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Abstract

With recent improvements in methods for the acquisition and rendering of 3D models, the

need for retrieval of models from large repositories of 3D shapes has gained prominence

in the graphics and vision communities. A variety of methods have been proposed that

enable the efficient querying of model repositories for a desired 3D shape. Many of these

methods use a 3D model as a query and attempt to retrieve models from the database that

have a similar shape.

In this thesis, we begin by introducing a new shape descriptor that is well suited to

the task of 3D model retrieval. The descriptor is designed to enable efficient comparison

of 3D shapes and is constructed to approximate the performance of a standard metric

for comparing 3D models, thereby satisfying the requirements of efficiency and discrim-

inability that are necessary for an effective, real-time shape retrieval system. We compare

our descriptor to other existing descriptors in empirical retrieval experiments, demon-

strating that the new shape descriptor provides improved retrieval accuracy and is better

suited to the task of shape matching.

One of the specific challenges in matching 3D shapes arises from the fact that in many

applications, models should be considered to be the same if they differ by a similarity

transformation. Thus in order to match two models, a measure of similarity needs to

be computed at the optimal translation, scale and rotation. In this thesis, we review a

number of approaches for addressing the alignment challenge and provide new methods

for addressing this issue that give rise to better shape matching algorithms.

Additionally, we present two general methods for improving the performance of many

extant 3D model matching algorithms by providing a general framework for augment-

ing existing shape representations with global shape information characterizing salient

shape properties. The first approach leverages symmetry information to augment exist-
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ing representations with information characterizing a model’s self-similarity. The second

approach factors the shape matching equation as the disjoint product of anisotropy and

geometric comparisons — improving the matching performance of many shape metrics

by facilitating the task of shape registration.

In order to describe the symmetries of a 3D model, we present the symmetry descrip-

tor, a collection of spherical functions characterizing the symmetries of a model. These

spherical functions are indexed by the type of symmetry, (e.g. reflective symmetry, axial

symmetry, � -fold rotational symmetry, etc.) with the value at each point giving a contin-

uous measure of the symmetry of a model about the corresponding axis. We describe an

efficient signal processing method for computing these descriptors, giving the symmetry

descriptors of spherical and 3D shape representations in order �������	� time, where � is the

bandwidth of the spherical or 3D representation.

Using the observation that it is easier to establish correspondences between two mod-

els that are isotropic than between two models with different anisotropic scales, we pro-

vide an iterative approach for transforming an anisotropic 3D model into an isotropic one.

Two 3D models can then be compared by transforming each model into an isotropic one

and then using one of the existant shape matching algorithms to obtain a shape represen-

tation of each of the isotropic models. We prove that the iterative approach is guaranteed

to converge to an isotropic model, and show that in practice the convergence is efficient.

For both these methods, we show that many of the existing shape representations

can be augmented with the obtained global shape information (either symmetry or initial

anisotropic scale). We provide empirical results demonstrating that the new, augmented

representation is more discriminating — providing a representation of a 3D model that

gives rise to improved matching performance in shape retrieval experiments. Finally,

since the augmentation of both symmetry and anisotropy information can be done in a
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pre-processing step, and since the augmentation does not significantly increase the com-

plexity of the shape representations, the new shape representations provide more discrimi-

nating matching performance without effecting the efficiency of retrieval — making them

particulary valueable for applications that seek to retrieve models from large repositories

of 3D shapes.
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Chapter 1

Introduction

Over the last few decades, the proliferation of the World Wide Web has resulted in a con-

solidated repostitory of a mass of information. As a result of this information revolution

we have reached a point where much of the data that we seek is available through our web

browsers. We can now go online and with a few keystrokes find the weather, the news,

dictionary definitions, biographies, journal articles, restaurant reviews, etc. In this con-

text, one of the challenges of data retrieval has shifted to the design of effective methods

for finding desired information: “Given the large amount of information out there, how

do I actually find what I am looking for?” To address this challenge, a number of different

search engines (e.g. Google [19], Yahoo [65], etc.) have been established that allow a

user to specify a simple, textual query and return documents with matching content.

More recently, tools for acquiring and visualizing 3D models have become integral

components of data processing in a number of disciplines, including medicine, chemistry,

architecture and entertainment. With the increased availability of these tools, we have

witnessed an explosion in the number of available 3D models, resulting in the creation of

a large number of online repositories of 3D shapes [46, 3, 48, 12, 51, 2, 1, 41, 13, 61].
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The ability to retrieve existing models from these repositories facilitates the tasks of pro-

fessionals in fields ranging from entertainment to scientific research, by allowing them to

obtain desired models quickly without requiring the expenditure of large amounts of time

modeling a 3D shape. Thus, as we had initially witnessed with text, the proliferation of

3D content in the World Wide Web has changed the focus from the challenge of gener-

ating new models — a time consuming endeavor that may take hours or days — to the

challenge of retrieving existing ones.

To satisfy this need, a variety of retrieval methods have been proposed that enable the

efficient querying of model repositories for a desired 3D shape, many of which use a 3D

model as a query and attempt to retrieve models with matching shape from the database.

An example of such an application is shown in Figure 1.1. The user specifies a car as

a query model (top left). The system then compares the query to every model in the

database, returing pointers to the models that are most similar (right).

As in many database retrieval applications, the algorithms for matching 3D shapes are

motivated by two principal concerns. First, the algorithms needs to be discriminating —

effectively distinguishing between different classes of shapes and returning those models

in the database that most closely approximate the ones that a user would want. Second,

the algorithms need to be efficient in both space and time. In particular, since many of

the existant repositories index thousands, or even tens of thousands of models, the stored

representation of a 3D model needs to be compact and the retrieval time needs to be fast

enough to return results in real time.

In practice, addressing the run-time efficiency requrement is done with the assistance

of a shape descriptor. The shape descriptor is an abstraction of the 3D model, capturing

salient shape information in a structure that is well-suited for comparison. In many shape

matching applications, the shape descriptor represents a 3D model by a fixed-dimensional
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Figure 1.1: An example of 3D model retrieval. The user specifies a 3D query to the search engine
(top left). The search engine then compares the query to every model in the database and returns
snapshots of the models that are most similar to the query (right).

vector, and comparing two models amounts to the computation of the distance between

two points in Euclidean space. Since the distance between two points is easy to compute,

the underlying matching is efficient and the real-time requirements of a retrieval system

can be satisfied. In practice, the shape descriptor is incorporated into the search engine

as shown in Figure 1.2. In a pre-processing step the shape descriptor of each model

in the database is computed (step 1). Then, at run time, a query is presented to the

system, its shape descriptor is computed (step 2), the query descriptor is compared against

3



Figure 1.2: A shape descriptor is incorporated into the retrieval algorithm in the following man-
ner: In the preprocessing stage the shape descriptor of every model in the database is computed
(step 1). Then, when a query is presented to the database, its shape descriptor is computed (step
2). The query descriptor is compared against the database descriptors (step 3) and the closest
matches are returned.

the descriptors of the models in the database (step 3), and the database models with

descriptors that are most similar to the query descriptor are returned as matches.

