ongoing problem. Whether the application is
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Fig. 13. Simplification results using Garland’s method, mesh saliency, and distinctive regions. Notice that more details are preserved in the head of the hammer
by focusing on distinctive surfaces.

viewing a catalog of objects or presenting retrieval results in a search
engine, the important features of shapes must be shown clearly to
the user, perhaps with icons. Focusing the icon on the features that
distinguish different classes of shapes could help increase compre-
hension.

Most previous work on icon generation has focused on the prob-
lem of viewpoint selection, that is, positioning a camera oriented
towards the center of the object. Vázquez et al. [2001] selected the
position that maximized the entropy of the viewed mesh where the
optimal view would see all of the faces of the mesh with the same
relative projected area. Blanz et al. [1999] studied the preferences
of users and found that views at an angle to the major axis were se-
lected. Using their own definition of mesh saliency, Lee et al. [2005]
selected views that maximized the visibly salient regions.

We have developed a method for generating icons that displays
only the most distinctive region of a mesh. Our algorithm is quite
simple. After computing shape descriptors at the 0.25 scale for many
points on the mesh, we select the single most distinctive position
with respect to a chosen database. We then produce an image of
the mesh zoomed in such that the view frustrum exactly covers that
most distinctive region. The camera angle is chosen by the computer
automatically with one of many possible heuristics or by interactive
user control.

We find that this simple method produces useful icons for many
classes of objects. For example, Figure 15 shows automatically gen-
erated icons for six shapes in the Princeton Shape Benchmark. Note
that the images show the region of the object that best distinguish it
from other classes of objects, and thus might be more readily rec-
ognized than images of the entire object. For many meshes (such
as the turtle, wrench, and car), large and recognizeable features are
visible in the icon. Showing a limitation of our approach, the biplane

icon is focused on the tail region because that region distinguished
planes from many other classes of shapes, but perhaps the tail is
not the most semantically important feature to humans. However,
it should be clearly stated that our measure of distinction is based
on 3D shape matching not 2D image matching, and thus it is not
guaranteed that the regions determined to be most distinctive by
our method will match the ones most visually recognizable by a
human. Nonetheless, we find that our simple method based on mesh
distinction produces good icons in most cases.

7. CONCLUSION AND FUTURE WORK

In summary, we have defined distinctive regions of a 3D surface to
be those whose shape provides the best retrieval performance when
matched against other shapes in a database of objects partitioned
into classes. This definition produces measures of distinction that
adjust to the types of classes in the database and provides shape
information at multiple scales. For a number of examples, we have
shown that the most distinctive parts are consistent within a class
and typically correspond to identifiable parts of a surface. We have
also shown how distinctive regions can be used to improve shape
matching as well as guide several applications in computer graphics
including mesh simplification and icon generation.

There are several strengths and weaknesses of our method that
should be considered and addressed in future work. First, the shape
descriptor (HSD) used in our implementation is not the most de-
scriptive possible. Recent work by Funkhouser et al. [2006] has
shown that the Fourier Shape Descriptor has better retrieval perfor-
mance than the HSD. However, a strength of our approach is that it
is independent of a particular shape descriptor. So, in future work,
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Traditional Simplification Garland et al. [1997]

Mesh Saliency Simplification Lee et al. [2005]

Distinct Region Simplification

Fig. 14. Simplification results using Garland’s method, mesh saliency, and distinctive regions. Notice that details of the eyes and nose are better preserved
using our method, while using mesh saliency areas are preserved throughout the horse’s body.

we intend to investigate using more descriptive (but perhaps more
expensive) shape descriptors to define mesh distinction.

Second, the retrieval measure (DCG) used in our implementation
is slow to compute; it requires a full retrieval list to be constructed
for every shape descriptor. Calculating distinction for the shape
database takes approximately 2.75 minutes per-shape, while calcu-
lating saliency takes 4.3 seconds per-model and less than a second

is required to calculate likelihood or descriptors selected randomly.
Since distinction can be calculated during the preprocessing of the
database, we believe it is a worthwhile step to dramatically improve
retrieval performance. As discussed in Section 3.3, an alternative to
DCG is to use a measure that only requires a fixed number of nearest
neighbors to be found (e.g., E-measure), whose computation can be
accelerated by indexing.
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Fig. 15. Icons showing the most distinctive surface region for each mesh.

The third area for future work is to study methods for incre-
mentally updating distinction values as a database changes. With
our current definition, as shapes are added or removed, distinction
scores must be recalculated for the entire database. By changing
the definition of distinction (e.g. an approximation to DCG), it may
be possible to dramatically speed up the time to insert or remove
shapes while preserving accurate distinction scores. A distinction
measure that only requires the first few retrieval results (such as
First-Tier) could be updated efficiently using an indexing structure
built on bounding regions that include the nearest neighbors for
each descriptor. The trade-offs with an approximation scheme in-
volve bounding the error as well as the possible overhead of storing
extra information with each shape.

Fourth, our implementation has focused on distinction in 3D sur-
face shape. While this is well-motivated for some applications (e.g.,
shape matching), perhaps other approaches based on distinction in
2D images of 3D shapes would be better for others (e.g., icon gener-
ation and mesh simplification). Our algorithms for icon generation
and shape matching are first steps; we believe that there is a wealth of
new ways to utilize mesh distinction in these and other applications
in computer graphics.

ACKNOWLEDGMENTS

The authors would like to thank Doug DeCarlo, Szymon
Rusinkiewicz, Joshua Podolak, and the Princeton Graphics group
for useful discussions about this project.

REFERENCES

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape matching and
object recognition using shape contexts. IEEE Trans. Patt. Analy. Mach.
Intell. 24, 24, 509–522.

BERG, A., BERG, T., AND MALIK, J. 2005. Shape matching and object
recognition using low distortion correspondence. In IEEE Computer Vi-
sion and Pattern Recognition (CVPR).

BLANZ, V., TARR, M., BUELTHOFF, H., AND VETTER, T. 1999. What
object attributes determine canonical views? Perception. 575–599.

BUSTOS, B., KEIM, D., SAUPE, D., SCHRECK, T., AND VRANIĆ, D. 2005.
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