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Abstract

Many applications in 3D shape design and augmenta-
tion require the ability to make specific edits to an object’s
semantic parameters (e.g., the pose of a person’s arm or
the length of an airplane’s wing) while preserving as much
existing details as possible. We propose to learn a deep
network that infers the semantic parameters of an input
shape and then allows the user to manipulate those param-
eters. The network is trained jointly on shapes from an
auxiliary synthetic template and unlabeled realistic mod-
els, ensuring robustness to shape variability while reliev-
ing the need to label realistic exemplars. At testing time,
edits within the parameter space drive deformations to be
applied to the original shape, which provides semantically-
meaningful manipulation while preserving the details. This
is in contrast to prior methods that either use autoencoders
with a limited latent-space dimensionality, failing to pre-
serve arbitrary detail, or drive deformations with purely-
geometric controls, such as cages, losing the ability to up-
date local part regions. Experiments with datasets of chairs,
airplanes, and human bodies demonstrate that our method
produces more natural edits than prior work.

1. Introduction

The ability to perform semantically-meaningful manip-
ulation of 3D shapes is crucial to many applications rang-
ing from industrial design to dataset augmentation for 3D
learning. Although the space of possible manipulations is
large, we focus on editing semantic parameters, such as the
angle of a person’s leg or the height of a chair’s seat (see
Fig. 1). For maximum control, we wish to allow adjust-
ing these independently, such that changing one parameter
preserves the others. Moreover, we would like to preserve
topology and fine detail throughout the input shape, both
within and far away from the edited region. Finally, to make
our method broadly applicable, we would like to avoid de-
pendency on large labeled datasets of 3D models or edits.

Traditional shape manipulation methods [4, 27] first fit
predefined handles (e.g., cages, primitives) to input shapes
through optimization. The user then manipulates the tem-
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Figure 1: Semantic editing. Taking a realistic shape (yel-
low) as input, the proposed method allows for editing of
different parts (gray). This is achieved by learning to in-
fer the semantic parameters of an auxiliary synthetic shape
(blue), without any labels from realistic shapes.

plate, which guides the deformation of the original shape.
This approach has several disadvantages. First, cages make
it difficult or impossible to deform local regions, as opposed
to the shape as a whole. In addition, the algorithms that
fit handles to an input shape can be initialization-sensitive.
Finally, this approach inherently focuses on geometric pa-
rameters (e.g., cage control points), and establishing the link
between them and semantic parameters (e.g., “‘seat height”)
would require significant training on large, labeled datasets.

Recently, learning-based methods for shape deforma-
tion have become the subject of active research. Some ap-
proaches [5, 6, 19] build upon the autoencoder idea: an
encoder network maps an input shape to a point in a la-
tent “shape space”, while a decoder network re-synthesizes
a shape given a latent vector. Using this idea for seman-
tic editing requires training a disentangled encoder, which
maps semantic parameters to certain latent dimensions.
This requires large, labeled training datasets. More cru-
cially, the fine-scale detail produced by the decoder is fun-
damentally limited by the latent space dimensionality, and
by what detail was present in the training dataset. This
means that no resynthesis-based method will be able to pre-
serve the detail present in arbitrary input shapes.

Another popular approach for 3D shape editing is to pre-
dict shape deformation [12, 21, 23]. When labeled ed-
its (e.g., “make the seat 50% taller”) are available, a net-
work can be trained with full supervision for a deformation



task [24, 25]. However, collecting many such labeled edits
is not trivial, and most learnable methods that predict de-
formation [2 1, 23] instead solve the task of source-to-target
deformation. These methods can only globally deform a
shape given another exemplar and do not support local edits
with semantic awareness.

In this work, we build upon several key ideas to edit 3D
shapes in a semantically meaningful way. First, to allow for
full detail preservation, we design our system around de-
formation and not re-synthesis. The deformation model is
flexible enough to allow for both global and local edits, en-
abling independent control over different semantic parame-
ters. Next, to infer the parameters of an input shape, we rely
on an encoder network trained to embed each input into a
“semantic parameter space”. Crucially, this is a many-to-
one network that need not embed all details present in the
input as a traditional “shape space” encoder. We train this
network using a combination of labeled synthetic shapes
and unlabeled realistic shapes. We therefore gain the advan-
tage of a semantically-parameterized latent space (whose
dimensions are defined by template parameters) without the
need for labeled realistic datasets. Finally, at edit time, we
use the learned encoder to extract semantic parameters from
the input, and then deform the input based on how those pa-
rameters change the shape of the synthetic template.