In order for the shape descriptor to be useful, it must effectively distinguish between

different classes of shape. One of the challenges that is unique to the area of shape

matching, is that in many applications we consider the shape of a model to be unchanged

if the model is acted on by a similarity transformations. Consider, for example, the cow

in Figure 1.3. If we apply translations, scales, or rotations to the model we find that while

its pose may change, the underlying shape remains the same. Thus, the class of a shape

does not change with alignment and one of the challenges of 3D model retrieval is to

match 3D shapes effectively across the space of rigid body transformations.

In this thesis, we provide new methods for addressing the shape matching problem by

separately considering the challenges of representation and alignment. We provide new
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Figure 1.3: One of the challenges of 3D model matching stems from the fact that translation,
scale, and rotation are not operations that change the shape of the model. Thus, in order to be able
to match models effectively, we need to match them over the space of these transformations.

methods for representing 3D models in a concise and descripive manner, and we new ap-

proaches for matching models across different alignments. Specifically, the contributions

of this thesis to the area of shape matching are four-fold. First, we present a new shape

descriptor that is more discriminating than previous descriptors. Second, we review a

number of approaches for addressing the alignment challenge and provide new methods

for addressing this issue that give rise to better shape matching algorithms. Third, we

provide a general method for computing the symmetries of a 3D model and show how

the symmetries can be used to augment shape information, providing a more discrimi-

nating representation of shape that is better suited for retrieval tasks. Fourth, we show

that the shape matching equation can be factored as the disjoint product of anisotropy and

geometric comparisons — improving the matching performance of many shape metrics

by facilitating the task of shape registration.
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1.1 Shape Descriptors

In order to satisfy the real-time requirements of a retrieval system, the shape descriptor

is often designed to be a vector in fixed dimensional space. This reduces the task of

comparing two models to the simple computation of the normed-difference between the

associated vectors. The efficacy of a shape descriptor can be evaluated by considering

two separate questions:

� How much information is lost in representing a 3D model with its shape descriptor?

� What is the meaning of the normed-difference between two shape descriptors?

We find that in practice, most of the previous approaches focus on the first task, de-

signing a shape descriptor that is loss-less, so that a descriptor can be inverted to get back

the original 3D model. However, these approaches tend to ignore the second task and

as a result, the measure of model similarity obtained by comparing two shape descrip-

tors is often not representative of the similarity between the underlying shapes. In this

thesis we provide a new, invertible shape descriptor that is designed so that the distance

between two shape descriptors characterizes the minimum sum of squared distances be-

tween points on the surfaces of the two models. We provide empirical evaluation of the

shape descriptor, demonstrating its improved precision in retrieval tasks over existing

descriptors and show that the retrieval performance of the new descriptor closely approx-

imates the performance obtained using the minimum sum of squared distances metric.

Thus, the new descriptor provides the efficacy of a standard shape metric, while main-

taing the comparison facility of a vector-based shape representation.
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1.2 Alignment

One of the specific challenges faced in the area of shape matching is that in many ap-

plications, a shape and its image under a similarity transformation are considered to be

the same. Thus, the challenge in comparing two shapes is to find the best measure of

similarity over the space of all transformations. In general, there are three different ways

to address this challenge:

� Exhaustive Search: Shapes are compared at every possible alignment and the

measure of similarity at the optimal alignment (i.e. the alignment minimizing the

distance between two models) is used as the measure of similarity between the two

models.

� Normalization: Shapes are placed into a canonical coordinate frame (normalizing

for translation, scale and rotation) and two shapes are assumed to be optimally

aligned when each is in its own frame. Thus, the best measure of similarity can be

found without explicitly trying all possible transformations.

� Invariance: Shapes are described in a transformation-invariant manner, so that any

transformation of a shape will be described in the same way, and the best measure

of similarity is obtained at any transformation.

In practice, exhaustively searching for the transformation minimizing the measure

of similarity is computationally prohibitive, resulting in retrieval algorithms that are ill-

suited for the task of large database retrieval. In this thesis, we review methods for nor-

malizing for translation and scale and provide a spectrum of approaches for resolving the

rotational alignment problem. We discuss the relative merits of the different approaches

by characterizing their effects on discriminability and efficiency of shape matching. Ad-
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ditionally, we provide several new methods for addressing the rotational alignment prob-

lem and show how these methods address specific limitations of existing approaches and

demonstrate their utility in shape matching by evaluating their implications in empirical

retrieval experiments.

1.3 Symmetry

In order to describe the symmetries of a 3D model, we present the symmetry descriptor,

a collection of spherical functions that represent a 3D model as a collection of spherical

functions that give the measure of a model’s reflective and rotational symmetry, with

respect to every axis passing through the center of mass. Thus, the descriptor can be used

not only to identify axes of perfect symmetry, but also to measure the quality of symmetry

with respect to any axis. Specifically, the measure of
�

-fold symmetry of a model around

some axis is defined to be the magnitude of the projection of the model onto the space of

models having that symmetry.

Figure 1.4 shows a visualization of the Symmetry Descriptors of two models. The

descriptors are represented by scaling points on the unit sphere in proportion to the mea-

sure of symmetry, so that points corresponding to axes of near symmetry are pushed out

from the origin and points corresponding to axes of near anti-symmetry are pulled in

to the origin. Thus, for the 2-fold (respectively
�

-fold) symmetry descriptors, peaks in

the descriptors correspond to axes of near perfect 2-fold (respectively
�

-fold) rotational

symmetry. Similarly, for the reflective symmetry descriptors, peaks correspond to unit

vectors perpendicular to planes of near perfect reflective symmetry.
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Figure 1.4: A visualization of the symmetry descriptors for a stool and an iris. The visualization
is obtained by scaling unit vectors on the sphere in proportion to the measure of symmetry about
the vector. Thus, peaks in the descriptor correspond to axes of rotational symmetry and orthogonal
planes of reflective symmetry.

