
A Mixed-Initiative Interface for Animating Static Pictures
Nora S Willett∗, Rubaiat Habib Kazi†, Michael Chen†, George Fitzmaurice†,

Adam Finkelstein∗, Tovi Grossman†‡
∗Princeton University †Autodesk Research ‡University of Toronto

Figure 1: An example of animating a static picture using our system. (a) The original picture. (b) The user scribbles some sample objects (green) and
their overall motion direction (red). (c) The resulting animation consists of kinetic textures [27] (including all the balloons) that are spatio-temporally
consistent with the source picture, with proper depth ordering and an inpainted background.

ABSTRACT
We present an interactive tool to animate the visual elements of
a static picture, based on simple sketch-based markup. While
animated images enhance websites, infographics, logos, e-
books, and social media, creating such animations from still
pictures is difficult for novices and tedious for experts. Creat-
ing automatic tools is challenging due to ambiguities in object
segmentation, relative depth ordering, and non-existent tempo-
ral information. With a few user drawn scribbles as input, our
mixed initiative creative interface extracts repetitive texture el-
ements in an image, and supports animating them. Our system
also facilitates the creation of multiple layers to enhance depth
cues in the animation. Finally, after analyzing the artwork dur-
ing segmentation, several animation processes automatically
generate kinetic textures [27] that are spatio-temporally coher-
ent with the source image. Our results, as well as feedback
from our user evaluation, suggest that our system effectively
allows illustrators and animators to add life to still images in a
broad range of visual styles.

Author Keywords
Kinetic textures; animation; dynamics; pictures.

ACM Classification Keywords
H.5.2 Information interfaces and presentation: User interfaces
- Graphical interface.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST 2018, October 14–17, 2018, Berlin, Germany.
Copyright c© 2018 Association of Computing Machinery.
ACM ISBN 978-1-4503-5948-1/18/10 ...$15.00.
http://dx.doi.org/10.1145/3242587.3242612

INTRODUCTION
Dynamic drawings and cinemagraphs are becoming increas-
ingly popular forms of media to portray scenes with animated,
ambient textures and elements. Childrens books, logos, in-
fographics, e-cards, academic papers [21], and gifs on social
media make use of animated elements to enhance their ap-
peal. In all of these examples, the artist carefully sets the
temporal and spatial aspects of the animation to match their
vision. In addition, the resulting animated video should loop
seamlessly for a pleasing experience when embedded in the
final applicaiton. Traditionally, such animations are generated
from layered images [27, 43] or videos [19, 33, 38, 45, 48].
However, one way to direct an artist’s vision is to make the
animation resemble a static image. While the dynamics in a
static picture are often imaginable, converting a static, raster
image to an animated one is challenging [15]. This difficulty
is primarily due to the lack of semantic object and depth infor-
mation, which is necessary for animation. Furthermore, the
image is not optimized for a particular animation data struc-
ture (i.e., rigging [25], vector graphics [27], meshes [23, 28,
51], hierarchy) that might be necessary for the corresponding
animation framework. They also lack temporal information,
and the decision about how objects should move often relies
on artistic intuition or storytelling goals.

A common occurrence in pictures is the presence of repeating
similar elements. They can take the form of falling snow,
rain, and leaves or flying birds, insects and balloons. An artist
could also create bubbles rising through the water, a school of
fish swimming in a reef, or music notes drifting through the
air. Such repeating elements are abundant in drawn pictures
and photographs, where similar yet slightly varying objects
are distributed across the image. Unlike previous animation
systems [27] that enable artists to create animated textures
from scratch, we start from a static image resembling the final

1

output. Animating manually from a static image is tedious
and error-prone, since one must extract all such elements
(using the GrabCut [39] algorithm or commercial tools, such
as Photoshop [3]), and preserve their spatial arrangements over
time. Additionally, the presence of repeating objects can give
important cues about the dynamics of an associated animation.

We facilitate the creation of animated pictures from an input
raster image (Figure 1a) using a few high-level guided strokes.
First, our mixed initiative interface allows a user to decompose
repeating elements in the scene. In this step, once the user
circles a subset of the objects (Figure 1b), our system automat-
ically finds similar objects in the image and extracts them into
a separate layer. Second, we allow the extraction of multiple
layers and user guided depth ordering of those layers. Third,
from the user guided motion path and the extracted objects,
our optimization step generates a kinetic texture [27] that is
spatio-temporally coherent with the elements in the source
image (Figure 1c). We analyze the semantics of the source
scene to generate the necessary components and optimize the
parameters of the kinetic textures to approximately preserve
the spatial arrangements, density, and scale of the elements
over time. Finally, we seamlessly loop the resulting anima-
tion. Our contribution is a new mixed initiative interface that
synthesizes and extends existing image-processing algorithms
and new animation optimization algorithms into an interac-
tive sketch-based system for animating static images. As we
will demonstrate, our algorithms and UI are applicable to a
wide range of visual styles (i.e., paintings, cartoons, illustra-
tions, photographs, infographics), which makes it suitable for
a variety of application domains and scenarios.

To validate our system, we ran a series of observational feed-
back sessions with six participants. Our results show the
potential of our system, point to areas of future work, and
demonstrate that even first time users can animate static pic-
tures in a short period of time - a task that is otherwise difficult
for novices and tedious for experts using state of the art tools.

RELATED WORK
This section reviews prior work in creating animations from
images and videos, and finding texture elements for high-level
image editing.

Draco: The output of our system most closely resembles
that of Kazi et al.’s Draco [27], because our system leverages
the Sketchbook Motion iPad app [8] (Autodesk’s implementa-
tion of Draco) as a renderer. However, we introduce several
advances. Our method animates a single preexisting static
image, whereas Draco requires the user to draw each part of
the animation from scratch. Starting from an existing image
allows users with limited drawing skills to design aesthetically
pleasing animations. Draco also requires the user to manipu-
late all of the animation parameters to achieve their final result.
In contrast, our system automatically computes the emitter
line, emission frequency, and scale from user defined scribbles
and the underlying picture. Finally, we introduce a method to
automatically loop the resulting animation.

