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Figure 1: Preparing a character for live animation. First, the user creates a layered illustrated character with triggerable artwork. Next, in our interface,
the user selects from default layouts (row layout shown) or rearranges triggers to create their own. Then, the user practices their performance. Finally,
during the live performance, our system assists the user in selecting the next pose using a predictive triggering model trained on the practices.

ABSTRACT

Live animation of 2D characters is a new form of storytelling
that has started to appear on streaming platforms and broadcast
TV. Unlike traditional animation, human performers control
characters in real time so that they can respond and impro-
vise to live events. Current live animation systems provide
a range of animation controls, such as camera input to drive
head movements, audio for lip sync, and keyboard shortcuts
to trigger discrete pose changes via artwork swaps. However,
managing all of these controls during a live performance is
challenging. In this work, we present a new interactive system
that specifically addresses the problem of triggering artwork
swaps in live settings. Our key contributions are the design of
a multi-touch triggering interface that overlays visual triggers
around a live preview of the character, and a predictive trig-
gering model that leverages practice performances to suggest
pose transitions during live performances. We evaluate our
system with quantitative experiments, a user study with novice
participants, and interviews with professional animators.
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INTRODUCTION
To date, most animation is produced offline: an artist painstak-
ingly crafts the animation, which is later viewed in the form
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of movies, television shows, promotions, advertisements, etc.
Recent advances in performance-based animation combined
with the increase of live streaming platforms have given rise
to a new form of /ive animation, where performers control
animated characters for live audiences. Last year, Homer
answered live phone calls during an episode of The Simp-
sons [8], Stephen Colbert interviewed cartoon guests on The
Late Show [12], and animated characters hosted live chat ses-
sions on Facebook and YouTube [32, 33]. In live animation,
characters interact with and respond to live audiences in ways
that have not been possible with offline animation.

A key challenge in live animation is the mapping of human
action onto digital characters in real time. Motion capture with
face and pose tracking enables literal translation of performed
movement onto parts of the character but disregards other prob-
lems, including dialogue, anticipation, timing, exaggeration,
and secondary effects. Animated dialogue, for example, relies
on discrete transitions to approximate mouth shapes instead
of detailed lip tracking. Precise timing, expressive gestures,
and exaggerated poses are also better accomplished with dis-
crete transitions instead of smooth changes. This preference is
true across many styles of animation, including stop-motion,
computer, 3D, or 2D animation.

This work examines 2D animation with characters represented
by a set of artwork layers that typically depict different body
parts or accessories (e.g., hats, clothes). Many cartoons are cre-
ated in this style, including the live animation examples shown
in Figure 2. Within this context, discrete transitions are real-
ized by swapping artwork layers to produce large changes in
pose and appearance. For example, gestures such as shrugging,
pointing and fist shaking, are often portrayed as alternative art-
work layers for arms and hands. Similarly, exaggerations like
a character’s eyes turning into hearts and spirals, or thought
bubbles appearing overhead are also encoded in this way.

While discrete artwork swaps increase the appeal and expres-
siveness of 2D animated characters, only some types of swaps,



Figure 2: Live animation examples: (a) Homer — The Simpsons [8]. (b) Red Monster — YouTube Live [32]. (c) Cartoon Trump — The Late Show [12].

such as triggering mouth shapes based on an input audio
stream, are easily automated. Most other types present a
challenge for human performers, especially given the goal
of triggering correct swaps at correct times throughout a live
performance. In interviews with live animation producers,
we learned that the most common setup involved the use of
keyboard shortcuts to trigger swaps. In this setting, the per-
former must not only remember all the shortcuts but also
decide which swaps to execute in real time. Moreover, most
live performances require the character to talk as well, which
adds even more cognitive load to the task. Due to these chal-
lenges, some of the production teams we talked to (e.g., The
Simpsons) use two or more performers for a single character.

In this work, we design and evaluate a multi-touch interface
for triggering artwork swaps in a live animation setting. Our
approach leverages two key insights. First, to help users ex-
ecute swaps more efficiently, our interface arranges visual
triggers that show thumbnail images of the corresponding
artwork around a live preview of the character. This trigger
Layout design enables users to quickly recognize and tap trig-
gers without looking away from the character. Second, since
animators typically practice before live performances, we en-
code common patterns from practice sessions in a predictive
model that we then use to highlight suggested triggers during
performances. Our highlighted Predictions assist performers
in executing common sequences without preventing them from
improvising.

We used our system to create performances with five different
characters, which are included in the accompanying materi-
als for our paper. In addition, we evaluated our approach
in several other ways. We analyzed the performance of our
predictive model with quantitative experiments using existing
live animation sequences from The Late Show as ground truth
data. We also conducted a comparative user study with mostly
novice participants where we found a strong preference for
our multi-touch interface over keyboard triggers and that sug-
gestions facilitate the triggering task. Finally, we solicited
professional feedback from the production team at The Late
Show based on an informal demo session with our system.

RELATED WORK
We discuss related previous work on performed animation,
interfaces for text input, and predictive user interfaces.