1.4 Anisotropy

We also propose a novel method for matching 3D models that factors the shape matching

equation as the disjoint product of anisotropy and geometric comparisons. We provide a

general method for computing the factored similarity metric and show how this approach

can be applied to improve the matching performance of many existing shape matching

methods.

The key idea of our approach is based on the observation that much of the challenge

of shape matching is in the establishing of correspondences, and that if two models are

both isotropic, then it is easier to establish correspondences between them. Figure 1.5

demonstrates this for models of an armchair and a sofa. When the models are at their

initial anisotropic scales (shown on the left), it is difficult to establish correspondences

between similar regions. Methods such as associating to a point on one model the nearest

point on the other (commonly used in ICP-type approaches [10]) will map points on the

9



Figure 1.5: When two models have different anisotropic scales (left), it is harder to establish cor-
rect correspondences between the two. Thus, matching methods that depend on correspondences
for evaluating model similarity will be inaccurate in this case. In contrast, when the models are
transformed so that each is isotropic (right), the correspondences are more accurate and, as a
result, the measure of shape similarity is more discriminating.

corners of the armchair to points in the middle of the sofa, points on the bottom of the

arm-rest of the armchair to points on the top of the arm-rest of the sofa, etc. Thus, many

poor correspondences will be established, resulting in an inaccurate measure of shape

similarity. If instead both models are rescaled to be isotropic (shown on the right), then

the correspondences established would more accurately reflect corresponding regions in

the shape.

This observation motivates us to design a shape matching paradigm that compares two

models by (1) transforming each of them into an isotropic model, (2) comparing the geo-

metric similarity of the isotropic models, and (3) defining the measure of model similarity

as a function of both the similarity of the isotropic models, and the difference in their ini-

tial anisotropic scales. Figure 1.6 demonstrates this process for two different models of
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Figure 1.6: Our approach is to compare two models by rescaling each model so that it is isotropic
and then defining the distance between two models as the product of the distance between the
isotropic models and the difference between their initial anisotropic scales.

a table. Each table is represented by its isotropic version and its initial anisotropic scale,

represented by the covariance ellipsoid of the original model. The distance between the

two tables is then defined as the product of the distance between the isotropic tables and

the distance between the initial anisotropic scales.

For both these methods, we show how many of the existing shape representations

can be augmented with the obtained global shape information (either symmetry or initial

anisotropic scale). We provide empirical results demonstrating that the new, augmented

representation is more discriminating — providing a representation of a 3D model that

gives rise to markedly improved matching performance in shape retrieval experiments.

Finally, since the augmentation of both symmetry and anisotropy information can be done

in a pre-processing step, and since the augmentation does not significantly increase the

11



complexity of the shape representations, the new shape representations provide more dis-

criminating matching performance without effecting the efficiency of retrieval — making

them particulary valueable for applications that seek to retrieve models from large repos-

itories of 3D shapes.

The remainder of the thesis is structured as follows. In Chapter 2 we review previous

work in the areas of shape descriptors, symmetry detection and shape registration. In

Chapter 3 we present a new shape descriptor and evaluate its efficacy in tasks of shape

retrieval, comparing it to both previous descriptors, and more complex shape metrics. In

Chapter 4 we review methods for addressing the shape alignment problem, focusing on

approaches for transforming existing rotation-variant descriptors into rotation-invariant

descriptors. We discuss the benefits and limitations of various existing methods and pro-

vide a new hybrid normalization/invariance technique for addressing the rotation align-

ment problem. We present our symmetry descriptor in Chapter 5, providing an efficient

method for computing it, discussing some of its properties, and demonstrating its empiri-

cal efficacy in improving retrieval performance of a number of different shape descriptors.

In Chapter 6 we present our method for anisotropy factorization, providing an iterative

method for transforming an anisotropic model into an isotropic one, and show how this

approach can be used to further improve retrieval performance. Finally, we conclude in

Chapter 7 by reviewing our work and discussing possible venues for future research.
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Chapter 2

Background and Related Work

2.1 Shape Descriptors

Traditional methods for retrieval of models from large repositories focus on designing

a method for defining a measure of similarity between a query model and every target

model in the database. The models in the database are then sorted by this measure of

similarity, and the nearest models are returned as matches.

In the context of matching 3D shapes, the most common approach is to establish

correspondences between the query model and the target model, and then to define the

measure of similarity in terms of the distances between corresponding points. Two gen-

eral classes of methods have been proposed that compute a measure of shape similarity

by explicitly establishing such correspondences. The first approach is a local one, seeking

to establish correspondences between pairs of points on the two models, and then defin-

ing the measure of shape similarity as the sum of the squared distances between pairs of

points in correspondence [7, 35, 10, 69, 26, 8, 40, 17]. The second method is more gen-

eral, decomposing a model into constituent parts, and then representing the model as a
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graph characterizing the relationship between the different segments [53, 54, 44, 22, 52].

Correspondences between two models can then be established using subgraph isomor-

phism techniques, which simultaneously define the correspondences between the nodes

of the two graph representations, and give the quality of the correspondences.

For both of these approaches, the establishing of correspondences is a difficult and

time consuming task that needs to be performed on a per-pair-of-models basis. Thus,

much of the necessary computation can only be performed at run time, once a query is

specified. This makes these methods impractical for the retrieval of models from large

databases, where efficient comparison is essential.

The computational complexity of establishing correspondences between models has

motivated a large body of research in the area of shape descriptors. The general approach

of these methods is to define a mapping from the space of models into a fixed-dimensional

vector space, and then to define the measure of similarity between two models as the dis-

tance between their corresponding descriptors [23, 27, 14, 9, 5, 43, 63, 18]. This approach

has the advantage of addressing the correspondence problem on a per-model basis, allow-

ing for the computation of descriptors in an offline process. Thus, correspondences are

established not between two models, but between a single model and the coefficients of a

fixed dimensional vector. Then, at run time, the descriptor of the query is computed and

compared against the (pre-computed) descriptors of all the models in the database, giving

rise to methods that can satisfy the efficiency requirements of interactive search. We give

a detailed description of a number of these types of shape descriptors below, and a more

general survey of shape descriptors can be found in [45, 4, 60, 59].
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2.1.1 Extended Gaussian Image (EGI)

The extended Gaussian image is a shape descriptor that represents a 3D model by a

spherical function. The EGI was initially proposed by Horn in [23] and is obtained by

having each triangle vote on the bin corresponding to its normal direction, with a weight

equal to the area of the triangle. The extended Gaussian image has several important

properties that make it useful for shape analysis and matching. First, it is invariant to

translation. Second, the EGI scales and rotates with the model. Third, for convex models

the EGI is an invertible representation.