Animation from a single layer: Animating from a single
image began with simple deformation [34] or adding varying

patterns to simulate motion [20]. Horry et al. simulate depth
by separating the foreground and background and adding sim-
ple 3D modeling to them [22]. The work most closely related
to our goal is Chuang et al.’s addition of motion textures to a
picture [15]. Their interface assists the user in separating areas
for animation such as trees, water, boats and clouds. With
time-varying displacement maps, they animate the separated
regions creating effects like swaying, rippling, bobbing and
translation. However, their method does not extract multiple
instances of an object (i.e., finding all the boats). Our system
can extract the same objects as Chuang et al. and assists in
extracting similar objects in the image (i.e. multiple clouds,
boats). For animation, Chuang et al.’s displacement maps re-
sult in a limited set of possible animations. Our animation
process complements their work by focusing on kinetic tex-
tures [27], not stochastic motion textures, and extends their
work by leveraging the properties of the original image ele-
ments when specifying animation parameters.

Sketch-based animation tools: Researchers have explored
various methods for easy animation authoring, using motion
sketching [17] and direct manipulation [23, 49, 50] techniques.
However, in such cases, the visual elements to be animated
must be drawn from scratch [7], or are already stored on
separate layers as vector graphics [27], raster graphics [2],
or meshes [10, 28]. Our input of a single static image lacks
separate layer and data structure information, requiring a new
technique to animate it.

Animation from videos: Using videos as input for animation
creation supplies the missing information that a static image
lacks. For instance, videos encode temporal information pro-
viding examples of movement and revealing background lay-
ers via disocclusion. Liu et al. describe how motion in video
can be exaggerated for visualization and other purposes [35].
Video textures allow for continuous looping of the original
frames so that a sequence is never repeated [41]. Cinema-
graphs extend video textures but focus on animating a specific
part of the image [9, 48]. Liao et al. explore creating looping
videos with user control over the dynamism of the result [33].
Cliplets, while not looping, allow finer control over the spa-
tial and temporal parts of the video [26]. Su et al. transfers
video deformations to a separate single image [44]. While
these techniques create compelling results, we focus on using
a single image (with non-existent temporal information) as the
input for our animation.

Finding texture elements: Image segmentation [42] meth-
ods are commonly used for extracting objects or texture ele-
ments from an image. When extracting a single object, Grab-
Cut works well with user defined foreground and background
marks [39]. The computer vision community has studied the
problem of finding repeated elements in a picture [4, 14, 29,
31, 40]. In this line of work, the RepFinder system of Cheng et
al. [14] is most suited to our problem. RepFinder [14] extends
the GrabCut concept to the location of multiple similar ob-
jects with template matching [32]. However, our definition of
similar encompasses deformation, and non-regular variations
whereas RepFinder will only recognize objects which vary
in color, position, orientation and scale. This distinction is

2

Figure 2: The layer stacks resulting from our framework.

particularly important when processing artwork and paintings,
beyond photographs. Our method for finding texture elements
leverages and enhances GrabCut to process simple user input
marks into more informative masks for input. Once exemplar
texture elements are found, researchers have proposed meth-
ods to characterize how new textures with similar statistics
could be synthesized or used in practice [5, 6, 30, 36, 37, 46].

ANIMATING STATIC PICTURES: CHALLENGES
Given a static image as input, there is not necessarily an ex-
plicit 1-to-1 mapping to a corresponding animation. That is,
there could be many reasonable interpretations as to what an
“animated” version of a static image could look like. Our sys-
tem’s goal is to provide animators with the tools to create an
animation which resembles, but does not necessarily exactly
match, the original image. In some cases, the author may wish
to generate an animation for which the original image is indis-
tinguishable from a random subset of final animation frames.
However, in other cases, the author may want more creative
freedom resulting in divergence from the source image. In de-
veloping a system that facilitates both of these complementary
goals, there are numerous challenges to overcome.

Depth ambiguities: One challenge is determining the depth
ordering from a single image. How do we know if a small
object is far away or just smaller than other objects in the
image? For instance, the balloons in Figure 1 could have
multiple possible explanations for their depth ordering. The
different size balloons could be on separate layers with each
smaller size behind/further away than the larger ones. In
addition, the layer with the smallest balloons would fly behind
the castle due to the occlusion clues from the image. In a
different interpretation, the balloons could also be flying from
close to the user in the lower left and then travel further away
and through the castle, hence becoming smaller.

Temporal ambiguities: Once an image has been separated
into layers, more challenges, such as a lack of temporal in-
formation, arise when trying to animate the image so that it
resembles the original. For example, do the balloons in Fig-
ure 1 move in a straight line from the bottom left to the top
right? Or do they curve, wiggle and rotate along the way?
In addition, the image does not give clues to the speed of the
objects. Are all the balloons moving slowly across the image?
Or are the larger balloons moving faster?

Looping: Another challenge is the desire for the final ani-
mated video to loop seamlessly, with all animated elements in
the scene matching at the start and end. Previous techniques
for looping video (e.g., [9, 26, 33, 41]) rely on morphing
and blending natural imagery texture elements and would not
work as well for the kinds of discrete, visually distinctive,
hand-drawn elements in many of our examples.

Overall, such ambiguities motivate a mixed-initiative approach
for our problem. While certain inferences can be made, we
cannot expect our algorithms to operate fully automatically
since there are multiple ways an animation can be interpreted
from a still image. For example, users should be able to specify
how objects are separated into layers, or adjust their motion
paths and speed. Providing users with an UI that allows them
to specify all these constraints is in itself a challenge. In
general, combining user input with automatic algorithms will
allow artists the freedom to choose the interpretation of the
original still image that best suits their artistic vision.

SYSTEM OVERVIEW
Our system allows a user to take a static image as input, and
animate the objects with high-level gestures to create an in-
tended animation that resembles the original image. We rely
on a mixed-initiative approach, combining the power of auto-
mated image processing algorithms with simple and interactive
tools to iterate on or guide the results. First, guided by user an-
notated exemplars, our system efficiently detects and extracts
similar looking elements from the image. Once the elements,
foreground, and background are separated into layers, the user
rearranges them into the desired ordering for depth and occlu-
sion effects (Figure 2). When animating the image, we use
data from the original image to tune the animation parameters.

Extracting Repeating Objects
Our system targets images with multiple instances of objects
that should be animated. For instance, there could be balloons
of varying sizes and colors (Figure 1), lanterns of differing
sizes (Figure 3), pieces of avocado (Figure 14), butterflies and
raindrops (Figure 15a,e). Due to the large variety of repeating
objects and the possible differences between them within a
single image, we opt for an iterative, interactive approach. We
allow the user to quickly select a subset of those objects which
we use for animation. From these exemplar objects, we search
for similar objects in the rest of the image to remove them
from the background. At each of these steps, we provide inter-
active tools for users to refine our automatic results. Finally,
we inpaint [12] the background and return two new layers:
one transparent with only the exemplar objects and another
completed background with all the selected objects removed.