Performance-Based Animation
Previous performance-based animation systems explore a vari-
ety of techniques for capturing human performances. Many

existing methods leverage continuous input, including motion
capture of the body [36] and face [42], puppetry with physical
props and other sensors [2, 7, 16, 25, 28], direct manipulation
via touch [15, 23], and sketching [5, 13, 17]. In contrast, we
focus on the task of triggering discrete artwork changes. Some
existing animation tools support automated triggering driven
by specific types of input, such as swapping mouth shapes
based on speech (i.e., lip synchronization) [1, 31, 38] and trig-
gering pre-defined facial expressions based on the performer’s
appearance [35, 43]. However, general-purpose triggering
is typically performed manually via keyboard shortcuts. We
propose a new multi-touch interface that is more effective and
configurable than keyboard triggering.

Multi-touch Triggering

Previous work has explored multi-touch triggering interfaces
in other domains. Given that text input is a form of discrete
triggering, our problem is related to the design of soft key-
boards for touch devices [10, 44]. As with keyboard layout,
we aim to generate a trigger arrangement that helps users hit
the desired sequence of discrete targets. Researchers have also
explored the design of multi-touch DJ and VI interfaces [14,
19], which share our focus on live performances. However,
the problem of arranging animation triggers presents unique
challenges. First, the set of animation triggers varies from one
character to the next, which means that our system must adapt
appropriately. Moreover, in our pilot study, we found that
users prefer triggers to be near the position of the correspond-
ing triggered artwork, which puts additional spatial constraints
on the layout. In this respect, our approach is related to label
layout algorithms (e.g. [3, 4, 39]) that encourage labels to
appear close to the corresponding anchor regions.

Predictive User Interfaces

Our interface leverages an animator’s practice sessions to learn
a probabilistic model that predicts the next trigger during a
performance. In this respect, our system is an example of a
predictive or adaptive user interface. Previous work has ex-
plored this idea across several domains, including app or icon
selection on mobile interfaces [30, 41], dialog box interac-
tion [11], menu navigation [9], text input [10], and command
selection [6, 22]. We investigate the use of predictive models
in the specific task of live animation triggering. In particular,
we apply Markov models in a similar manner as previous com-
mand prediction systems [6] to encode and predict common
patterns of triggers.



DESIGN STUDY

To better understand the needs of live animators, we inter-
viewed several authors: the production team for the live Simp-
sons episode [8] in which Homer spent three minutes respond-
ing to phone-in questions from viewers; the animators at The
Late Show who have worked on roughly 50 live animation
performances, ranging in length from 30s to six minutes, with
seven different characters [12]; the author of a 30 minute
question-and-answer session on YouTube live featuring a car-
toon monster [32]; and the host of a Twitch show that includes
a live cartoon avatar who provides real-time commentary dur-
ing streaming gameplay sessions [34].

All animators used triggered artwork swaps extensively in their
performances, and they noted several common challenges with
the current triggering workflow. First, it is difficult to remem-
ber the mapping from keys or buttons to the corresponding
artwork swap. To this end, the Simpsons and Late Show
teams added physical annotations (images and drawings) to
the keys/buttons of their triggering devices (Figure 3). Even
with these visual cues, animators find it challenging to survey
the potential options and then execute the selected triggers
at exactly the right time, especially when improvising. In
fact, the Simpsons and Late Show dedicated one performer
to operating the triggers while others handled the speaking.
This option is obviously not available to individual animators
who produce content by themselves. Finally, since these are
typically live performances (in some cases, broadcast to mil-
lions of viewers!) with no opportunity for re-takes or post
production, minimizing mistakes is paramount.

Based on these discussions, we identified the following design
goals for a live performance triggering interface:

Intuitive. The mapping between triggers and the corre-
sponding artwork should be explicit so that performers do
not have to memorize a large number of triggers.

Accurate. The triggering interaction itself should be pre-
dictable and accurate to minimize mistakes.

Fast. The interaction should also be fast to help animators
coordinate swaps with the rest of their performance.

Accessible. To cover the broadest range of use cases, the
system should not require highly specialized input devices
or multiple performers for a single character.

Figure 3: Setups used for live performances: (a) The Simpsons [8].
(b) The Late Show [12].

OUR APPROACH

Given these design goals, we create an interface for triggering
artworks swaps for live animation. An important high-level
design decision for our system is what type of input device to
support. We considered several options:

Keyboards are very accessible, but the mapping between
keys and triggers is not intuitive, as noted in the previous
section. While physical annotations (as in Figure 3) can
help, reconfiguring them for characters with different sets
of triggers (or for normal keyboard usage) is inconvenient.

Game controllers are designed to be responsive, but as
with keyboards, the mapping between input interactions and
triggers is not intuitive.

Voice commands are arguably a more intuitive triggering
interaction than pressing abstract keys or buttons. However,
animators typically need to include speech as part of their
performances.