2.1.2 Complex Extended Gaussian Image (CEGI)

The complex extended Gaussian image is a generalization of the EGI, proposed by Kang

et al. in [27]. Rather than just voting with a real value equal to the area of the triangle,

this method votes with a complex number whose amplitude is equal to the area of the

triangle and whose complex phase is equal to the normal distance of the triangle from the

origin. This approach results in a representation of a 3D model that rotates and scales

with the 3D model, and which exhibits a simple phase-shift when acted on by translation.

Thus, it is particularly well suited for applications in which one would like to register

two similar models in different poses, as the challenge of solving for the optimal rota-

tion and translation can be decoupled by first solving for the optimal rotation using the

complex norm of the CEGI, and then separately solving for the optimal translation — ef-

fectively decomposing a 6D optimization problem into two independent 3D optimization

problems.
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2.1.3 Shape Histograms

Motivated by the challenge of using shape matching techniques to address the challenge

of protein matching, Ankerst et al. [5] developed three different methods for representing

3D models in terms of the distribution of surface points as a function of distance from the

center of mass and spherical angle. When only the distance from the surface is used the

Shells descriptor is obtained, when only the spherical angle is used the Sectors descriptor

is obtained, and when both are used the Shells and Sectors descriptor is obtained.

Shells

The Shells descriptor represents a 3D model by a one-dimensional histogram, giving the

distribution of distances of surface points from the center of mass. This representation is

invariant to rotation since the distance of a point from the center of mass does not change

when the model is rotated about its center. While scale transformations act non-trivially

on the representation, scaling the domain of the representation rather than the histogram

values, a scale-normalized representation can be obtained using well-established methods

that we will describe in Chapter 4. In Chapter 4 we will show that the shells descriptor is

a specific instance of an approach for obtaining rotation-invariant representations of 3D

models, and can be generalized to obtain a two-dimensional rotatation-invariant repre-

sentation with improved retrieval performance.

Sectors

The Sectors descriptor represents a 3D model by a spherical histogram, giving the dis-

tribution of surface points as a function of spherical angle. This representation scales

and rotates with the model and exhibits no information loss when the initial model is

star-shaped.
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Shells and Sectors

Combining the Shells and Sectors representation, Ankerst et al. provide a shape descrip-

tor that represents a 3D model by a collection of spherical functions. Each spherical

function is obtained by intersecting the model with a thin spherical shell centered at the

origin and then computing the Sectors representation of the intersection. The resultant

descriptor gives rise to a three-dimensional representation that rotates with the model.

2.1.4 Shape Distribution (D2)

In [43], Osada et al. present a generalization of the Shells method by generating a his-

togram of distances between pairs of points on the surface of a model. Similar to the

Shells representation, the D2 descriptor is a one-dimensional, rotation-invariant repre-

sentation of 3D shapes. Furthermore, the binning of distances between pairs of points on

the surface of the model results in a shape representation that is also invariant to transla-

tion. In Chapter 4 we will show that, as with the Shells representation, the D2 descriptor

can be generalized to obtain a two-dimensional representation with improved retrieval

performance.

2.1.5 Spherical Extent Function

Initially described in [11] though first used in database retrieval applications by Vranic

et al. in [63], this descriptor represents a 3D model by a spherical function giving the

maximal distance from the center of mass as a function of spherical angle. Similar to the

Sectors descriptor, this function scales and rotates with the model and is invertible for

star-shaped models.

From the standpoint of shape matching, this descriptor revolutionizes the notion of
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model similarity. In particular, when comparing the spherical extent functions of two

different models, the measure of similarity is defined as the sum of distances, along rays

through the origin, that points on the surface of one model need to be moved in order to

lie on the surface of the second model. Thus, comparing two models with this descriptor

gives a measure of the amount of “work” that needs to be performed in order deform one

3D model into another.

2.1.6 Radial Spherical Extent Function

Using the methodology of Ankerst et al., Vranic proposes a method [62] for obtaining a

higher-dimensional shape representation by combining the spherical extent function with

the Shells representation. The resultant descriptor, obtained by computing the spherical

extent function of the restriction of the model to concentric shells about the origin, gives

rise to a representation of a 3D model as a collection of spherical functions that rotates

with the shape.

2.2 Registration

A specific challenge that shape descriptor approaches need to address is that in the con-

text of 3D shape matching, a model and its image under a similarity transformation are

considered to be the same. In theory, this issue is addressed in one of three manners:

(1) Two models are compared by exhaustively searching over the space of transforma-

tions, and comparing the models at the optimal alignment. (2) Each model is normalized

by placing it into its own canonical coordinate system, and then the shape descriptor of

the alignment-normalized model is computed. (3) The mapping is chosen to be invariant

to similarity transformation, so that the same shape descriptor is defined for every orien-
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tation of a single model. In practice, exhaustively searching for the optimal alignment is

computationally prohibitive, and shape retrieval methods depend on either normalization

or invariance to address the alignment problem.

Methods for normalizing a model’s translation and scale are based on [24, 25]. In this

work, the authors describe a method for solving for the alignment minimizing the sum

of square differences between two ordered point sets. While the solution for the optimal

rotation depends on the explicit correspondence between the two point sets, the optimal

translation and scale can be computed on a per-model basis, with the optimal translation

being the one that transforms a model’s center of mass to the origin, and the optimal scale

giving rise to a model whose mean variance from the origin is equal to one. Thus, these

methods for normalizing for translation and scale can be used for aligning models on a

per-model basis in the pre-processing stage, guaranteeing that the query and target are

optimally aligned independent of what the query model is.

Methods for addressing rotational similarity have either taken the normalization ap-

proach, aligning a model so that its principal axes transform to the � -, � -, and � -axes, or

have obtained rotation-invariant representations by using signal processing techniques to

discard spherical phase and obtain a collection of amplitudes that are independent of a

model’s alignment [11, 31].