There are several advantages to our method. First, it
learns only a semantically interpretable space that is rele-
vant to the editing operations. This is in contrast to learning
to encode the entire shape, which suffers from detail loss
due to the fixed dimensionality of the latent space. Second,
by abstracting realistic shapes into a shared semantic space
with synthetic shapes, we sidestep the need for labels for re-
alistic shapes. Finally, the low-dimensional semantic space
acts as a regularizer, making the encoder easier to learn. Ex-
periments show that the model generalizes, enabling mean-
ingful edits on shapes that fall out of training distributions.

We test our proposed method on three classes covering
both rigid and non-rigid shapes, for different editing tasks.
For chairs and airplanes, we consider the application of
anisotropic part deformation, driven by semantic labels that
need not correspond to individual parts. For example, we
can have a “leg width” semantic parameter that controls all
four legs simultaneously. For human bodies, we show pose
editing trained on a simple body model, which neverthe-
less generalizes to more realistic bodies. Experiments show
that the proposed method produces results that are consis-
tent with the user’s desired semantic edits while being more
useful and more robust than prior work.

2. Related Work

There is a long history of prior work on semantic shape
editing [14, 22]. Relevant to our work, we discuss prior
work in shape deformation.

Traditional Template-Based Shape Deformation. Rep-
resentative early efforts fit templates to input shapes through
optimization. For example, Zheng et al. [27] fit a controller
(e.g., a cylinder) to every component decomposed from the
input shape, then propagate user edits among components to
guide input shape deformation. Their shape decomposition
works for various man-made shapes, but is mostly based on
geometry and is not semantically consistent across shapes.
To achieve semantic consistency, Ganapathi-Subramanian
et al. [4] fit each input shape with a class-specific refined
template. However, such fitting algorithms are fragile, uti-
lizing hand-crafted heuristics and thresholds. We provide a
robust deep learning approach to semantic template fitting.

Supervised Style Attribute Learning. While traditional
methods often involve manual supervision of templates and
editing pipelines, learning-based approaches achieve more
automatic editing with priors learned from a large amount of
data. Yumer et al. [24] learn a mapping from a shape to an
attribute score to guide shape deformation, while Yumer et
al. [25] use a deep network to directly learn a volumetric de-
formation field. However, such supervised methods are ex-
tremely data-hungry, whereas large-scale 3D shape datasets
with annotated deformations are not currently available.

Deformation Retargeting with Global Structure. An-
other line of work [17, 18, 21, 23] sidesteps the need
for dense annotations by instead focusing on deforming a
source shape to globally resemble a target. Wang et al. [21]
learn to predict a coordinate offset for each vertex of the
input using global shape descriptors, and Wang et al. [23]
predict a 40-vertex cage to define the deformation field.
While relying less on densely labeled data, these methods
are not structure-aware and only allow for coarse shape de-
formation without precise control over local components.
In concurrent work, Sung et al. [18] learn class-specific de-
formations by projecting user-edited shapes onto a plausible
learned shape space. Unlike our work, this method requires
realistic source-target pairs for training, and does not guar-
antee shape preservation for unedited components.

Deformation Retargeting with Learned Templates. To
achieve more local editing, more recent work learns to lo-
cally deform a template and retarget the deformation to the
input shape. Mehr et al. [12] propose to learn a discon-
nected manifold from multiple auto-encoders with each de-
forming a different learned template. After training, they
optimize over template deformation to fit a user edit, and
the optimized template deformation is retargeted to edit the
input shape. Although this approach creates a user-friendly
interface, it does not support semantic edits and is sensitive
to the robustness of latent space optimization. Our method
also deforms a realistic shape guided by a deformation field
learned using synthetic shapes, and we can more specifi-
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Figure 2: Framework overview. To achieve shape editing, we propose a framework that (a) learns a semantic parameter
space for both realistic shapes .S,. and auxiliary synthetic shapes S5 (Sec. 4.1) and (b) transfers the deformation of synthetic

shapes to realistic shapes (Sec. 4.2).

