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In this Supplementary Material, we provide additional
results for the experiments on piecewise anisotropic scal-
ing and non-rigid deformation on the chair, airplane, and
human body datasets (described in the main manuscript).
Sec. 1 and 2 demonstrate qualitative semantic parameter
editing results on rigid and non-rigid shape categories, re-
spectively, while Sec. 3 shows results on out-of-distribution
examples. Sec. 4 provides additional comparisons to Neural
Cages [4], a recent technique for source-to-target matching
with a learned deformation, and DualSDF [2], a recent de-
formation method with learned re-synthesis.

1. Piecewise Anisotropic Scaling Results

A common editing strategy for objects with well-defined
semantic parts is anisotropic scaling of different or indepen-
dent parts. We show anisotropic editing results produced by
the proposed method for chairs in Fig. 1 and Fig. 2, and
for airplanes in Fig. 3. All shown examples are testing ex-
amples, i.e. held out during the training stage. For each
class, we show an input shape (yellow) and the estimated
synthetic template (blue). Note that the latter matches the
realistic shape in all structural components relevant to edit-
ing, such as the seat of the chair or wing length of the
airplane. Therefore, the proposed model correctly infers
semantic parameters of realistic shapes when trained with
only synthetic parameter annotations. In gray, we show the
deformation result of one semantic parameter per column,
with the first row decreasing and the second row increasing
that parameter. As hoped, modifying one semantic parame-
ter does not affect other parameters, i.e. the shape of other
parts. For example, modifying the depth of a chair seat does
not change the shape of its legs. At the same time, param-
eters correctly update groups of similar parts. For example,
modifying the “leg height” parameter for a chair updates all
four legs, while modifying “wing length” updates both air-
plane wings. Note that details are well-preserved after de-
formation (e.g., patterns on the chair back and seat, curved
chair legs, engines and landing gear of the airplane). The
proposed method allows for substantial parameter change
(e.g., height of chair back and legs, width of chair seat,
length of airplane fuselage), in contrast to methods that train
on shape databases supervised with ground truth deformed
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shapes that might lack such extreme deformations.

One advantage of the proposed method is to support con-
tinuous deformation. We show such results for the chair in
main manuscript Fig. 4. Please find this in chair.html con-
tained in SupplementaryMaterial.zip.

2. Non-Rigid Deformation Results

In Fig. 4 and Fig. 5, we show results for editing seman-
tic pose parameters of human bodies on DFAUST [1] and
Buff [5] datasets, respectively. Both source inputs are char-
acters held out during the training stage. Our system is
able to apply the deformations defined by a simple, param-
eterized skinned model (SMPL [3]) to realistic human in-
put shapes, accommodating both large (hip movement) and
subtle (ankle movement) motions. Note that in the main
manuscript, we demonstrate only one degree of freedom per
joint because of space constraints. In Fig. 4, we provide full
deformation results for all three degrees of freedom of each
joint presented in the main manuscript. We can see that the
proposed method accepts and recognizes the parameters of
shapes in various poses. Our model also correctly decouples
the effects of all parameters, even those affecting the same
joint. In Fig. 5, we deform an arbitrary set of shape and pose
parameters for the same input shape (yellow). Note that this
input shape is a scanned clothed male and is noisy, not wa-
tertight, and with many isolated faces around the body.

We also provide continuous deformation results for
shapes in main manuscript Fig. 5. Please find this in hu-
manbody.html contained in SupplementaryMaterial.zip.

3. Out-of-Distribution Shapes

To evaluate the generalization ability of the proposed
method, we test it on shapes falling outside of the shape
distribution of the training dataset. Fig. 6 and Fig. 7 show
examples from all three classes, illustrating cases in which
the test shapes are topologically different from the training
examples or are missing some of the components present
in the synthetic shapes. For example, in Fig. 6, the first
chair (top row) and the toilet in the second row have only
one leg each, the chair in the bottom row has arms and pil-
lows. The first airplane has horizontal stabilizers on the top,
the third airplane has three vertical stabilizers, the second



and last airplanes have a delta wing, the third and fourth
airplanes have straight wings and propellers on the wings,
while in Fig. 7 the human has long hair and an initial pose
with the hands almost close together. Note that each joint
has up to three degrees of freedom and can be rotated in two
directions for each degree of freedom, therefore there are
many deformation results under the same parameter name
in Fig. 7. In all cases, the proposed method produces seman-
tically meaningful results and preserves input shape details.