Depth Ordering with Layers
While this new background will have all the animation objects
removed, there might be other areas which the user wishes
to separate into further layers. For instance, hills (Figure 1),
people (Figure 3), chopsticks (Figure 14), engine parts or trees
(Figure 15b,d) might be on a mid-ground layer with animated
objects in front and behind. In this instance, we allow the user
to supplement our automatic partitioning algorithm to select
the exact part of the image to extract. We present the user with

3

Figure 3: The user interface, consisting of (a) a main canvas, (b) layer
panel, the (c) global and (d) contextual toolbars.

a transparent layer containing the mid-ground object and an
inpainted background (Figure 2). These layers allow the user
to animate the mid-ground object without holes appearing
in the animation. With these new layers and the ability to
rearrange their ordering, the user clarifies any depth ordering
ambiguities present in the source image.

Animation Optimization
We give the user the ability to add all the dynamic elements
of a kinetic textures animation framework [27]. From a user
drawn motion line, we leverage the elements’ positions in the
original image to automatically create an emitter - a path which
generates particles at a defined frequency and velocity. We
control the emission frequency to match the density of objects
in the static source image. In some cases, emission objects may
scale along their path (Figure 12) or might travel on different
layers (Figure 2). We offer automatic methods to set these
properties. We also introduce a method to create a seamless,
looping animation while preserving temporal coherency for
all objects in the scene.

Figure 4: (a) Exemplar objects menu. (b) Similar objects menu. (c) In-
paint menu. (d) Separate layers menu. (e) Existing Sketchbook Motion
animation menu.

Figure 5: Interactive steps for separating animation objects. (a) Step
1: The user circles the objects. (b) The exemplar objects are shown for
review. (c) Step 2: Similar objects are found in the image. The user
decides to refine the found objects. (d) The Smart object selection brush
is used to mark the light pink objects. (e) All the objects are found. (f)
Step 3: The background is cleared of all objects.

USER INTERFACE
We designed and developed an interactive system allowing
the user to animate an existing static picture. Our system is
implemented as a plug-in within the Autodesk Sketchbook
Motion iPad app [8], and borrows some of its existing UI
elements. The interface has a main canvas, layer panel, global
and contextual toolbars (Figure 3). A typical workflow starts
with the user importing an image and decomposing the image
into layers of animation and background objects. Finally,
the user adds animation effects to the layers and exports the
looping animated video. We elaborate on the workflow below.

Layer Panel
We use SketchBook Motion’s unmodified layer panel, which
is similar to those in other graphical editing tools [8]. Each of
our decomposition and separation processes creates temporary
layers storing brush markings and results. Each brush creates
a new layer that is converted to black (background) and white
(brush marks) masks as the input to our algorithms, described
in the next section. After each process, we clear the temporary
layers and replace them with the final layers. Users can also
manually add, remove and duplicate layers.

Segmenting Objects to be Animated
As illustrated in the previous section, the first challenge is to
extract elements to be animated from the background. Our UI
guides the user through the three steps of (1) finding exemplar
objects to be animated, (2) searching for similar objects in the
scene, and (3) inpainting the background.

For Step 1, we extract the exemplar objects onto a separate
layer. To begin, the “Circle objects” brush (Figure 4a) is used
to draw circles around all the objects that the user will animate

4

later (Figure 5a). Objects can be circled separately (Figure 1b)
or together (Figure 5a). Next, our algorithm separates the
circled objects onto their own layer (Figure 5b). The user clar-
ifies which pixels in each circle belong to the exemplar objects
(“Foreground” brush) and which belong in the background
(“Background” brush).

In Step 2, we search for similar, repeating objects in the rest
of the image (Figure 5c). Objects, that we are confident are
similar to the previously circled objects, are shown in filled
dark pink. We are less confident for objects highlighted in
light pink. The “Smart object selection” brush (Figure 4b)
allows the user to replace light pink areas with dark pink to be
inpainted (Figure 5d,e).

Finally, in Step 3, we inpaint all the previously marked dark
pink areas (Figure 5f). The user can remove more areas with
the “Inpaint area” brush (Figure 4c). When finished, a trans-
parent layer with only the exemplar objects and a layer with
the inpainted background are created.

Depth Ordering
For depth effects, the user might want to extract other parts
of the image into separate layers. Before entering the sep-
arate layers menu, we automatically try to extract the fore-
ground from the background. After refining the result with the
“Foreground” and “Background” brushes, the “Separate layers”
button re-runs our separation algorithm (Figure 4d). When
done, we inpaint the area previously covered by the extracted
foreground. The temporary layers are deleted and two new
layers, a transparent one with only the foreground and another
layer of the inpainted background, are created.

Animation
When animating, the user can add a kinetic or oscillating
texture using Sketchbook Motion’s existing interface [8]. For
a kinetic texture, the user draws one or more motion path
lines, indicated as the “Wind” button in Figure 4e. After
drawing each line, we automatically create an emitter - a path
which generates particles at a defined frequency and velocity
(Figure 6a). We also allow the user to manually create an
emitter. The user can choose to keep the emission at a fixed
density, where we try to match the density of objects in the
initial image (Figure 6b), or they can manually set the emission
frequency and speed. In cases where there are objects of
different scales in the original image, the user can scale the
objects along the motion path (Figure 6c) or split the objects
into two or three layers.

Figure 6: User interaction when animating. (a) The user draws a motion
path. (b) A kinetic texture is automatically generated with an emitter
(blue), where the density of the texture is set to approximate the original
image. (c) The objects are automatically scaled over the path.

Figure 7: Finding exemplar objects. (a) User circles objects. (b) System
separates pixels into 15 groups. (c) System tags the background (red)
and foreground (light blue) groups. (d) GrabCut extracts the objects.

SYSTEM IMPLEMENTATION
Our system is implemented on an iPad, using OpenCV [13]
and Image Stack [1] for image processing, GrabCut [39] for
layer extraction, and PatchMatch [11] for inpainting. Sup-
posing previous work on extracting repeating objects [14, 29]
could run interactively on an iPad, either method could replace
GrabCut [39] in our pipeline’s layer extraction component.

Extracting Repeating Objects
To extract the objects from an image, our three step process
allows the user the best combination of automatic help and
detailed control for fine tuning.

Finding Exemplar Objects
When an image has multiple instances of objects, not every
instance is desired in the final animation. Some instances
might be too small, others might be occluded, and still others
might lack details to look pleasing when animated. Hence,
in the final animation, we only use exemplar objects that are
circled by the user and extracted by our method (Figure 7a).