cally control different semantic components of the realis-
tic shape, with more continuous and precise manipulation.
Furthermore, while [12] focuses on learning a disconnected
manifold of shapes, we specifically advocate for learning
only a small set of parameters for shape editing rather than
learning to encode the entire shape. Meanwhile, there exist
deformation retargeting approaches using domain-specific
templates — statistical models as well as learned embed-
dings — for humans [1, 7]. In contrast, our approach gener-
alizes across rigid and non-rigid shapes.

Learning Representations for Shape Resynthesis. A
highly related field is learned shape reconstruction, which
aims to reconstruct a 3D shape from an inferred latent code.
Several recent shape reconstruction methods [5, 6, 9, 13, 15]
allow for simple shape editing by manipulating the latent
representation. Due to the limited scope of the latent space,
these reconstruction algorithms can only reproduce shapes
similar to ones observed in training, thus losing details after
editing. Finally, the shape representation cannot be easily
disentangled into semantic factors in the absence of labeled
data [5, 10]. Therefore, we argue that for the purpose of
shape editing, we should not encode the entire shape. In-
stead, it is sufficient to only encode the modes of shape
variation corresponding to the desired edits, which can be
efficiently represented with a small set of parameters. We
analytically decode from the space of semantic parameters,
which guides the deformation to be applied to the input.

3. Approach

Our approach decomposes shape editing into two stages:
semantic shape encoding and deformation transfer (Fig. 2).
The original realistic shape is first passed into an encoder
that infers its semantic parameters. Manipulation is then
performed in the parameter space based on the target edit-
ing. Afterward, both original and edited semantic parame-
ters are taken as input by an analytical decoder that outputs
synthetic shapes reflecting the editing. The final deforma-

tion of the original input is guided by a deformation field
defined by the predicted synthetic shapes.

The main learning challenge in this approach is to train
an encoder that can extract semantic parameters from ar-
bitrary input shapes. To address this challenge, we must
answer two main questions: 1) how to allow a user to define
semantic parameters, and 2) how to obtain training data for
a network to learn to infer them.

Our approach for the first question is to ask the model de-
signer to create a synthetic template with semantic parame-
ters defining a space of possible shapes (e.g., a template for
chairs may have parameters controlling the seat depth, back
height, leg length, efc. for a set of boxy primitives). The
templates are simple and produced once per object category,
so the burden of creating them is small (a few minutes) and
certainly far less than labeling a large dataset of examples.

Our approach for the second question is to procedurally
build a semi-supervised training set with a mix of unlabeled
realistic shapes and labeled synthetic shapes derived from
the template. We train the semantic encoder to predict the
semantic parameters of the template examples and to match
the shapes of all examples. Through joint training on re-
alistic and synthetic examples, the network learns to infer
semantic parameters for realistic shapes with only precise
semantic supervision from synthetic data.

4. Method

Our editing pipeline takes in a realistic input shape S,
and generates its deformed version S/, defined by changes
to semantic parameters (Fig. 2). To achieve this, we first
use a trained encoder F to infer semantic parameters f, of
the input shape ;.. Those parameters can be edited or opti-
mized (depending on the application) to obtain f/. We then
use an analytical decoder to produce synthetic shapes S,
and S ! from f, and f] ! respectively. Finally, the pair of syn-
thetic shapes are used to define a deformation field D that is
applied to the input shape S, to output shape S..
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Figure 3: Learning framework. We learn a semantic
space A (blue) by jointly training on synthetic and realistic
shapes. Synthetic shapes are supervised in both semantic
and shape space, with one reconstruction branch (top) and
one editing prediction (middle). Realistic shapes (bottom)
are supervised in shape space only.