In Chapter 4 we provide a more detailed description of these normalization methods,

analyzing the strengths and limitations of different methods for addressing the challenge

of optimal rotation alignment.
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2.3 Symmetry

Early approaches to symmetry detection focused on detecting the symmetries of planar

point sets [6, 64, 21]. These methods reduced the symmetry detection problem to a detec-

tion of symmetry in circular strings, and used efficient substring algorithms (e.g., [32]) to

detect the symmetries by searching for the appearance of a string within its concatenation

with itself. While these methods had the theoretical advantage of efficiently evaluating

all possible symmetries, they were impractical in empirical settings since they were algo-

rithms that could only identify the perfect symmetries of a model. Thus if a symmetric

model had even a small amount of noise, these methods would fail to identify its symme-

tries.

In order to address this issue, Zabrodsky et al. [66, 67, 68] defined a continuous

measure of symmetry which transformed the discrete question: “Does a model have a

given symmetry?” to the continuous question: “How much of a given symmetry does a

model have?” The measure of symmetry was defined as the minimum amount of work

needed to transform a model into a symmetric model, measured as the sum of the squared

distances that points would need to be moved. This approach made it possible to evaluate

symmetries in the presence of noise, but suffered from the fact that it depended on the

establishment of point correspondences. While this issue could be addressed in the case

of 2D curves with uniform sampling, it made it difficult to generalize the method to 3D

where uniformly sampling surfaces is often impossible.

With the advent of shape descriptors, a method became available for matching models

without explicitly esablishing correspondences and the advantage of the canonical param-

eterization was leveraged in a number of symmetry detection algorithms [42, 58]. These

methods used the fact that the covariance ellipsoid of a 3D model rotates with the model,
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so that a model could only have symmetries where its covariance ellipsoid had them.

Since the only axes of symmetry of a non degenerate ellipsoid have to align with its prin-

cipal axes, this provided an efficient way to identify candidate axes of symmetry. The

actual quality of an axis as an axis of symmetry would then be measured by comparing

the shape descriptor of the model with the shape descriptors of the rotations and reflec-

tions of the model about the candidate axis. This method had the advantage of providing

a continuous measure of symmetry for candidate axes of symmetry without necessitating

the establishment of point correspondences. Furthermore, the method was a general one

that could be applied to wide class of shape descriptors. However, the method’s depen-

dence on PCA for the identification of candidate axes could only guarantee the correct

identification of symmetry axes for models with perfect symmetry.

Motivated by the ease of evaluating symmetry using shape descriptors, and the ef-

ficiency of exhaustive search provided by early substring matching approaches, effi-

cient methods for evaluating the symmetries of a 2D model, at every symmetry, were

developed. The key idea of these approaches was the generalization of discrete sub-

string matching to continuous correlation with the Fast Fourier Transform. These meth-

ods [57, 39] compute the symmetries of a model by using correlation to compare the

shape descriptor of a 2D model with all of its rotations and reflections. This approach

was a general one that could be applied to any shape descriptor that represented a model

with a function defined either on a circle, or in 2D.

The dependence of these methods on the FFT made them hard to generalize to shape

descriptors that represented a 3D model with either a spherical function or a function in

3D. In [28, 29] a method is described for computing the measure of reflective symmetries

for all planes passing through the origin. For a spherical descriptor of size � �����	� (respec-

tively 3D function of size � ����� � ) the method computes the measures of reflective sym-
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metry in � ��� ������� � � (respectively ����� ������� � � ) time. The efficiency of this approach

relies on the use of the FFT to compute correlation with respect to a single axis efficiently

and a generalization of this approach to general symmetry detection would result in al-

gorithms that have complexity ����� � ����� � � for spherical functions and � ���	� ���
� � � for

3D functions.

In Chapter 5, we show how the analogs of the Fast Fourier Transform and Fast In-

verse Fourier Transform on the sphere, namely the Fast Harmonic Transform and the

Fast Inverse Wigner-D Transform, can be used to compute the measure of all symmetries

efficiently. In particular, we describe a method for computing the measure of all reflec-

tive and rotational symmetries of both spherical functions and 3D functions in � ��� �	�
time, thereby providing a method for computing all symmetries of a model about its cen-

ter of mass in less time than previous methods required to compute only the reflective

symmetries.
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Chapter 3

Shape Descriptors

The difficulty of establishing correspondences between two shapes and the need for ef-

ficient matching has motivated research in the development of shape descriptors. These

are respresentations of a 3D model as fixed dimensional vectors that are well suited for

shape matching and retrieval tasks as they reduce the task of model comparison to the

computation of the Euclidean distance between two vectors.

In order to be effective as a representation of a 3D model, the shape descriptor needs

to be discriminating, effectively differentiating between similar and dis-similar models.

To this end, the shape descriptor needs to satisfy two properties:

1. Invertibility: The mapping from the space of models to the space of shape de-

scriptors needs to be approximately invertible, so that the shape descriptors of two

models are nearly identical only if the models themselves are similar.

2. Isometry: The mapping from the space of models to the space of shape descrip-

tors needs to approximate an isometry, so that the Euclidean distance between the

shape descriptors of two models gives a meaningful measure of the similarity of

the underlying shapes.
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In our research, we have found that while many shape descriptors satisfy the invert-

ibility property, they do not approximate isometries. As a result the shape metric defined

by the Euclidean distance between these shape descriptors does not provide sufficiently

effective discrimination between models. In this chapter, we present a new shape descrip-

tor having the property that the distance between the shape descriptors of two models cor-

responds to the amount of work needed to transform one model into the other. We begin

by describing the shape metric characterizing the amount of work needed to transform

one model into another. We then show how this metric can be analytically computed and

we provide a shape descriptor that approximates this metric. We conclude by provid-

ing experimental results that demonstrate the empirical limitations of the previous shape

descriptors and show that the matching performance obtained using our new shape de-

scriptor is comparable, in efficacy, to the matching performance obtained with the shape

metric.

3.1 Shape Similarity

The notion of shape similarity that we would like to use is based on the sum of squared

distances (SSD) for models aligned in the same coordinate system. Specifically, we define

the distance between two models as the sum of squared distances from every point on

one surface to the closest point on the other, and vice-versa. This definition of shape

similarity gives a measure of the extent to which each model is a subset of the other

and is commonly used in shape registration techniques such as the Iterative Closest Point

algorithm presented by Besl and McKay[10].