We start separating the circled areas by finding the contours
of the mask from the “Circle objects” brush. A circled area
is defined by having an inside and outside contour whose
centroids are close together (less than five pixels apart). For
each area, we use GrabCut [39] with five iterations to extract
the objects. To run GrabCut, we need to determine sample
areas of the background and foreground inside each circled
area. We split the pixels inside the circle into 15 groups
using k-means on the pixel color in the LAB color space
(Figure 7b). Next, all groups that are underneath the circles
are marked as background (Figure 7c). For the foreground,
we select the group with the furthest average distance from
all the background groups (Figure 7c). We initialize GrabCut
with the foreground group and any foreground brush marks
as the foreground, the circle and any background brush marks
as the background and by default, all other pixels marked
as probably background. Directly feeding the user’s marks
into GrabCut would be more tedious since many more marks
would be required. The result is an image with only the circled
objects visible (Figure 7d, Figure 8c).

With the brushes, the user can iterate on the result by carefully
marking the interior of objects as foreground and anything else
as background. In most cases, no refinements or only small
refinements are necessary.

5

(8 sec) (6 sec) (255 sec)

(31 sec) (5 sec) (430 sec)

(a) Original image (b) User input (c) Exemplar objects (d) Similar objects (e) Inpainted background

Figure 8: Summary of our segmentation pipeline for two example inputs. (a) Original image. (b) Input markings for all steps: white circles mark
exemplar objects; light green shows foreground; yellow marks are for smart object selection. (c) Exemplar objects found by our system. (d) Dark pink
indicates similar objects found for inpainting. (e) Final inpainted background layer ready for animated foreground. (Compute times in parentheses.)

Finding Similar Objects
Once the user specifies the exemplar objects, our goal is to
find similar instances of those objects (raindrops, snowflakes,
balloons, etc.) in the rest of the image. These instances can
vary in shape, orientation, scale, color, and occlusion. From
the previous step, we know the indications of foreground (ob-
jects) and background (all other pixels) within each circled
area. We run GrabCut over the whole image with those indica-
tions and unknown pixels defaulting to probably background
(Figure 9a). We declare an object to be a connected group of
foreground pixels (Figure 9b). However, in our experience,
this declaration results in some false positives. Hence, we filter
the results based on normalized area and aspect ratio. The cir-
cled objects are used as ground truth to statistically determine
if the others are outliers using quartiles. We iterate labeling
outliers as truth until convergence. The objects marked as true
are indicated in dark pink and the ones labeled as foreground
from GrabCut but not filtered as true objects are highlighted
in light pink (Figure 9c, Figure 8d).

Usually, this method finds many of the possible objects. De-
pending on which objects were selected, our filtering can be
strict and result in numerous objects marked in light pink in-
stead of dark pink. The user can refine this result by iterating
with new markings for the foreground, background and smart
object selection.

In addition, we experimented with a variety of machine learn-
ing algorithms (k-means, one-class SVM) to label the objects.
These techniques did not return meaningful results because
we usually only have three to eight ground truth examples to
label around 10 to 100 other object instances.

Inpainting
Once all the objects are extracted, we use an implementation
of PatchMatch to fill in the background holes [11] (Figure 8e).
However, our system is modular so the inpainting method can
be replaced by a more robust or specialized algorithm [16, 18,

24, 52]. In addition, the user can paint over additional areas to
be filled. This interaction is helpful in the cases where we miss
small parts of an object or a whole object due to occlusion.

Depth Ordering with Layers
Once again, we use GrabCut to split other parts of the image
into more layers. To seed the process with foreground and
background areas, we use a similar technique when finding the
foreground inside a circled region. The pixels are separated
into 30 groups using k-means on their LAB color. All groups
that are either in the user defined background markings or
in the absence of user markings, the top five non-transparent
rows of the image, are set as the background. A single group
that has the furthest average distance from all the background
groups is selected as the foreground. All other pixels are
marked as probably foreground. The result from GrabCut
with this input is presented to the user. After refinements, the
foreground area is inpainted using PatchMatch [11].

Animation Optimization
We show several methods to automatically enhance the cre-
ation and parameter tuning of an emitter to quickly create an
animation that resembles the original still image.

Figure 9: Finding similar objects. (a) The input to GrabCut. (b) Found
objects from GrabCut. (c) Filtered found objects.

6

Emitter Creation
From the user drawn motion lines, we create a vector field
[27] over the whole image and calculate an emitter line. To
begin, we collect all exemplar and similar objects discovered
in the object extraction step. From these objects, we calculate
the minimum object area covered by the intersection of their
expansion into a single merged area and their convex hull. Our
initial guess of the emitter line is calculated by taking a line
perpendicular to the motion line’s beginning and finding its
intersections with the convex hull’s border. We push this line
outside of the object area and then project the intersection
points onto this new line (Figure 10a). These two endpoints
serve as the initial guess to our emitter line.

In addition, we want the particles from our emitter to cover
the whole region where the initial objects were located (Fig-
ure 10b). For each endpoint, we either contract it, until emitted
particles travelling along the vector field switch from not in-
tersecting the object area to intersecting it, or we expand it
until particles that intersected the object area no longer do
so. If the user draws multiple motion lines, we average the
projected endpoints before checking for object area coverage
(Figure 10c,d). To emit objects along the emitter line, we finely
sample the line into emit points [27]. At each iteration, we
determine, as described below, which emit point should emit
an object. Each emit point chooses which exemplar object it
will emit at that time.

Figure 10: We automatically generate an emitter from user drawn mo-
tion paths (red). (a) First, we find the perpendicular line (light green)
to the motion path and its intersection (light green) with the convex hull.
Then, we push this line and its intersections (dark blue) outside the ob-
ject area (dark gray). (b) From these initial points (light blue), we ex-
pand the emitter until particles completely cover the object area. These
final dark blue points are the end points to the emitter. (c) When the user
adds multiple motion paths, the endpoints (dark green) are averaged to
create the light blue points. The line connecting these light blue points is
pushed outside the object area. (d) The initial points contract to tightly
cover the object area with emitted particles.