4.1. Semantic Shape Encoding

Learning Framework. During training, we optimize the
encoder to learn a semantic parameter space shared by both
synthetic and realistic shapes. Specifically, in each mini-
batch, we set half of the examples to be synthetic and half
realistic. The encoded semantic parameters of synthetic
shapes are passed to two branches. The first branch (top
row in Fig. 3) reconstructs the input shape from the encoded
semantic feature f,(d = |fs|). The second branch (middle
row in Fig. 3) predicts the edited shape from a new semantic
feature f; which is obtained by modifying the original fea-
ture fs according to a target edit. Both features are then
decoded into synthetic shapes by the decoder. We show
in Sec. 6.5 that the second editing branch is essential for
maintaining training stability and improving performance.
Both branches are supervised by a semantic parameter loss
Lger and a shape reconstruction loss L,... For each re-
alistic shape (bottom row in Fig. 3), the encoder estimates
a semantic feature fr, which is then decoded to a synthetic
shape. A shape similarity loss Ly, is used to make sure the
synthetic shape is close to the realistic shape semantically,
since no ground truth is available for realistic shapes.

Semantic Parameter Loss. With the ground truth seman-
tic parameters for synthetic shapes, we define

Lyem = dist(fs, fs) and L', = dist(f., f!)

as semantic parameter losses for reconstruction and editing
branches, respectively, where dist is a distance metric (e.g.,
L2 distance for scaling parameters, geodesic distance for
rotational parameters). By training with supervision from
synthetic shapes expressing a dense range of semantic pa-
rameter values, we learn to encode the full distribution of
the space, which enables highly generalizable semantic ed-
its by moving along dimensions in the space.

Shape Reconstruction Loss. In the 3D shape space,
since we know the exact vertex correspondence between in-

put and predicted shapes, we have:

Lyoe ZH“() ZH%@) _ UQU)HQ
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for the reconstruction and editing branches, respectively,
where n is the total number of vertices, and vg 2 and uﬁ”
are the vertices from the ground truth mesh and predicted

synthetic mesh, respectively.

fj) H2 and L), =

Shape Similarity Loss. For realistic shapes, since no
ground truth semantic parameters are available, we only im-
pose a shape similarity loss in the 3D space between the
output synthetic predictions and the input realistic shapes.
We choose the shape similarity loss as the chamfer distance
between randomly sampled point clouds from both shapes:

Lgim = Z mm Hv —ul]? + Z mm Hu — %
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Overall Learning Objective. The total loss L is a
weighted combination of all loss terms as described above:

L=a(Lsem + L;em) + B (Lrec + Llrec) + 7 Lsim,
where «, 3,y are the weights for individual terms.

Training Details. The encoder can be flexible according
to the input representation. For a point cloud input, we
use the PointNet [16], which is composed of seven fully-
connected layers interlaced with Batch Normalization and
ReLU layers. The sizes of layers from bottom to top are
(64, 128, 128, 256, d, d, d). For a mesh input, we use a
graph CNN, which is composed of a fully-connected layer
with output feature size 16, four FeaStConv [20] layers with
output feature size (32, 64, 96, 128), and one final fully-
connected layer with a task-specific feature size d. All lay-
ers are interlaced with a Leaky ReLU layer. For non-rigid
experiments, when all realistic input has the same mesh
connectivity (e.g., DFAUST), we can use a mesh encoder.
When the realistic shapes do not follow the same mesh
structure (e.g., scanned data), we use a point encoder. The
differentiable decoder takes as input the semantic parame-
ters and analytically outputs a synthetic mesh.

Our implementation uses the PyTorch framework and the
Adam [8] optimizer, with learning rate 0.001 and batch size
16 (half synthetic and half realistic), running on one GPU
until convergence. We set the weights in our loss function to
be a = 0.3, 8 = 30, v = 50 for chairs, « = 0.3, 8 = 200,

= 10 for airplanes, and « = 0.03, 8 = 4, v = 1 for
human bodies. (See Sec. 5 for details about datasets.) All
input shapes lie within a sphere of radius 0.6 and are re-
centered such that points have zero mean. For all tasks,
the actual prediction by the encoder includes the semantic
parameters as described above plus a global translation. All
datasets are split 4:1 into training and testing sets.