Real-time tracking of hand and body poses is another po-
tential input modality. Video-based techniques are the most
accessible, but even state-of-the-art algorithms like Wei et
al.[40] are not accurate enough (88%) for our application.
Techniques that rely on depth data (e.g., [21, 24, 26, 29, 37])
are more accurate, but depth cameras are still far less com-
mon than regular cameras. Marker-based motion capture
is the most accurate but also the most obtrusive. More-
over, even perfect tracking requires mapping a continuous
input signal (e.g., joint angles, positions) to a discrete set of
triggers, which raises its own set of challenges.

Ultimately, we decided to design our triggering interface using
multi-touch displays, which are widely available (primarily in
the form of tablets) and provide a reconfigurable, interactive
display surface where we can render triggers. To make the
mapping between triggers and artwork intuitive, we show
triggers with thumbnail images of the corresponding artwork
as a visual cue. To make interactions fast and accurate, we
arrange the triggers around a live preview of the character
(Figure 1) so that performers can view and tap triggers quickly
and accurately without looking away from the character. Our
prototype uses Adobe Character Animator [1] as the real-time
rendering engine for the character, which allows us to support
face tracking and audio-driven lip sync in addition to the core
triggering functionality of our system.

The key features of our interface design are informed by two
important observations from our pilot study with an early ver-
sion of the system. The first is that the layout of the triggers
have a significant impact on how quickly users are able to
find triggers and how much they improve with practice. More-
over, users have a very hard time deciding or remembering
which triggers to hit during a performance, even after practic-
ing several times. Based on these observations, we developed
an automatic trigger Layout algorithm that arranges triggers
according to the spatial distribution of the corresponding art-
work and a Prediction feature that helps animators select the
appropriate triggers at performance time. The following sec-
tions describe the types of available triggers and these two
components in detail.
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Figure 4: Sketches of the different layout designs we prototyped. (a) Grid layout. (b) Radial layout. (c) Clustered layout. (d) FMM. (e) PMM. (f) SMM.

TRIGGERS

When a trigger is activated, it can cause a simple artwork swap
or a cycle swap. Simple swaps involve one piece of artwork
changed for another. Cycle swaps invoke short looping anima-
tions or smooth transitions which hold on a final extreme pose.
A swap can also have sub-poses which are triggered only once
the main pose is already active. Sub-poses modify a main pose
by either deforming it slightly (moving up, down left or right)
or switching to similar artwork (holding up one, two or three
fingers)

Our interface implements three types of triggers. The first is
the single selection trigger shown in blue (Figure 5a). The user
presses this trigger with one finger causing the character to
perform a swap. The next type of trigger is numerical selection
(red) which triggers a separate swap depending on the number
of fingers pressed down in its vicinity (Figure 5b). This trigger
is typically used for displaying different numbers of fingers
on a hand or different pointing styles. The third trigger, radial
selection (orange), allows the user to trigger sub-poses by
swiping their finger in the space around the trigger (Figure 5c).
The area around the trigger is divided into radial slices based
on the number of sub-poses. The area of the visual trigger does
not trigger a sub-pose. Radial selection is useful to simulate
continuous movement with each slice triggering predeformed
artwork. It can also replicate a cycle with the user controlling
the speed by how quickly they swipe around the trigger. When
any trigger is activated, the border becomes thicker and the
color darker (Figure 5d). Please see our submission video for
examples of the trigger types in action.

For each type of trigger, the user can also control how long
a trigger stays active after released. This “rest delay” allows
directly transitioning between poses without automatically
switching to the rest pose in between. To indicate the amount
of time left before the trigger releases, a counting down circle

appears (Figure 5d).

Quotes

High five Quotes

Figure 5: The three types of triggers: (a) single selection, (b) numerical
selection, and (c,d) radial selection. Our visualization for the decreasing
rest delay of a trigger is also shown in (d).

LAYOUT
We examine various designs for potential trigger layouts and
present an automatic layout algorithm for creating our final
designs.

Design

To explore the space of potential trigger layouts, we prototyped
several different designs, as shown in Figure 4. For these initial
prototypes, we hard-coded the positions of the triggers for a
given character.

Display all. Some designs display all the triggers in a fixed
layout. The simplest design arranges triggers in a uniform grid
below the character (Figure 4a). The radial layout positions
triggers around the center of the character, which makes better
use of screen space than the grid (Figure 4b). We also imple-
mented a clustered layout that groups together related triggers
and positions them in different locations around the character
(Figure 4c).

Hierarchical. One drawback of displaying all the triggers
is that the interface may become cluttered as the number of
triggers increases. Thus, we also prototyped marking menu
layouts [18, 20] that hide triggers within the menu hierarchy.
In the full marking menu layout (FMM), we first organize
triggers into three groups (left, right, center) based on the
position of the artwork relative to the vertical center line of
the character, and then we merge these groups into a single
top-level group, which is the only trigger that is visible by
default (Figure 4d). The user explores the hierarchy by first
touching the top-level group, swiping to one of the mid-level
groups, and then swiping to one of the individual triggers. To
reduce the depth of the hierarchy, we also created a positioned
marking menu (PMM) where the left, right and center groups
are visible at the top level. Finally, we created a split marking
menu (SMM) that only has top-level left and right groups. To
reveal the center triggers, the user selects both left and right
groups at the same time (with two separate fingers), and then
swipes either finger to hit the desired target.