While a direct approach for computing the minimum SSD would require a complex

integration over the surfaces of the models, we present a new method for computing this
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distance that is easy to implement. For each model � in the database, we represent the

model by two voxel grids, ��� and ��� . The first voxel grid, ��� , is the rasterization of

the boundary, with value � at a voxel if the voxel intersects the boundary, and value � if it

does not. The second voxel grid, ��� is the (square) Euclidean Distance Transform of the

boundary, with the value at a voxel equal to the square of the distance to the nearest point

on the boundary. In order to compare two models � and � we simply set the distance

between the two of them to be equal to:

	 �
��� � ��
������������������
�������������

the dot product of the rasterization of the first model with the squared distance transform

of the second, plus the dot product of the rasterization of the second model with the

squared-distance transfrom of the first. The dot product ������������� is equal to the integral

over the surface of � of the square distance transform of � . Thus, it is precisely equal to

the minimum sum of squared distances that points on the surface of � need to be moved

in to order to lie on the surface of � . Figure 3.1 demonstrates this process for computing

the similarity between two models.

While this method provides a direct means for computing the minimum SSD, it can-

not be used directly to design a shape descriptor as the method for comparison involves

summing the asymmetric dot products of two vectors rather than computing Euclidean

distances. Consequently, general invariance and symmetry methods (as discussed in

Chapters 4 and 5) cannot be applied to this shape representation, limiting its practical

efficacy in many applications. In the next section we show that this dot-product represen-

tation can be approximated with a shape descriptor, so that the minimum sum of squared

distances between two surfaces can be approximated by the Euclidean distance between
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Figure 3.1: Two models are compared by computing the voxel rasterization and squared distance
transform of each one, and then defining the distance measure of model similarity as the dot
product of the rasterization of the first with the distance transform of the second, plus the dot
product of the distance transform of the first with the rasterization of the second. The resultant
value is equal to the minimum sum of squared distances that points on each model need to be
moved in order to lie on the other model.

their corresponding shape descriptors. Thus, we provide a matching methods that has the

discriminating power of a common shape metric while maintaining the simplicity of a

vector-based representation.
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3.2 Gaussian Euclidean Distance Transform

Since we compare two models by computing the distance between their shape descriptors,

we choose a 3D voxel representation that describes not only where the points on the

model are, but also how far an arbitrary point is from the model. Furthermore, the values

of the voxel grid should fall off to zero for voxels further from the model, allowing us

to treat the voxel grid as a sampling of a compactly supported function and to restrict

the domain over which we integrate. To address these issues we define the voxel grid

as a sampling of an exponentially decaying Euclidean Distance Transform. In particular,

given a model � we define its Gaussian Euclidean Distance Transform to be the function
� ������� with:

� ���	��� � � � 
�

�����������	� �� � � ���

where ������� � � � is the Euclidean Distance Transform, giving the distance from � to the

nearest point on the model � .

The advantage of this shape descriptor are three-fold. First, iso-surfacing methods

such as marching cubes [37] can be used to get back the surface of the model, so that the

shape descriptor is invertible. Second, the � � difference between two Gaussian Euclidean

Distance Transforms gives a measure of the proximity of the two underlying surfaces to

each other, providing a mapping from shape-space to descriptor-space that approximates

an isometry. Finally, this descriptor allows us to compare across a wide class of mod-

els, including models that are not topologically consistent, models that have cracks, and

models with flipped triangles.

In order to maintain the context of spherical shape descriptors, the Gaussian Euclidean

Distance Transform is represented by a collection of spherical functions obtained by re-

stricting the 3D function to concentric spheres about the origin. That is, given a shape
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descriptor � defined in the Cartesian coordinate system, we reparameterize the function

in terms of radius and spherical angle to obtain:

����� ��� � � � � �	�
� � ��� �
� ������� � � ������ ���� � 
 � �������� ��� �! "� �
where the factor of � �� "� � accounts for the change of variable, so that given two descrip-

tors � and
�

, we get: # � � �
#
� 
%$'&(

# ��� � � � # � 	 �*)
3.3 Retrieval Performance

One of the motivations for the design of the Gaussian Euclidean Distance Transform is

the limitation of earlier techniques in defining shape descriptors whose difference cor-

responds to the distance between the underlying shapes. In order to evaluate how well

the Gaussian Euclidean Distance Transform approximates the underlying minimum SSD

metric, we compared the retrieval performance of our shape descriptor, with the retrieval

performance obtained when model similarity was computed by explicitly evaluating the

sum of squared distances shape metric.

In order to evaluate the retrieval performance of a given shape descriptor, we measure

how well it classifies models within a test database. The database was provided by the

Princeton Shape Benchmark [47], and consists of 1814 models decomposed into two

groups of roughly 900 models, corresponding to training and test datasets. Each group

is provided with a classification, associating each of the models to one of roughly 90

distinct classes. Classification performance was measured using precision/recall plots,
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Figure 3.2: Comparison of the precision of different shape descriptors in classification experi-
ments run with the test dataset of the Princeton Shape Benchmark. Note that the minimum sum
of squared distances metric gives the best matching results with performance that is very closely
approximated by the Gaussian Euclidean Distance Transform descriptor.

which give the percentage of retrieved information that is relevant as a function of the

percentage of relevant information retrieved. That is, for each target model in class �

and any number � of top matches, “recall” represents the ratio of models in class �

returned within the top � matches, while “precision” indicates the ratio of the top �

matches that are in class � . Thus, plots that appear shifted up indicate superior retrieval

results.

We computed the precision versus recall results for the test dataset using the minimum

SSD metric, the Gaussian Euclidean Distance Transform descriptor, and the descriptors

reviewed in Chapter 2. The plots for these retrieval experiments are shown in Figure 3.2.

In order to address the alignment problem in a uniform manner, we normalized all the

models for translation and scale using center of mass and mean variance, as described in

Chapter 4. For all but the Shells and D2 descriptors, we solved for rotation by comput-

ing the difference between descriptors at all rotations, and used the measure of similarity

29



obtained at the optimal rotation, as described in Appendix A. (The Shells and D2 descrip-

tors are rotation-invariant by design and hence we do not need to solve for the optimal

rotation. However, at the end of Chapter 4, we show that both the Shells and D2 descrip-

tors can be obtained from more descriptive, rotation-varying, 3D histograms. In order to

decouple the issue of discriminability from the issue of alignment, Figure 3.2 also shows

the retrieval results for these histograms.)