Emission Frequency
We control the emission frequency by setting the probability
of emitting a new object at each time step. Our goal is to
regulate the emission frequency such that the objects are dis-
tributed stochastically (but roughly uniformly) and the number
of objects on the screen, n, is close to N, a target number
based on the original image. We find N by determining the
number of separate areas (connected components of pixels)
found in the exemplar and similar object steps. All our results
use N directly as found this way; but we also provide a con-
trol that allows the user to manually adjust this number up or
down. Our supplemental materials show some examples of
such adjustments. We emit a particle at time ti based on the
probability Pe as follows:

Pe(ti) =

{
Pd(ti − ti−1), if ti <

D

v
Pd(ti − ti−1)C(n), otherwise

This formulation splits the emission probability into two
phases. An initial phase fills the object “pipeline” using a
constant probability Pd of particle emission per time interval.
Later, after the expected duration needed to fill the pipeline,
we transition to a phase where a controllerC(n) modulates the
emission probability upward or downward based on whether
the current number of objects n is less than or greater than the
target number N . The duration of the initial phase is the aver-
age distanceD that objects travel along the vector field divided
by their average velocity v. We set the “steady-state” emission
probability Pd, to be the expected probability of an object
disappearing from the scene, given by a similar calculation
involving the time interval δ:

Pd(δ) =
Nvδ

D

In principle, Pd and therefore Pe could exceed 1.0 when δ is
large. However, we perform this test at a sufficiently high rate
that this problem never occurs in practice. The controller C(n)
is a simple logistic curve, symmetric around the case where
n = N and scaled so C(n) = 1:

C(n) =
2 ∗ ex

ex + 1
,where x = N − n

This controller ensures that the number of objects remains near
the target number in the steady state, while allowing small
fluctuations due to randomness. Figure 11a shows how the
number of objects changes over the course of animation for
the lantern result.

Finally, once we determine that a particle should be emit-
ted, we need to choose an emission location from the emitter
line. We choose randomly, weighting each potential emit
point by its distance to the closest previously emitted object.
This weight avoids emitting an object close to another exist-
ing object, giving the result a stochastic but more uniform
distribution.

Auto-scaling
To automatically scale objects, we present two methods de-
pending on whether we are scaling along a path or among
layers (Figure 12). To scale objects along the motion path, the

7

Figure 11: Our automatic animation calculations for the lantern exam-
ple. (a) Changing the scene’s number of objects over time. The dark
blue line is N . (b) Fitting a line to objects’ scale over the motion path.

Figure 12: Ways to auto-scale objects. (a) Scaling over the motion path:
objects scale up or down as they move along a path. (b) Separating into
two layers: objects of different sizes move at different speeds.

y component is each object’s pixel area divided by the average
exemplar object pixel area. The x component is the percentage
of motion path distance that object has traveled. We fit a line
through these points and use it to scale the exemplar objects
as they are emitted (Figure 11b, Figure 12a).

To scale objects among layers, we use k-means to cluster the
exemplar objects based on their pixel areas. From each cluster,
we create a new layer with only those objects, duplicating the
emitter line and motion paths. To set the emission frequency of
each layer, we cluster all the objects with k-means to determine
N in each new layer. We set the speed of the largest object layer
to be the same as the original layer. Each subsequent layer
speed is proportional to that layer’s average object area divided
by the original layer’s average object area (Figure 12b).

Looping
To create pleasing animations, we want the final exported
video to loop seamlessly – the animated elements, including
emitted particles, should match in the first and final frame.
We address looping emitted particles separately from other
animated objects. To begin, we record an animation sequence
lasting from one to three minutes, making sure to encompass
at least two full cycles of emitted particles.

To loop the emitter, we search for the time interval where
the number and spacing of emitted objects is similar at the
beginning and end (Figure 13a). In addition, we want the inter-
val duration to be between two and four times the maximum
lifetime of a particle. We define the distance Dij between two
particle emission windows starting at ti and tj as:

K−1∑
k=0

K − k
K

(
| (ti+k − ti)− (tj+k − tj) | + | ei+k − ej+k |

)

Figure 13: Finding an optimal interval over which to loop an emitter.
(a) The windows with blue and green particles are the best matching
groups. (b) Dark blue particles, and all black following up to the first
red bar, are duplicated starting at the red bar (copies shown in light
blue and gray). The red bars mark the start and end of the recording
time interval, and the animations at these times match exactly.

where the ith particle is emitted from the emit point index ei
at time ti. K is the number of emitted particles to compare
between the two windows, and is proportional to the average
emission frequency. We search over all possible animation
intervals (with a minimum duration) seeking the one where
the distance Dij between the start and end is smallest. Search
time is quadratic in the number of recorded particles. Once
an optimal time interval is found, all of those particles are
duplicated to the interval’s end, forming the recording part of
the looping animation (Figure 13b).

When looping other objects, we want their position, rotation,
scale and alpha value to be C1 across the loop seam. In addi-
tion, if there is an emitter in the scene, we keep the looping
time interval the same as that previously found from the emit-
ter. We search over all the saved animation data to determine
the best interval which is close (within one second) to the
time duration. Next, the attributes over the time interval are
modified so that the position and tangent at the interval edges
equals the average of the original values. We combine the
original attribute values with a bezier curve formed by the
difference of points and tangents at each edge point with the
average. Finally, this time interval is remapped to exactly
span the emitter time interval. Please see our supplemental
materials for the looping animation results.

USER EVALUATION
To gain initial insights and feedback on our system, we ran an
informal qualitative user evaluation.

Participants
We recruited six participants (four female and two male, aged
20-45) to test our system. Three subjects had extensive artis-
tic experience and regularly created their own illustrations.
Their animation skill level varied: one was a novice, four were
experienced, and one was a professional. Four subjects had
previous exposure to Sketchbook Motion [8]. Two subjects an-
imated their own images (two drawings and two photographs)
with our system (Figure 14). Participants were recruited from
Autodesk and were compensated for their time.

8

Figure 14: A participant animated one of her own previous illustrations.

Study Protocol
Each session lasted between one and two hours. To begin, we
showed participants some results created with our system (Fig-
ure 15). This overview gave them a broad understanding of
the animation types they would be creating. We demonstrated
our system using the Snoopy example to extract the repeating
snowflakes while interactively refining the results (Figure 15f).
Once the snowflakes were extracted, we animated the example
and auto-scaled the snowflakes into two layers. After answer-
ing any questions about the system, we had the participants
animate the polka dots example (Figure 15c) as a simple warm-
up task and the balloon example (Figure 1) as a more advanced
testing task. When working on the polka dots example, we
provided tips and suggestions if they were confused about the
process. With the balloons, we did not provide suggestions
while they were working with the system. After each example,
we asked the participants questions about their experience.