4. Comparison to Prior Work

To compare against Neural Cages [4], which was de-
signed for the task of source-to-target deformation rather
than direct manipulation of semantic parameters, we mod-
ify the proposed method to use a deformation determined by
synthetic estimates from both the source and target shapes.
Fig. 8 and Fig. 9 show examples using four different source
chairs and 22 target chairs. Fig. 10 shows all three human
body shapes evaluated in and with templates provided by
the original Neural Cages work. All three human body
examples are not seen during the training of the proposed
method. Both methods are able to match the target shape
globally. However, note the spurious deformation in the
legs in the Neural Cages results as observed in the main
manuscript, for example, the 6th, 10th, and last deformed
shapes for the first source chair, as well as the fact that in
most examples in Fig. 8 and Fig. 9, the Neural Cages result
matches the seat thickness of the source, not the target. In
contrast, the proposed method does not introduce unneces-
sary deformations, yet is able to deform the source locally,
not just globally, to match the seat thickness. In the hu-
man body results in Fig. 10, Neural Cages can introduce
distortions in regions with large deformation, such as the
knees in example (1a), (1c), (2b) and (3d) or disproportion-
ately scaled hands and feet in examples (1d) (2a) (3a) (3b)
and (3c). We observe that, compared to deformation meth-
ods based on coarse geometric handles, our results support
more granular manipulation even in extreme poses.

We also compare the proposed method with DualSDF [2]
on the task of part manipulation. We consider examples
common to DualSDF’s training set and our testing set. To
generate results for DualSDF, we first obtain the embedding
of an input shape and then manually adjust the radius of a
primitive on the corresponding part along the correspond-
ing dimension. Fig. 11 shows the results for chairs and air-
planes, the two classes shared by DualSDF and our method.
The DualSDF reconstruction, which requires re-synthesis,
loses details of the original shape e.g., the poles on the back
and the joints on the legs for the chair, the landing gear and
flap track fairings on the back of the wings for the airplane.
In addition, manipulating a single primitive in one part will
cause deformation in other parts as well, since the latent
embeddings from DualSDF are highly entangled. For ex-

ample, when manipulating primitives on the fuselage (the
first two airplane examples), the wings are also changed by
DualSDF, but correctly preserved by the proposed method.
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Figure 1: Editing results for piecewise anisotropic scaling on chairs. Realistic input shapes (yellow) are fit to synthetic
templates (blue), then edited by decreasing (top row) and increasing (bottom row) each shape parameter. The proposed
method preserves details and independently controls each semantic parameter.
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Figure 2: Additional editing results with piecewise anisotropic scaling on chairs. Realistic input shapes (yellow) are fit
to synthetic templates (blue), then edited by decreasing (top row) and increasing (bottom row) each shape parameter. The
proposed method preserves details and independently controls each semantic parameter.
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Figure 3: Editing results with piecewise anisotropic scaling on airplanes. Realistic input shapes (yellow) are fit to
synthetic templates (blue), then edited by decreasing (top row) and increasing (bottom row) each shape parameter in turn.
The proposed method preserves details and independently controls each semantic parameter.
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Figure 4: Editing results for deformation on human bodies from the DFAUST [1] dataset. In each set of three shapes,
an input human body (yellow) is deformed by changing one semantic parameter in both directions. The first six rows show
results of deforming three degrees of freedom of all joints presented in the main manuscript Fig. 5, with one joint in each
row. The last row shows deformation results of the three shape parameters (betas).



Figure 5: Editing results for deformation of human bodies from the Buff [5] dataset. Given an input testing shape, we
are able to arbitrarily manipulate any set of semantic parameters and output the deformed shapes.
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Figure 6: Editing results for out-of-distribution shapes on chairs and airplanes. Our method produces semantically
meaningful results, and correctly preserves detail, even if the input shape has missing parts or different topology relative to
the synthetic template.
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Figure 7: Editing results for out-of-distribution shapes on human bodies. Our method produces semantically meaningful
results, and correctly preserves detail, even if the input shape has missing parts or topology different from the synthetic
template.
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Figure 8: Comparison to Neural Cages [4] (chairs). Each source shape (yellow) is deformed to match 22 target shapes
(green), using both the proposed method and Neural Cages. Both methods are able to globally match the target shape,
but Neural Cages often exhibits distortion in regions of large deformation and cannot match semantic parameters if local
deformation is required. In contrast, our method support more accurate and granular manipulation.
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Figure 9: Additional comparison to Neural Cages [4] on chairs. Each source shape (yellow) is deformed to match 22
target shapes (green), using both the proposed method and Neural Cages. Both methods are able to globally match the target
shape, but Neural Cages often exhibits distortion in regions of large deformation and cannot match semantic parameters if
local deformation is required. In contrast, our method supports more accurate and granular manipulation.
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Figure 10: Additional Comparison to Neural Cages [4] on human bodies. Each source shape (yellow) is deformed to
match four target shapes (green), using both the proposed method and Neural Cages. Both methods are able to globally
match the target shape, but Neural Cages often exhibits distortion in regions of large deformation and cannot match semantic
parameters if local deformation is required. In contrast, our method support more accurate and granular manipulation, even

for extreme poses.
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Figure 11: Comparison to DualSDF [2]. The input (yellow) is edited by changing a semantic parameter in our system,
or adjusting the radius of a primitive in DualSDF. When changing a local parameter with DualSDF, the global shape is also
affected, as seen in the arms that incorrectly show up in the result of “increasing seat width”. Also, in contrast to the proposed

method, the DualSDF results do not preserve details such as the poles on the chair back and the landing gear and flap track
fairings on the back of the wings for the airplane.