The results shown in Figure 3.2 validate the fact that for a shape descriptor to be effec-

tive it not only has to provide a descriptive representation of a 3D model, but it also has to

be structured in such a manner so that the distance between two descriptors corresponds

to a meaningful measure of model similarity. For example, if we consider many of the

histogram based descriptors, we find that often these descriptors contain enough informa-

tion to reconstruct the model. Specifically, the EGI and Complex EGI are invertible for

convex models and the Sectors and Shells representation can be used to reconstruct the

model (up to the resolution of the bins). However, the normed difference between two

such descriptors only compares the values within each bin. Thus, the normed difference

between these histogram descriptors is not effective at capturing the intra-class variations

that would result in votes being cast into nearby bins. While these limitations could be

addressed by using a non-normed measure of similarity, such as the Earth Mover’s Dis-

tance [49], the resulting comparison becomes much more expensive for spherical and 3D

histograms, and as a result matching can no longer be performed in real time.

Similarly, the Spherical Extent Function captures the maximal extent of the model

along rays through the origin. Thus, the normed difference between the Spherical Extent

Functions of two different models gives a measure of how far, along the fixed rays, the

models need to be deformed in order to transform one model into the other. However,

this descriptor does not take into account deformations in the tangential directions and as
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a result its performance is noticeably worse than the performance of the minimum SSD

metric.

The Gaussian Euclidean Distance Transform, by contrast, is designed to give a mea-

sure of similarity capturing the proximity of one surface to another. A surface point ef-

fects not only the voxel cell corresponding to its location, but also many adjacent voxels

(specifically, the voxels in the Voronoi cell associated to the point). As a result, the Eu-

clidean distance between two Gaussian Euclidean Distance Transforms gives a meaning-

ful characterization of the distance between two surfaces, and we find that the precision

of this shape descriptor is nearly equivalent to that of the minimum SSD metric. Thus,

the Gaussian Euclidean Distance Transform provides an efficient and effective method

for representing 3D models — providing the simplicity of a vector-based representation

without sacrificing discriminability.
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Chapter 4

Shape Registration

One of the principal challenges faced in the area of shape matching is that in many appli-

cations, a shape and its image under a similarity transformation are considered to be the

same. Thus, the challenge in comparing two shapes is to find the best measure of simi-

larity over the space of all transformations. Three different methods have been proposed

to address this challenge:

� Exhaustive Search: In order to match two shapes, the shapes are compared at

every transformation and the measure of similarity at the optimal transformation

(i.e. the one minimizing the similarity measure) is used as the measure of shape

similarity. While this approach provides the correct answer, it is often too slow to

be of practical use in retrieval tasks.

� Normalization: Each shape is placed into a canonical coordinate frame and two

shapes are assumed to be optimally aligned when each is in its own frame. In some

cases this method can be proven to provide the optimal alignment, thereby giving

the optimal measure of similarity without incurring the cost of exhaustive search.

However, in the case that normalization does not provide the optimal alignment,
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this approach hampers retrieval performance because, regardless of the shape met-

ric used, as comparing two models at the wrong alignment results in an inaccurate

measure of similarity.

� Invariance: Shapes are described in a transformation-invariant manner, so that any

transformation of a shape will be described in the same way, and the best measure

of similarity is obtained at any transformation. In general, this method obtains a

transformation-invariant representation by discarding alignment-dependent shape

information, resulting in smaller shape representations that require less storage and

can be compared more efficiently. However, it is often the case that these methods

also discard information that is not dependent on the alignment of the models, and

the resulting representation is less discriminating.

In this chapter we review a number of approaches for addressing the alignment is-

sue. We show that traditional methods for the normalization of translation and scale can

be shown to be provably optimal, while methods for rotation normalization do not have

this property. To this end, we review the limitations of traditional methods for rotation-

normalization, we describe alternate methods for obtaining rotation-invariant represen-

tations, and present a number of new methods for improving some of the existing ap-

proaches.

4.1 Translation and Scale Normalization

Initial work in 3D surface alignment is motivated by the challenge of aligning point sets:

Given two point sets � 
���� & � ) ) )������	��
 �
� and � 
���� & � ) ) )������	��
 �
� what are the

optimal similarity transformations � and � (consisting of translation, scale, and rotation)
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that minimizes the sum of square distances:

�� � � &
#
� � �

�
� � � � �

�
�
#
���

Methods for solving for the transformations prove that translation, scale, and rotation

components can be solved for independently [24, 25] and in this section we review the

solutions for translation and scale.

4.1.1 Optimal Translation

Lemma 4.1.1 Given two point sets, � 
 ��� & � ) ) )������	� 
 �
� and � 
 ��� & � ) ) ) ��� � � 
� � , the sum of squared distances is minimized when each point set is translated so that

its centroid is at the origin.

Proof: Suppose that we have translated the point sets � and � so that the centroid of each

is at the origin. It suffices to show that any (non-trivial) translation of the point sets can

only increase the sum of square distances. To show this, we let � and � be any translation

vectors and set
	 � � ��� � to be the sum of square distances between the translated point sets

� � � and � ��� :

�	��
 � � � ��� � 

�� � � &
#
� �
�
� � � � � �

�
�
� � # �


 � # � �
� # � � �� � � &
#
�
�
� �

� #
� � �

� � ��� � �� � � & �
�
� �

��� )
Since both � and � are translated so that their centroid is at the origin, this gives:

�	��
 � � � ��� � 
�� # � �
� # � � �� � � &
#
�
�
� �

� #
�
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so that the minimum sum of squared distances is realized when � 
 � and in particular,

when � and � are each translated to their centroid they are optimally aligned for trans-

lation. Since rotations and scale fix the origin, it follows that the optimal translation can

be computed independent of scale or rotation.

4.1.2 Optimal Scale

One of the difficulties with computing the optimal scale for aligning two point sets � and

� is that is not clear how to pose the problem. A direct approach would seek to minimize

the sum of square distances over all scalings of the two point sets independently:

�	��
 � � � � � � 

�� � � &
#

� �
�
� � �

� #
� )

However, this function is always minimized at � � � 
 � , giving a distance of � between

the two point sets. Thus, the challenge of posing the scale problem is that as opposed to

translation and rotation, scaling is not an isometry and as a result the “size” of a point set

changes with scale.

In order to address this challenge, we pose the scale problem in a norm-preserving

fashion, seeking to find the scales that minimize the distance between two point sets

while satisfying the condition that the overall size of the point sets remains constant.