Results and Observations
Participants found our system to be useful and mentioned that
they would use it to produce animations for prototyping, social
media, e-cards, background motions, and education. In their
comments to us, they all reported that our system was faster
than other tools, namely Photoshop [3] and AfterEffects [2].
They estimated that a similar task using those tools would take
between 15 minutes to two hours compared to the six to ten
minutes required for our system. One participant mentioned
that it would have taken 30-40 minutes to redraw the image in
Sketchbook Motion and reproduce the result. All agreed that
other systems would be considerably more tedious to produce
similar results. We also asked the users two questions (“How
easy did you find the system to learn?” and “How easy did you
find the system to use?”) and recorded their responses as fol-
lows: learn: mean=3.8 (σ=0.42) and use: mean=3.9 (σ=0.49)
– on a scale from 1=“difficult” to 5=“extremely easy.”

When interacting with our system, subjects expressed a varied
range of unique visions for their animations. (See the supple-
mental materials for examples.) When segmenting the polka
dots image, some participants circled a range of colors and
sizes for their exemplar objects. Other participants separated
the polka dots by color into different layers. To achieve this
result, they segmented the original image three times, with
each time only extracting exemplar objects of a single color.

For the balloon example, most participants circled a range of
large, medium and small balloons for exemplar objects.

Some users had trouble remembering the steps of the seg-
mentation process. Four were confused that only the circled
exemplar objects appeared for animation. They thought the ob-
jects disappeared after step one, since we did not provide any
visual indication of where they were. These issues could be
resolved with an improved layout and icon indications. Also,
four participants were unsure of what each brush, specifically
the foreground and background brushes, could be used for.
Hence, they had trouble refining the automatic results with-
out help. Two users thought that the smart object selection
brush circled the light pink objects instead of filling them. The
amount of time in active use (without computation time) to
extract the balloons ranged from 3 to 4.5 minutes.

During the animation process, all participants were pleased
with the animations created. After drawing a motion line,
most users adjusted the object speed. Some decided to replace
our automatic emitter line with a manually drawn one. They
were very enthusiastic about our method to auto split objects
into different layers. When auto-scaling the balloons into
multiple layers, some participants wanted to separate based
on color or set a sliding scale for splitting by area. Users
took between two and six minutes to animate their extracted
objects. Despite some of these observed challenges, all users
successfully animated the balloon image.

In addition to animating the balloon image, two users ani-
mated two images of their own. One participant extracted
avocados from a food bowl image and animated them circling
the other food (Figure 14). She also separated the chopsticks
to place them on top of the animated avocados. In her other
animation, rain fell behind a girl with an umbrella. Another
user animated two of his photographs. In one, he extracted
a hanging light and made it slowly swing. In the other, he
extracted sparks and made them fly over a skateboard. Both
users were impressed and pleased with the animations they
added to their images. Please see the supplemental materials
and video for the animations.

RESULTS
In addition to the four examples created by users, we also
animated eleven other images. Six of these are displayed in
Figure 15. For all the looping animated results, as well as the
user input to create them, see our supplemental materials and
video. The source pictures were in a variety of styles: illus-
trations, diagrams, infographics, photographs, and cartoons.
Below we describe how the results were generated utilizing
our mixed-initiative approach.

When extracting repeating objects, our method for finding
objects inside the circles was completely automatic in four of
the cases. Six examples required some additional marks to
better define small parts of the foreground. For instance, some
of the balloon connection strings (Figure 1 and Figure 15d) and
black butterfly wing parts (Figure 15a) needed to be specified.
When finding similar objects, seven examples needed some
smart object markings to refine the filtering. In most cases,
only a couple of objects needed to be marked. Two results,

9

the engine and Snoopy (Figure 15b,f), needed background
markings for areas which were marked as objects but in reality,
were not. When inpainting, three results used the inpaint brush
to mark more areas to fill in.

To add more depth effects, nine results separated out large
parts of the image into additional layers. For instance, the
engine separated the piston and gear; the balloons separated
the trees; and the frog separated the leaf (Figure 15b,d,e). With
Snoopy, the snow, house and tree were extracted from the sky
(Figure 15f).

For animation, most results only needed a single motion path.
Three examples (the butterflies, engine and frog) needed mul-
tiple motion paths (Figure 15a,b,e). Five of our examples
were complete after adjusting the speed. In two cases, we
scaled the objects along the motion path. With four examples,
we split the objects into two or three layers (Figure 15d,e,f).
The layer with the smallest objects was positioned behind
mid-ground layers (the frog and Snoopy in Figure 15e,f). To
further enhance our animations, we added granular translation
or rotation to the emitting objects [27]. We also adjusted the
opacity on the lanterns (Figure 12) and butterflies (Figure 15a)
so that the objects fade in as they appear.

Overall, the results show that it is possible to achieve pleasing
animations across a spectrum of visual styles with our interac-
tive and iterative interface. When our automated approaches
did not produce the exact desired results, simple gestures could
be used to quickly refine the results as necessary.

LIMITATIONS AND FUTURE WORK
While our system works well for a range of visual styles and
effects, our participants pointed out several improvement op-
portunities. Since we rely on GrabCut to extract objects, we
are constrained by its limitations. For instance, if objects vary
in color and the user only circles objects of one color, we will
miss labeling differently colored objects as foreground. How-
ever, the resulting animation would not resemble the source
image because all emitted objects would be a single color.
Another limitation of our algorithm is transparent objects.
Since GrabCut only indicates each pixel as foreground or
background, it cannot extract objects with transparency. Addi-
tional processing of GrabCut’s output, or a new segmentation
algorithm, is necessary to extract transparent objects [47]. In
addition, our approach cannot separate overlapping objects, so
they cannot appear in the final animation. However, they are
easily removed from the background as shown in the balloons,
raindrops, and snowflakes in Figure 15d,e,f.

Currently, our technique is suitable for animating repetitive
elements using kinetic textures. However, to animate a variety
of other phenomena such as secondary motion, fire, water,
smoke, collisions, and clothes, physical simulation needs to
be applied to the segmented objects [49]. In addition, mesh
deformations or 3D models would also enhance the range of
animation effects. These variations remain as future work.

During our user study, some participants had trouble remem-
bering the function of each brush. For future UI improvements,
we can improve the brush names and add tool tips for better
explanation. Participants were also confused by whether a

brush should be used for circling or filling in areas. Possibly
changing the brush icons would help eliminate this confusion.
Another suggestion was that splitting objects into multiple lay-
ers should occur before animation, not after. In the future, we
hope to refine these workflow subtleties and conduct a more
thorough evaluation of our system.

One drawback of our system is that the results are not created
in real time. Extracting exemplar and finding similar objects
took on average 10 seconds and at most 30 seconds. Our
inpainting method took between four to eight minutes. The
slow runtime of our inpainting process is mainly due to the
particular iOS library implementation we incorporated. In-
painting can be fast, as demonstrated by Adobe Photoshop
(desktop) and Adobe Photoshop Fix (iOS) [3], and is thus not
an inherent limitation of our proposed process.