4.2. Deformation Transfer

To tackle the challenge of detail preservation while per-
forming the editing, we transfer the deformation defined
by synthetic shapes to realistic shapes that are semantically
close. A new input realistic shape .S,. is first encoded into
a semantic feature fr. Then, a new feature f! is obtained
by modifying f, based on the target editing operation. Both
fr and f}f are decoded into synthetic shapes. Because the
decoder is completely analytical, we can trace the trans-
formation for each point on the synthetic prediction during
the editing. Then we can decide on a specific algorithm
to define a deformation field which further guides the de-
formation of the input realistic shape. For example, sup-
pose the per-vertex deformation is Dy : S, — S., ie.,
vl = Dy(vs),vs € Sp,v, € S.. Then we can define the
deformation field as:

Z’UGKNNS(:E,]C) W($7 ’U) . Ds (U)

D, (x) =
ZUGKNNS(ac,k) W(z,v)

)

where z € R3, KNNg(x, k) is the set of k nearest neigh-
bors on shape S, of point z (k = 1,2,...), W(-,) de-
fines the weights among k neighbors and can be either con-
stant or a function of points in the field and on the synthetic
shape. In the experiments, we set weights as W (z,v) =

lo—=|?
(14 (ng,n,))* - e” = (k, = 2,0 = 0.03) where n,
is the normal of vertex p (p = x,v) for rigid shapes and

W (x,v) = 1 for non-rigid shapes.

5. Datasets

We consider both rigid and non-rigid examples to thor-
oughly evaluate our proposed method.

Rigid Shapes. We consider chairs and airplanes from the
ShapeNet [3] dataset, a commonly used large-scale dataset
for 3D model evaluation. In order to generate editable syn-
thetic data, we create a template that captures important se-
mantic parameters for each class. Each synthetic chair is
composed of 6 cuboids with a predefined structure and eight
semantic parameters: the height, depth, and width of the
back, seat, and leg.! The synthetic airplane is a simplified
airplane with a smoothed fuselage, two wings, and one ver-
tical and two horizontal stabilizers. We define six semantic
parameters: the height, length, and width of the fuselage,
and the lengths of the wings, vertical stabilizer, and hori-
zontal stabilizers. The dataset includes 200 and 620 realis-
tic shapes for chairs and airplanes, respectively, and 40000
synthetic shapes for each class. All inputs are point clouds
with 2840 and 2750 vertices for chairs and airplanes.

ISince chair back and seat share the same width in practice, the width
of both parts is merged into one parameter.

Table 1: Dataset and task overview. Results are presented
for 3 shape classes; edits include structure-aware part defor-
mation for man-made objects and human body animation.

Class Operation’ Synthetic Data Realistic Data

Chair Aniso. Scale Cuboids ShapeNet [3]
Airplane  Aniso. Scale  Simplified Airplane ShapeNet [3]
Human Aniso. Scale, Rot. SMPL [11] DFAUST [2], Buff [26]

Non-Rigid Shapes. We conduct experiments on a real-
istic dataset of human bodies sampled from two sources.
First, we include 5663 3D scans of human bodies from
DFAUST [2]. To incorporate the additional challenge of
clothing, we also include 962 clothed bodies from Buff [26].
To generate a dataset with edits, we consider SMPL [11], a
synthetic shape template that models pose and shape pa-
rameters of the human body. Specifically, the semantic
space covers 69 pose parameters (23 joints with 3 degrees of
freedom each) and 3 shape parameters, the linear combina-
tion of which corresponds to a 6890-vertex synthetic mesh.
It is straightforward to deform meshes reconstructed from
SMPL [11] with known shape/pose parameters, which is
a much more challenging task for real-world scanned data.
The synthetic data is randomly sampled from SMPL param-
eter space with a Gaussian distribution prior, and all testing
shapes are held-out characters not seen during training.

6. Evaluation

We test the proposed 3D shape editing system on the
tasks of piecewise anisotropic scaling and non-rigid defor-
mation, for the three datasets in Tab. 1. Sec. 6.1 and 6.2
qualitatively demonstrate editing of semantic parameters on
rigid and non-rigid datasets, while Sec. 6.3 further tests the
method’s generalization on out-of-distribution examples.
Sec. 6.4 shows comparisons to Neural Cages [23], a recent
technique for source-to-target matching with a learned de-
formation, and DualSDF [6], a recent deformation method
with learned resynthesis. For each of the above sections,
we provide additional results in the Supplementary Mate-
rial. Finally, Sec. 6.5 presents ablation studies on key com-
ponents of the proposed method. The proposed method re-
quires approximately 3 ms for encoding, and deformation
can take tens of milliseconds through seconds, depending
on object size. For comparison, DualSDF requires approx-
imately 175 ms for their gradient descent procedure, and
seconds to tens of seconds for ray-tracing results.