Findings. We compared the radial, clustered, PMM, and SMM
layouts in a pilot study with nine participants who recorded
performances with all four designs. We decided not to in-
clude the grid and FMM layouts, since our own informal tests
suggested that these two designs were inferior to the others.
Overall, users were more effective with the display all layouts.
Swiping through even two levels of hierarchy with the marking
menus introduced significantly more latency than the radial
and clustered designs, even after a fair amount of practice.
Regarding the actual layouts, users voiced strong objections to
any designs that positioned triggers over the character (even



when the occluding triggers only appeared occasionally, dur-
ing a swiping interaction). Participants favored layouts where
the trigger positions matched the positions of the artwork (e.g.,
“hands up” triggers near the top and “hands down” triggers
near the bottom of the character). They also liked layouts
where triggers for corresponding left-right poses (e.g., “left
fist” and “right fist”) were positioned symmetrically around
the character. In the end, users indicated a slight preference
for the clustered layout over the radial design. They felt that
the radial layout was too cluttered with all the triggers so close
to each other and the character.

Proposed Algorithm

These findings led us to design an automatic method for gen-
erating clustered layouts. Our algorithm recommends triggers
be placed in layout slots that are close to the trigger artwork.
Given a character with a set of triggers I" along with the cor-
responding set of artwork, we formulate trigger layout as a
variant of the assignment problem. Based on the total number
of triggers |T'|, we first define a set of layout slots .S. By de-
fault, if | T| < 43, we create a 4x4 grid of slots on either side
of the character and a 1x11 row of slots below the character. If
|T'| > 43, we increase the row and column count for each grid
and scale down the size of the slots to fit the screen until there
are enough slots for all the triggers. We did not encounter a
character with more than 25 triggers. Based on feedback from
the pilot study, we define both a row layout where the left and
right grids are completely regular, and a fan layout where each
row of slots is bent into a shallow fan that better matches the
natural resting position of fingers on the display (Figure 6).

For either layout type, the goal is to assign each trigger ¢t € T'
to a unique layout slot s € S such that the overall assignment
A minimizes a cost function

C(A) = > cts)

t,s€A

where the per-assignment cost ¢(¢, s) is defined as the distance
between the centroid of the artwork for trigger ¢ and the cen-
troid of the layout slot s. We compute these centroids in a
consistent coordinate frame where the origin is at the center
of the screen, and the artwork is translated such that the cen-
troid of the character’s designated rest pose (i.e., the pose that
the character starts in and returns to when no other triggers
are active) is at the origin. This cost function penalizes as-
signments that put triggers far away from their corresponding
artwork. To find the optimal assignment, we use the Munkres

Figure 6: Automatically generated row (a) and fan (b) layouts. The dot-
ted boxes are positions for triggers that have not been filled.

Figure 7: Left-right triggers for pointing which are not symmetric with
respect to the rest pose. The red circles are the centroids of the artwork.

algorithm [27]. Afterwards, we render each trigger in the as-
signed layout slot and use a scaled down version of the trigger
artwork as the thumbnail image.

While the algorithm as described encourages triggers to be
assigned to layout slots that are close to the trigger artwork,
we found that two small modifications to the cost function
helped produce better results.

Left-right triggers. With the above cost function, we observed
that corresponding left-right triggers did not always end up
in symmetric slots. This mishap is because the assignment of
any given trigger depends globally on all other triggers. More-
over, depending on how the character is drawn, the artwork for
left-right triggers may not actually be symmetric with respect
to the character’s rest pose (Figure 7). To address this prob-
lem, for each pair of left-right triggers (¢, tr), we compute
the cost of assigning ¢;, to each lefthand slot and ¢ to each
righthand slot, average the costs for symmetric slots sy, and
SR, and then set the costs for sg to the average. We compute
an optimal assignment for all ¢z and assign slots sr from that
computation. We assign slots sy, not based on the computa-
tion, but by forcing sy, to be symmetric to sp. Afterwards, we
process the remaining triggers. We identify left-right triggers
by looking for matching left and right tags (e.g., “left point”
and “right point”).

Both-side triggers. Subjects in our pilot study preferred that
triggers involving both arms, hands or legs (e.g., crossed arms,
clasped hands) were arranged in a row below the character. To
encourage such layouts, we artificially set the y-coordinate of
the artwork centroids for such both-side triggers to match the
y-coordinate of the bottom row layout slots, which reduces the
penalty for assigning the triggers to that row. Such triggers
were found by searching for tags that include the word “both.”

PREDICTION

Another finding from our pilot study was that participants con-
sistently had trouble deciding or remembering what triggers to
use at performance time. In particular, all users found it hard
to focus on triggering while they were speaking. We address
this problem with prediction, by training a probabilistic model
that learns common patterns from practice sessions. At per-
formance time, we query our model to predict the most likely
subsequent triggers and then highlight these predictions to the
user as hints.