CONCLUSION
Creating animated pictures from scratch is challenging for
amateurs and non-professionals. In this paper, we presented
an approach that enables users to create animated pictures
by taking a single static, raster image as input. By doing
so, amateurs and professionals alike can leverage and animate
existing pictures (irrespective of visual styles) in an interactive,
iterative way, which is a very tedious process otherwise.

REFERENCES
1. A. Adams. 2017. Image Stack. (2017).

https://github.com/abadams/imagestack

2. Adobe. 2017a. AfterEffects. (2017).

3. Adobe. 2017b. Photoshop. (2017).

4. Narendra Ahuja and Sinisa Todorovic. 2007. Extracting
texels in 2.1 D natural textures. In Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on.
IEEE, 1–8.

5. Zainab AlMeraj, Craig S. Kaplan, and Paul Asente. 2013.
Patch-based Geometric Texture Synthesis. In Proceedings
of the Symposium on Computational Aesthetics (CAE

’13). ACM, New York, NY, USA, 15–19. DOI:
http://dx.doi.org/10.1145/2487276.2487278

6. Zainab AlMeraj, Craig S. Kaplan, Paul Asente, and
Edward Lank. 2011. Towards Ground Truth in Geometric
Textures. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on
Non-Photorealistic Animation and Rendering (NPAR ’11).
ACM, New York, NY, USA, 17–26. DOI:
http://dx.doi.org/10.1145/2024676.2024679

7. Christine Alvarado and Randall Davis. 2001. Resolving
ambiguities to create a natural sketch based interface. In
Proceedings of IJCAI-2001, Vol. 18. 1365–1371.

8. Autodesk. 2016. Sketchbook Motion: An app for adding
movement to your art. https://www.sketchbook.com/
blog/motion-new-app-sketchbook-pro-members/.
(2016). Accessed: 2017-09-4.

9. Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and
Ravi Ramamoorthi. 2013. Automatic cinemagraph

10

Figure 15: Some results created with our system. For animations and other details, see our supplemental materials and video.

portraits. In Computer Graphics Forum, Vol. 32. Wiley
Online Library, 17–25.

10. Yunfei Bai, Danny M. Kaufman, C. Karen Liu, and Jovan
Popović. 2016. Artist-directed Dynamics for 2D
Animation. ACM Trans. Graph. 35, 4, Article 145 (July
2016), 10 pages. DOI:
http://dx.doi.org/10.1145/2897824.2925884

11. Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. 2009. PatchMatch: A Randomized
Correspondence Algorithm for Structural Image Editing.
ACM Trans. Graph. 28, 3, Article 24 (July 2009), 11
pages. DOI:
http://dx.doi.org/10.1145/1531326.1531330

12. Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles,
and Coloma Ballester. 2000. Image Inpainting. In
Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’00).
ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 417–424. DOI:
http://dx.doi.org/10.1145/344779.344972

13. G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools (2000).

14. Ming-Ming Cheng, Fang-Lue Zhang, Niloy J. Mitra,
Xiaolei Huang, and Shi-Min Hu. 2010. RepFinder:

Finding Approximately Repeated Scene Elements for
Image Editing. ACM Trans. Graph. 29, 4, Article 83 (July
2010), 8 pages. DOI:
http://dx.doi.org/10.1145/1778765.1778820

15. Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng,
Brian Curless, David H. Salesin, and Richard Szeliski.
2005. Animating Pictures with Stochastic Motion
Textures. ACM Trans. Graph. 24, 3 (July 2005), 853–860.
DOI:http://dx.doi.org/10.1145/1073204.1073273

16. Antonio Criminisi, Patrick Perez, and Kentaro Toyama.
2003. Object removal by exemplar-based inpainting. In
Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference
on, Vol. 2. IEEE, II–II.

17. Richard C. Davis, Brien Colwell, and James A. Landay.
2008. K-sketch: A ’Kinetic’ Sketch Pad for Novice
Animators. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’08). ACM,
New York, NY, USA, 413–422. DOI:
http://dx.doi.org/10.1145/1357054.1357122

18. Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun. 2003.
Fragment-based Image Completion. ACM Trans. Graph.
22, 3 (July 2003), 303–312. DOI:
http://dx.doi.org/10.1145/882262.882267

11

19. FlixelStudios. 2017. Flixel: Magical Tools for Visual
Storytelling. https://flixel.com/. (2017). Accessed:
2017-08-10.

20. William T Freeman, Edward H Adelson, and David J
Heeger. 1991. Motion without movement. Vol. 25. ACM.

21. Tovi Grossman, Fanny Chevalier, and Rubaiat Habib
Kazi. 2015. Your Paper is Dead!: Bringing Life to
Research Articles with Animated Figures. In Proceedings
of the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems (CHI EA ’15).
ACM, New York, NY, USA, 461–475. DOI:
http://dx.doi.org/10.1145/2702613.2732501

22. Youichi Horry, Ken-Ichi Anjyo, and Kiyoshi Arai. 1997.
Tour into the Picture: Using a Spidery Mesh Interface to
Make Animation from a Single Image. In Proceedings of
the 24th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’97). ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 225–232. DOI:
http://dx.doi.org/10.1145/258734.258854

23. Takeo Igarashi, Tomer Moscovich, and John F. Hughes.
2005. As-rigid-as-possible Shape Manipulation. In ACM
SIGGRAPH 2005 Papers (SIGGRAPH ’05). ACM, New
York, NY, USA, 1134–1141. DOI:
http://dx.doi.org/10.1145/1186822.1073323

24. Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
2017. Globally and Locally Consistent Image
Completion. ACM Trans. Graph. 36, 4, Article 107 (July
2017), 14 pages. DOI:
http://dx.doi.org/10.1145/3072959.3073659

25. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga
Sorkine-Hornung. 2014. Bounded Biharmonic Weights
for Real-time Deformation. Commun. ACM 57, 4 (April
2014), 99–106. DOI:
http://dx.doi.org/10.1145/2578850

26. Neel Joshi, Sisil Mehta, Steven Drucker, Eric Stollnitz,
Hugues Hoppe, Matt Uyttendaele, and Michael Cohen.
2012. Cliplets: Juxtaposing Still and Dynamic Imagery.
In Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology (UIST ’12).
ACM, New York, NY, USA, 251–260. DOI:
http://dx.doi.org/10.1145/2380116.2380149

27. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
Shengdong Zhao, and George Fitzmaurice. 2014. Draco:
Bringing Life to Illustrations with Kinetic Textures. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 351–360. DOI:
http://dx.doi.org/10.1145/2556288.2556987

28. Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani,
and George Fitzmaurice. 2016. Motion Amplifiers:
Sketching Dynamic Illustrations Using the Principles of
2D Animation. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 4599–4609. DOI:
http://dx.doi.org/10.1145/2858036.2858386

29. Yan Kong, Weiming Dong, Xing Mei, Xiaopeng Zhang,
and Jean-Claude Paul. 2013. SimLocator: robust locator
of similar objects in images. The Visual Computer 29, 9
(2013), 861–870.