6.1. Piecewise Anisotropic Scaling Results

A common editing strategy for objects with well-defined
semantic parts is anisotropic scaling of different parts inde-
pendently. In Fig. 4, we show edits produced by the pro-

2 Aniso. Scale stands for local (per-part) anisotropic scaling, and Rot.
stands for rotation.
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Figure 5: Editing results for deformation of human bodies. In each set of 3 shapes, an input human body (yellow) is
deformed by changing one semantic parameter in both directions. An example synthetic template (blue) is shown at right.

posed method for chairs and airplanes (which were held out
from training). For each class, we show an input shape (yel-
low) and the estimated synthetic template (blue). Note that
the latter matches the realistic shape in all structural com-
ponents relevant to editing, such as the seat of the chair and
wing length of the airplane. This shows that the model cor-
rectly infers semantic parameters of realistic shapes, though
trained with only synthetic parameter annotations. In gray,
we show the deformation result of one semantic parameter
per column, with the first row decreasing and the second
row increasing that parameter. As hoped, modifying one
semantic parameter does not affect the shape of other parts;

e.g., modifying the depth of a chair’s seat does not change
the shape of its legs. At the same time, parameters correctly
update groups of similar parts. For example, modifying the
“leg height” parameter for chairs updates all four legs, while
modifying “wing length” updates both airplane wings. Note
that details are well-preserved after deformation (e.g., tufts
on the chair back and seat, curved chair legs, engines and
landing gear of the airplane). The proposed method allows
for substantial parameter change (e.g., height of chair back
and legs, width of chair seat, length of airplane fuselage), in
contrast to methods that train on shape databases that might
lack such extreme deformations.
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Figure 6: Editing results for out-of-distribution shapes.
Our method produces reasonable results, and correctly pre-
serves detail, even if the input shape has missing parts or
different topology relative to the synthetic template.

6.2. Non-Rigid Deformation Results

In Fig. 5, we show results for editing semantic pose pa-
rameters of human bodies. Our system is able to apply the
deformations defined by a simple, parameterized skinned
model (SMPL) to realistic human input shapes (DFAUST),
accommodating both large (hip movement) and subtle (an-
kle movement) motions. Note that each joint has up to
three degrees of freedom, though because of space con-
straints we demonstrate only one degree of freedom per
joint. Our model correctly decouples the effects of all pa-
rameters, even those affecting the same joint.

6.3. Out-of-Distribution Shapes

To evaluate the generalization ability of the proposed
method, we test it on shapes falling outside of the shape
distribution of the training dataset. Fig. 6 shows examples
from all three classes, illustrating cases in which the test
shapes are topologically different from the training exam-
ples or are missing some of the components present in the
synthetic shapes. For example, the chair at the top has only
one leg, the airplane has a delta wing and is missing hori-
zontal stabilizers, while the human has long hair and an ini-
tial pose with the hands almost close together. In all cases,
the proposed method produces reasonable deformed results
and preserves input shape details.

6.4. Comparison to Prior Work

To compare against Neural Cages [23], which was de-
signed for the task of source-to-target deformation rather
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Figure 7: Comparison to Neural Cages [23]. Each source
shape (yellow) is deformed to match two target shapes
(green), using both the proposed method and Neural Cages.
Both are able to globally match the target shape, but Neural
Cages often exhibits distortion in regions of large deforma-
tion, and an inability to match semantic parameters if local
deformation is required. Our results support more accurate
and granular manipulation, even for extreme poses.