Model

We represent each practice session with a sequence of trigger
states (¢1, 42, - ,qn). Each state ¢ is a |T'|-dimensional bit
vector representing the status of every trigger, which is either
on (i.e., the user is touching the trigger and the corresponding
artwork is visible) or off. For each practice session, we record
the state after every touch down and touch up event. To ensure
that “simultaneous” trigger events (e.g., triggering “left hand
up” and “right hand up” at the same time) are treated as a
single state change rather than two changes in rapid succession,
we cluster states that occur within 80ms of each other and
only keep the last one. Empirically, we found that 80ms was
long enough to account for simultaneous triggers while still
capturing quick transitions.

Markov models are a natural choice for encoding transition
probabilities between trigger states. However, modeling tran-
sitions between individual states g does not provide enough
context to give useful predictions. In most cases, we need
to analyze a longer history of trigger states to accurately pre-
dict what the next state might be. In other words, rather than
working with individual states, we must consider sequences
of states (¢i—n, ¢i—n+1," - ,q;) (or n-grams where n is the
length of the sequence) when building the model. On the other
hand, large n-grams dramatically increase the state space (i.e.,
all possible n-grams) for the model, making it very likely
that we will encounter n-grams at performance time that have
never been observed in the practice data.

Our solution is to construct an ensemble of Markov mod-
els, each of which uses different sized n-grams in the range
[Pmin, Tmax ). At performance time, given the current trigger
state ¢, we compute a weighted combination of the transi-
tion probabilities from every model to determine the most
likely next states. This approach allows us to make use of
as much context as possible while still producing valid pre-
dictions based on the more immediate trigger history. We
experimented with four different weighting schemes that set
the weight for each Markov model as follows: 1) the fre-
quency of the current n-gram normalized by the total number
of n-grams in the model’s training data; 2) a uniform value; 3)
(Nmax — 1)/ (Mmax — 1); 4) (R —1)/(Nmax — 1) The first weight-
ing scheme favors Markov models that have more training data
that matches the current state; the second model weights all
models equally; and the third and fourth models give decreas-
ing and increasing weight to longer n-grams. We set np;, to
be 2 because 1-grams are not very informative in our setting;
most of the time, a triggered event is followed by a return to
the rest pose, so 1-grams just model the overall occurrence
frequency of individual trigger states. We determine np,x and
the best weighting scheme empirically, as described in the
Evaluation section.

Highlighting Predictions

Given the set of next state probabilities from the predictive
model, our system highlights the most likely triggers and greys
out the rest (Figure 8). Users can choose whether the system
highlights the top one or top three suggestions. When high-
lighting a trigger ¢, we change its size and saturation as a
function of its probability p(¢) of being next. We scale ¢ by

Figure 8: Our assisted performance design. In (a), the triggers with the
highest probability of being selected next are highlighted. In (b), the user
is signaled to lift all their fingers from the screen in order to return to
the rest pose.

(1 + p(t)/2), so that the maximum size is 50% larger than
the original trigger size. Enlarging triggers any more causes
overlaps. We compute the saturation of ¢ by linearly interpo-
lating between its original color and grey, using the parameter
a = Pmax — P(t) where pn.x is the largest of all next trig-
ger probabilities. Showing a single suggestion minimizes the
amount of visual clutter but may omit useful suggestions when
there is more than a single likely prediction. Showing three
suggestions gives the user more options at the cost of more
clutter. Users can also choose to turn off the suggestions en-
tirely, in which case none of the triggers are greyed out. Note
that users can tap on any trigger, even the grey ones.

IMPLEMENTATION

We ran our system on a MacBook Pro, 2.5 GHz Intel Core
i7, 16GB DDR3 using a Wacom Cintiq 13HD touch as our
multi-touch device. To animate the character and render the
live preview in our interface, we use Adobe Character Anima-
tor [1]. In addition to keyboard triggering of artwork swaps,
Character Animator allows users to animate a character’s fa-
cial features via real-time face tracking, and it automatically
animates the character’s mouth by analyzing the performer’s
speech. Our system converts a visual trigger press to a key-
board trigger event and passes it to Character Animator to
activate the proper artwork swap. We implemented our sys-
tem in C++ using OpenFrameworks', an open source C++
tool kit for creative coding. It provides a simple and intuitive
framework for experimentation with graphical user interfaces.
The OpenFrameworks environment supports an expanding list
of addons which offer additional functionality. We use the
following addons: ofxJ son?, ofxTransparentWindow3, ofxWa-
comFeelMultiTouch* and ofxDatGui°.

EVALUATION

To validate our approach, we ran quantitative experiments on
our predictive triggering model and conducted a user study
comparing different modes of our interface to a baseline key-
board triggering setup. We also obtained informal feedback
on our system from the production team at The Late Show.