30. David H. Laidlaw. 2001. Loose, artistic” textures” for
visualization. IEEE Computer Graphics and Applications
21, 2 (2001), 6–9.

31. Thomas Leung and Jitendra Malik. 1996. Detecting,
localizing and grouping repeated scene elements from an
image. In European Conference on Computer Vision.
Springer, 546–555.

32. John P Lewis. 1995. Fast template matching. In Vision
interface, Vol. 95. 15–19.

33. Zicheng Liao, Neel Joshi, and Hugues Hoppe. 2013.
Automated Video Looping with Progressive Dynamism.
ACM Trans. Graph. 32, 4, Article 77 (July 2013), 10
pages. DOI:
http://dx.doi.org/10.1145/2461912.2461950

34. Peter Litwinowicz and Lance Williams. 1994. Animating
images with drawings. In Proceedings of the 21st annual
conference on Computer graphics and interactive
techniques. ACM, 409–412.

35. Ce Liu, Antonio Torralba, William T. Freeman, Frédo
Durand, and Edward H. Adelson. 2005. Motion
Magnification. ACM Trans. Graph. 24, 3 (July 2005),
519–526. DOI:
http://dx.doi.org/10.1145/1073204.1073223

36. Hugo Loi, Thomas Hurtut, Romain Vergne, and Joelle
Thollot. 2017. Programmable 2D Arrangements for
Element Texture Design. ACM Trans. Graph. 36, 3,
Article 27 (May 2017), 17 pages. DOI:
http://dx.doi.org/10.1145/2983617

37. Gioacchino Noris, Daniel Sỳkora, A Shamir, Stelian
Coros, Brian Whited, Maryann Simmons, Alexander
Hornung, M Gross, and R Sumner. 2012. Smart scribbles
for sketch segmentation. In Computer Graphics Forum,
Vol. 31. Wiley Online Library, 2516–2527.

38. S O’Kane. 2015. Apple’s new Live Photos feature turns
your pictures into videos.
https://www.theverge.com/2015/9/9/9296829/
apple-live-photos-feature-iphone-6s. (2015).
Accessed: 2017-09-4.

39. Carsten Rother, Vladimir Kolmogorov, and Andrew
Blake. 2004. ”GrabCut”: Interactive Foreground
Extraction Using Iterated Graph Cuts. ACM Trans.
Graph. 23, 3 (Aug. 2004), 309–314. DOI:
http://dx.doi.org/10.1145/1015706.1015720

40. Frederik Schaffalitzky and Andrew Zisserman. 1999.
Geometric grouping of repeated elements within images.
In Shape, Contour and Grouping in Computer Vision.
Springer, 165–181.

41. Arno Schödl, Richard Szeliski, David H Salesin, and
Irfan Essa. 2000. Video textures. In Proceedings of the

12

27th annual conference on Computer graphics and
interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 489–498.

42. Jianbo Shi and Jitendra Malik. 2000. Normalized cuts
and image segmentation. IEEE Transactions on pattern
analysis and machine intelligence 22, 8 (2000), 888–905.

43. Mikio Shinya, Masakatsu Aoki, Ken Tsutsuguchi, and
Naoya Kotani. 1999. Dynamic Texture: Physically Based
2D Animation. In ACM SIGGRAPH 99 Conference
Abstracts and Applications (SIGGRAPH ’99). ACM, New
York, NY, USA, 239–. DOI:
http://dx.doi.org/10.1145/311625.312130

44. Qingkun Su, Xue Bai, Hongbo Fu, Chiew-Lan Tai, and
Jue Wang. 2018. Live Sketch: Video-driven Dynamic
Deformation of Static Drawings. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA.

45. Meng Sun, Allan D Jepson, and Eugene Fiume. 2003.
Video input driven animation (VIDA). IEEE.

46. Daniel Sỳkora, John Dingliana, and Steven Collins. 2009.
Lazybrush: Flexible painting tool for hand-drawn
cartoons. In Computer Graphics Forum, Vol. 28. Wiley
Online Library, 599–608.

47. Jianchao Tan, Marek Dvorožňák, Daniel Sýkora, and
Yotam Gingold. 2015. Decomposing Time-lapse
Paintings into Layers. ACM Trans. Graph. 34, 4, Article
61 (July 2015), 10 pages. DOI:
http://dx.doi.org/10.1145/2766960

48. James Tompkin, Fabrizio Pece, Kartic Subr, and Jan
Kautz. 2011. Towards moment imagery: Automatic
cinemagraphs. In Visual Media Production (CVMP),
2011 Conference for. IEEE, 87–93.

49. Nora S. Willett, Wilmot Li, Jovan Popovic, Floraine
Berthouzoz, and Adam Finkelstein. 2017b. Secondary
Motion for Performed 2D Animation. In Proceedings of
the 30th Annual ACM Symposium on User Interface
Software and Technology (UIST ’17). ACM, New York,
NY, USA, 97–108. DOI:
http://dx.doi.org/10.1145/3126594.3126641

50. Nora S. Willett, Wilmot Li, Jovan Popovic, and Adam
Finkelstein. 2017a. Triggering Artwork Swaps for Live
Animation. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’17). ACM, New York, NY, USA, 85–95. DOI:
http://dx.doi.org/10.1145/3126594.3126596

51. Jun Xing, Rubaiat Habib Kazi, Tovi Grossman, Li-Yi
Wei, Jos Stam, and George Fitzmaurice. 2016.
Energy-Brushes: Interactive Tools for Illustrating
Stylized Elemental Dynamics. In Proceedings of the 29th
Annual Symposium on User Interface Software and
Technology (UIST ’16). ACM, New York, NY, USA,
755–766. DOI:
http://dx.doi.org/10.1145/2984511.2984585

52. Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver
Wang, and Hao Li. 2017. High-resolution image
inpainting using multi-scale neural patch synthesis. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Vol. 1. 3.

13