than direct manipulation of semantic parameters, we mod-
ify the proposed method to use a deformation determined
by templates fit to both the source and target shapes.
Fig. 7 shows four examples, including both in- and out-of-
distribution chairs and two human body shapes evaluated in
the original Neural Cages work. Both methods are able to
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Figure 8: Comparison to DualSDF [6]. The input (yel-
low) is edited by changing a semantic parameter in our
system, or adjusting the radius of a primitive in DualSDF.
When changing a local parameter with DualSDF, the global
shape is also affected, as seen in the alteration or omission
of the bottom crossbars on the legs. In addition, in contrast
to the proposed method, the DualSDF results lack details
such as the button on the chair back.

match the target shape globally. However, note the spurious
deformation in the legs in the Neural Cages results for (1a)
and (1b), as well as the fact that in (1b) the Neural Cages re-
sult matches the seat thickness of the source, not the target.
In contrast, the proposed method does not introduce unnec-
essary deformations, yet is able to deform the source locally,
not just globally, to match the seat thickness. In the hu-
man body results, Neural Cages can introduce distortion in
regions with large deformation, such as the knees in exam-
ple (3b) or disproportionately scaled hands in examples (4a)
and (4b). We observe that, compared to deformation meth-
ods based on coarse geometric handles, our results support
more granular manipulation even with extreme poses.

We also compare the proposed method with DualSDF [6]
on the task of part manipulation. We consider examples
common to DualSDF’s training set and our testing set. To
generate results for DualSDF, we first obtain the embedding
of an input shape and then manually adjust the radius of a
primitive on the corresponding part along the corresponding
dimension. Fig. 8 shows the results for one chair example.
The DualSDF reconstruction, which requires re-synthesis,
loses details of the original shape such as the button on the
back and the four anti-skid pads on the legs (please zoom in
for a clear view). In addition, manipulating a single prim-
itive in one part will cause deformation in other parts as
well, since the latent embeddings from DualSDF are highly
entangled. For example, when manipulating primitives on
the back, the leg topology is also changed by DualSDF, but
correctly preserved by the proposed method.

6.5. Ablation Studies

We analyze the influence of model losses on the accuracy
of edits to synthetic shapes (chairs). As shown in Tab. 2,

the semantic parameter loss (Lg,,) alone is more effec-
tive than shape reconstruction loss (L,...) alone. Combining
both loss terms achieves the best performance on synthetic
shapes than either single loss. From the last two rows, it
can be seen that the editing branch for synthetic shapes is
essential for reducing mean vertex error (MVE). Also, we
observe that models with an editing branch are more sta-
ble during training. Finally, we have evaluated the effects
of using either ¢ or ¢ distance for Le,,; we find that /5
performs better in our training.

Table 2: Effectiveness of loss terms and the editing
branch on the proposed model. We show the percentage
of vertices in synthetic testing shapes (from the chair class)
having Mean Vertex Error (MVE) below a given threshold.
For example, the rightmost entry of the bottom row indi-
cates that 95.4% of vertices are within a distance of 0.03 of
their ground-truth locations.

Loss Terms Editing Branch MVE<(0.01 MVE<0.02 MVE<0.03

Lsem v 35.2% 72.3% 87.2%

Lree v 11.9% 47.9% 77.6%
Lisem + Lirec 11.5% 55.0% 83.6%
Lisem + Lrec v 40.3% 82.2% 95.4%

7. Conclusion and Future Work

In this paper, we present a learning framework for detail-
preserving semantic 3D shape editing. We propose to infer
semantic parameters of input examples by leveraging a sim-
ple synthetic shape set and learning a joint low-dimensional
embedding for synthetic and realistic shapes. This approach
allows the proposed method to relieve the need for semantic
part labels or example user edits on realistic shapes, while
allowing semantically consistent edits for all shapes (in-
cluding out-of-distribution examples). Experiments on both
rigid and non-rigid shapes demonstrate that the proposed
method provides detail-preserving, structure-aware seman-
tic editing and compares favorably with prior work.

This work is a first step toward learning a semantic 3D
shape editing system, and there are several ways the pro-
posed method can be extended. Currently, the semantic en-
coding is learned and the deformation is analytic. Including
both in an end-to-end learning pipeline is a valuable future
direction. Also, it is interesting to consider how our se-
mantic encoding can be combined with other deformation
transfer strategies, possibly involving training on unlabeled
shape datasets, to achieve new types of shape edits.
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