"http://openframeworks.cc/
Zhttps://github.com/jeffcrouse/ofxJSON
3https://github.com/jeffcrouse/ofx TransparentWindow
“https://github.com/andreasmuller/ofx WacomFeelMultiTouch
>https://github.com/braitsch/ofxDatGui
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Figure 9: Searching for the best combination of weight type and nmax.
Weight type 4 and nmax = 8 offers the best behavior in both the Trump
(red) and Hillary (blue) tests.

Model Validation

We ran several experiments on a ground truth dataset of live
animation performances in order to: (1) evaluate our predictive
triggering model, (2) determine the best value for nyax (maxi-
mum n-gram length), and (3) choose an appropriate weighting
scheme for our ensemble of Markov models. To obtain ground
truth, we manually recorded the sequence of triggered poses
for all the appearances of Cartoon Trump and Cartoon Hillary
on The Late Show. There were 11 performances in total (eight
for Trump and three for Hillary), ranging from 30 seconds to
six minutes each of which contained between nine and 108
trigger events.

We measure the error E for a given test sequence () =
(q1,92,- -+ ,qn) as follows:

, if g; is 1st choice
, if g; is 2nd choice
, if g; is 3rd choice
, otherwise

0
B(Q) =Y e(a), where e(gs) =1 o
3

i=1

In our first experiment, we generate simulated practice ses-
sions by randomly perturbing the original sequence for each
performance. Specifically, we generate four practice runs
where 0%, 5%, 10% and 15% of the original sequence is per-
turbed. To create a perturbed sequence at target perturbation
level L, we insert a new state at each location in the original
sequence with probability L. The new state is chosen ran-
domly from the set of unique states for the character. Using
this procedure, we generate ten sets of practice runs for each
performance, which we use as training data. For testing, we
generate 100 sequences at each of the four perturbation lev-
els. In total, that leaves us with 10 training sets and 400 test
sequences for each ground truth performance.

To determine the best weighting scheme and np,x for our
model, we consider all combinations of our four weighting
schemes with np,x values ranging from two to twelve. For ev-
ery ground truth performance, we take each weighting scheme
and np,x combination, train ten predictive models using each
of our ten training sets, and run all 400 test sequences dis-
tributed evenly across the ten models. From these runs, we
compute a cumulative error E. Figure 9 shows these errors
for Trump and Hillary, averaged over all performances and
normalized by the total sequence length. This data shows that
weighting scheme four (where the weight increases for longer
n-grams) yields the lowest error. Moreover, the error tends to
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Error
o
~
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5
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5 10
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Figure 10: In both Trump (red) and Hillary (blue) the darkest color uses
nmax = 8 and weight type 4. The medium and light colors use standard
Markov models with 8-grams and 2-grams respectively.

plateau when n,.x increases past eight or nine. As a result, we
use weighting scheme four and n,,x = 8 for all of our results
and the user study described below.

The second experiment measures the impact of combining
an ensemble of Markov models in our predictive model. As
baselines, we implemented two standard Markov models, one
that uses 2-grams and one that uses 8-grams. With these two
models, we compute the normalized error for the same set
of training-test combinations described above and compare
the results against our predictive model using the optimal
weighting scheme and np,s. Figure 10 plots the results for
each performance at every test sequence perturbation level.
Our ensemble model yields significantly lower errors than
either of the standard Markov models, with the 2-gram model
performing the worst by a considerable margin. Even at 0%
perturbation, the 2-gram model produces higher errors than
our predictive model at 15% perturbation for all performances.

As a final experiment, we evaluated the performance of our
predictive model when we use different ground truth perfor-
mances as training. In particular, we ran leave one out valida-
tion on the performances for each character, which simulates
a scenario where animators use previous performances (rather
than specific practice sessions) to train the model. Not surpris-
ingly, given the discrepancies between the training and test
sequences, the normalized error for each performance was sig-
nificantly higher than in the previous experiments. In spite of
this, we found that in six out of 11 performances, the error was
less than two, which means that the next state was generally
one of the top three suggestions.

User Study

In addition to the quantitative evaluation of our predictive
triggering model, we wanted to gather feedback on our system
as a whole. To this end, we conducted a user study with
16 participants (14 novices and two experienced animators)
comparing four triggering interfaces:

Keyboard is the baseline condition where users trigger with
keyboard shortcuts.

NoSugg is our interface with no highlighted suggestions
(i.e., no triggers are greyed out during performance).

1Sugg is our interface with one highlighted suggestion.

3Sugg is our interface with three highlighted suggestions.



Figure 11: (a) The default keybaord layout used in our final user study.
(b,c,d) Some of the customized keyboard layouts created by users.

We used a within-subject design where each participant used
all four interfaces to animate Cartoon Hillary answering in-
terview questions. Given a script of both the questions and
responses, participants were asked to create live animations in
the following four tasks:

1. Answer the questions in the script in order.
2. Answer the questions in the script in a different order.

3. Answer the questions in the script in order with one new
question in the middle.

4. Answer similar questions as in the script but with slightly
different wording for each.

The tasks simulate a typical live interview scenario where the
interviewee is often provided with potential questions ahead
of time. However, interviewers sometimes deviate from the
script to varying degrees. Participants were free to decide
which triggers to use during their performances. We fixed
the order of the tasks from easiest (Task 1) to hardest (Task
4) and counterbalanced the order of the interface conditions
using a 4x4 Latin square. With 16 participants, we had four
users for each task-interface combination. Please see our
supplemental materials for the scripts and some videos of
participants performing the tasks.

Setup. We ran our interface on a Wacom Cintiq 13-inch multi-
touch display. For the Keyboard condition, we placed stickers
with the visual trigger icons on the keys (Figure 11a).

Practice. Each study session consisted of two parts. Dur-
ing the practice period, participants rehearsed their scripted
responses four times using the Keyboard. After the first prac-
tice run, we allowed users to customize the sticker placement.
Seven decided to do so (Figure 11). Since participants had
four practice runs with the Keyboard, we let them practice
four times using our interface with no highlighted suggestions.
After the first practice run, we allowed users to customize our
automatically generated trigger layout (Figure 12). We used
the row layout by default, but they were free to switch to the
fan layout if they desired. We used these four practices with
our interface to train our predictive triggering model. We then
asked participants to practice the same script with all four of
the interface conditions, to familiarize themselves with the
setup and (in the case of 1Sugg and 3Sugg) the appearance of
the suggestions. Since the other interface conditions are simi-
lar (or in the case of NoSugg, identical) to the training setup,

Figure 12: Some of the customized layouts created by users during our
final user study. (a) Users place the commonly used triggers near their
dominate (right) hand and the unused triggers either on the bottom or
off to the side. (b) Users only made minor changes to the layout.

they only practice once on those interfaces. We did not update
our predictive model based on these additional practices.

Performance. After the practice period, participants per-
formed the four tasks in order with the assignment of inter-
faces determined by the Latin square. At the end of each
study session, we conducted an exit interview where partici-
pants commented on the different interfaces and ranked the
tasks from easiest to hardest. Each session lasted roughly 30
minutes.

Findings

We summarize the key findings from our study based on the
collected rankings and comments, as well as our own observa-
tions of how participants used the various interfaces.

Layout Customization. All but three users made at least some
customizations to the automatically generated trigger layouts
(see Figure 12). However, in most cases, the edits were
relatively minor, which suggests that the automatic layout
provided a good starting point for refinement (Figure 12b).
That said, some users did make more significant edits, like
re-arranging triggers to take advantage of a dominant hand and
moving unused triggers to the side or bottom of the interface
(Figure 12a).

User Rankings. We analyzed the collected rankings in two
ways: by task and by interface. Given that each successive task
involved increasing amounts of deviation from the original
scripted questions, we were expecting users to rank later tasks
lower (i.e., harder) than earlier ones. However, the data does
not exhibit such a trend, as seen in Figure 13a. This difference
may be due to learning effects counteracting the increasing
task difficulty. In contrast, the per-interface rankings show a
clear preference for the three versions of our interface over
the baseline Keyboard condition (Figure 13b). A histogram of
the per-interface rankings shows that a slight preference for
NoSugg, while 3Sugg and 1Sugg were very evenly matched
(Figure 14). Overall, across all sessions, more than half of
users preferred one of the two interfaces with suggestions over
NoSugg.
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Figure 13: The rankings from our user study organized by task (a) and
by condition (b). The thick grey line is the median, the box represents
50% of the data between the first and third quartiles, and the whiskers
mark the extremes.

Qualitative Feedback. The comments from the exit interviews
mostly align with the rankings. Participants strongly disliked
the Keyboard interface and complained that there was too
much multitasking between reading the script on the UI, find-
ing the correct key and then pressing it. Regarding our trigger-
ing interface, users said that the highlighted suggestions were
useful and that 3Sugg helped add variety to their performance.
On the other hand, several users said that /Sugg was less dis-
tracting because it offered fewer options, which meant they
did not need to think as much during the performance. The
main criticism of the suggestions is that they made it harder
to search for the intended trigger when the wrong triggers
were highlighted. While a few users did voice this negative
feedback, we believe this critique may be due in part to users
deciding to improvise more during their performances.

Professional Feedback

To better understand how our system addresses professional
workflows, we conducted an informal demo session with the
production team at The Late Show. We asked them to use our
system to animate Cartoon Trump answering two questions
from previous episodes of the show. In this case, one person
voiced the character’s responses while another person used
our system to perform the triggers. They practiced three times
and then performed twice, once with the /Sugg version of our
system, and once with 3Sugg.

The feedback was generally very positive. They liked that our
system automatically generates default trigger layouts based
on the artwork since they often add new triggerable poses to
characters for specific shows. They also really appreciated the
fact that the layouts can be customized, which allows differ-
ent performers to refine trigger arrangements based on their
preferences. Regarding our predictive triggering model, they
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Figure 14: A histogram showing the rankings from our user study.

felt that suggestions for an entire performance would rarely
be useful for their specific usage scenario, where the script for
any given segment is only finalized shortly before the show
starts. As a result, even though they do practice portions of the
performance ahead of time, they typically do not have time to
rehearse the entire segment before they go live. However, they
noted that our suggestions would be useful for triggering the re-
curring sequences of poses that their characters often perform.
To support this functionality, our model could automatically
identify such patterns and only enable suggestions when the
current triggering context matches the starting conditions for
the pattern with high confidence.

Trigger Type Pose Type
Name Single Num Radial | Hand Face Other Total
Trump 2 0 12 13 1 0 14
Hillary 13 3 7 13 0 0 13
Regan 17 0 0 0 12 5 17
Furiosa 8 1 5 9 3 2 14
Cyberguy 19 0 0 9 4 6 19

Table 1: Summary of trigger and pose types for characters.

EXAMPLES

We used our system to animate all of the footage in our sub-
mission video and short monologues lasting 30 seconds to
one minute with five characters (Figure 15). The Trump and
Hillary characters were created by The Late Show production
team, Regan and Furiosa were created by the author of the
Red Monster Live chat session on YouTube [32], and Cyber-
guy was created by a multimedia artist/animator. The Trump,
Hillary and Regan characters have been used previously for
live animation broadcasts. All of these characters were created
independently from our project, to be used during actual live
animation performances. As a result, the artists have only
supplied the character with the necessary poses for their par-
ticular performances. The characters have between 14 and
19 triggers, spanning the three types (single, numerical and
radial) supported by our interface. While most of these trig-
gers enable simple swaps, several characters include cycles.
For example, all of Hillary’s 13 hand poses are cycles that
smoothly transition from the rest pose, and Regan has several
triggerable cycle animations, like breathing fire and spinning
eyes. In addition, Trump and Furiosa both include sub-poses
that can be triggered via radial selection (e.g., moving Trump’s
fist up, down, left or right) or numerical selection (e.g., Furiosa
holding out different numbers of fingers). Furiosa also has
radial triggers that are mapped to cycles (e.g., punching a hand
above the head). The animator can control the speed of the
animation by moving her hand around the trigger. Table 1
summarizes the set of triggers for each character.

Our automatic trigger layout algorithm generates effective
default arrangements for all of our characters (Figure 15).
When creating our animated results, we only modified the
layout for Regan in order to group the poses into semantically
similar categories of eye triggers, eyebrow triggers, mouth
triggers and others. We used automatic layouts for all the
other characters.
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Figure 15: Row layouts and frames of our characters from our performed results. From left to right: Trump, Regan, Cyberguy, Furiosa and Hillary)

To create animated monologues, we trained our predictive
model on five practice runs and then performed once using
the 3Sugg mode. Assisted triggering was most helpful for
performances longer than 30 seconds, where it was often hard
to remember which triggers to hit later in the performance. In
particular, while some poses clearly match specific verbal cues
(e.g., pointing one finger while saying “first”), other poses
have a less obvious connection to the speech (e.g., raising eye-
brows can accompany many spoken words). In such scenarios,
the highlighted suggestions provide useful prompts. The pre-
dictive model also handled mistakes gracefully. When we hit
the wrong trigger, the system recovered quickly, providing
useful suggestions after just one or two subsequent trigger
events. Please see our submission video and supplemental
web page for example sessions using all of our characters.

CONCLUSION

Our work presents a multi-touch interface that supports trigger-
ing for live 2D animation. By generating trigger layouts based
on artwork, we make it easier for users to prepare new (or
modified) characters for live performance. Moreover, our pre-
dictive triggering model allows animators to leverage practice
sessions at performance time.

While our results are already encouraging, we see several areas
for future work.

Additional Trigger Types. In addition to the functionality
that we currently support, some participants in our study sug-
gested other trigger types. For example, it may be useful
to have a trigger that enables continuous deformation of the
artwork via direct manipulation. With this functionality, the
animator could change an open hand to a closed fist and then
smoothly drag the artwork to perform a punch or raise it above
the character’s head. Another useful feature would be a trig-
ger that activates multiple other triggers. For instance, if a
character often raises their hands, smiles and opens their eyes
wide simultaneously, the animator could define a combination

trigger that performs all three actions. In general, adding more
triggers would help expand the expressive range of the system.

Audio Context for Predictions. Almost all live animations
involve vocal performances. One interesting direction to ex-
plore is how to leverage context from spoken dialog to improve
the predictive triggering model. For example, we could incor-
porate audio features captured during practice sessions into
our model. Then, during a performance, the audio could serve
as an additional cue to refine the suggested triggers. In this
vein, we could even try to automate the triggering entirely
based only on the animator’s vocal performance.

Handling Diverse Training Data. As noted in the evaluation
of our predictive model and our user study, the quality of
suggestions decreases when the performance deviates from the
practice sessions. One way to improve the utility of our system
in such scenarios is to develop a more sophisticated model that
can better handle diverse training data. In addition, the model
could potentially adapt on-the-fly during a performance based
on a user’s actions.

In conclusion, we believe that live performed animation rep-
resents an interesting new application domain for the HCI
research community. We hope that our work inspires others to
investigate the unique challenges and opportunities that arise
from this emerging medium.
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