This formulation of the problem is similar in motivation to the one presented by Horn et

al. [25] and results in the same solution — two point sets are optimally scale aligned if

each is normalized to have mean variance equal to one. We show this by first proving a

more general statement for arbitrary vectors, from which the optimal scale result follows

as a corollary.

Lemma 4.1.2 Given two vectors �� and �� , if each vector has norm equal to one, then the
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minimum sum of squared distances:

��� � � � � 

#

� �� � � �� # �
subject to the norm-preserving constraint:

� � � � � ��

#

� �� # � � #
� �� # � 
 # �� # � � # �� # � )

is realized when � � � 
 � and the vectors are in fact optimally scale-aligned.

Proof: Applying the method of Lagrange multipliers, it follows that the extrema of the

function � , subject to the constraint � � � � � � , occur when:

� �

# �� # � # �� # � � � �

# �� # � � �� � ���� 
 � �

# �� # � # �� # � � � �

# �� # � � �� � �����)
Assuming that � �� � ������
 � this reduces to:

� � 


# �� # �# �� # � � �

and substituting back into the constraint � � � � � � we get:

� � �

# �� # � 
 # �� # � � # �� # � )
Thus, the function � � � � � � , subject to the constraint � � � � � � 


# �� # ��� # �� # � has an ex-

tremum at � � � 
 � . Since the second derivative of � satisfies:

��� ��� ��� � ��������� �
	 
 ����������� ��� �
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it follows that at the optimal scale occurs when � � � 
 � and the vectors �� and �� minimize

the sum of square differences, subject to the norm-preserving condition.

(Note that if � �� � �����
 � , we can substitute the constraint � � � � � ��

# �� # � � # �� # � into� to obtain � � � � � � 


# �� # � � # �� # � so that any values of � and
�

satifying the constraint

��� � � � � also minimize the sum of squared distances. In particular, if � � � 
 � then � is

minimized and the vectors �� and �� are optimally scale-aligned.)

As a corollary of the above lemma, it follows directly that:

Corollary 4.1.3 Given two point sets, � 
 ��� & � ) ) ) ��� � � 
 � � and ��
 ��� & � ) ) ) ��� � � 
� � . If the mean variance of each point set is equal to � , the sum of squared distances

��� � � � ��

�� � � &
#

� �
�
� � � �

#
� �

subject to the norm-preserving constraint:

� � � � � � 

�� � � &
#

� �
� #
� �

#
� �
� #
� 


�� � � &
#
�
� #
� �

#
�
� #
�

is minimized when � � � 
 � and hence the points are optimally scale-aligned.

These methods for translation and scale normalization have the property that they

provide the optimal translation and scale for a single model, independent of the model it

will be compared against. Thus, they provide a means for comparing two models at the

optimal translation and scale without necessitating an exhaustive search over the space of

all possible transformations.

It should be noted that while these methods are gauranteed to minimize the sum of

squares distances independent of correspondence, they do not necessarily minimize the
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difference between two shape descriptors. However, we have found that in whole-object-

to-whole-object shape matching applications, these normalizations provide a stable, near-

optimal, solution for the transformation minimizing the distance between models.

4.2 Rotation

While methods for normalizing for translation and scale on a per-model basis have been

described, analagous methods for normalizing for rotation do not exist. Methods for

computing the optimal rotational alignment between two models [24, 25] depend on the

existance of correspondences between two models, and do not provide a means for putting

a single model into a canonical coordinate frame that guarantees optimal alignment for

matching. In general, the rotation alignment problem is addressed in one of three ways:

(1) exhaustive search, (2) normalization, or (3) invariance. In the following subsections

we describe these approaches in more detail.

4.2.1 Exhaustive Search

For shape descriptors that represent a 3D model as either a spherical function, or a func-

tion in 3D, one approach for adressing the rotational alignment problem is to exhaustively

search for the rotation/reflection minimizing the difference between descriptors. While

the method described in Appendix A provides a means for implementing the exhaustive

search, it is still too slow to be used in database retrieval applications, where the �������	�
correlation of a descriptor needs to be computed for every descriptor in the database.
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4.2.2 Rotation Normalization with PCA

The traditional method for adressing the alignment problem normalizes a model for rota-

tion by using the principal axes of the model to place it into a canonical coordinate frame.

In particular, given a triangulated surface � in 3D, the covariance matrix � is computed

by setting

�
� 
 � 
 �

��� � $ � �

�
��� 	 �

where the integral is summed over all triangles in the model. Since this matrix is sym-

metric, SVD can be used to compute its eigenvalues (or principal directions), and the

model is rotated so that the � -axis maps to the eigenvector with largest eigenvalue, the

� -axis maps to the eigenvector with second largest eigenvalue, and the � -axis maps to the

eigenvector with smallest eigenvalue.

In our research, we have found rotation normalization via PCA-alignment does not

provide a robust normalization for many matching applications. The cause for this is

two-fold: First, the eigenvectors are only defined up to a multiple of � � . Thus, there

is ambiguity in choosing which direction of the eigenvector to choose, and matching

performance is hampered if the wrong direction is chosen. Second, there is no gaurantee

that when two models are each aligned to their own principal axes then they are also

optimally pair-wise aligned.

Exhaustive Search for Axial Ambiguity

One approach to addressing the ambiguity in the direction of the principal axes is to

search over the 8 possible choices of axes and use the measure of similarity at the best

alignment. While this brute force approach provides a resolution to the axial ambiguity,

it comes at the cost of increased comparison time. At the end of this chapter we describe
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an implementation of this exhaustive search approach that gives the measure of model

similarity at each of the eight possible axial flips without increasing the computational

complexity of model comparison.

Normalizing for Axial Ambiguity

Another approach is to normalize for the ambiguity by using a consistent method for

choosing the direction of the axis. Tal et al. [16] propose a method for resolving this am-

biguity using forward weighting. For each of the three eigenvectors, � � & � � � � � � � , they

compute the area of the intersection of the model with the positive half-space ��� �� ��� � � � � � � � � � and align with � � if the area is more than half the area of the model,

and with � � � if the area is less. One of the difficulties of using this method in practice

is that often the area in the positive and negative half-spaces are nearly equal, making

this approach unstable. Thus, it is often the case that two models that are similar are not

aligned similarly, resulting in hampered retrieval performance.

Figure 4.1 demonstrates an example where this method for disambiguating the di-

rection of the principal axes can fail. Though the two models are similar, the direction

for the � -axis is chosen inconsistently. As a result, any matching that would occur with

the models at this alignment would make the models seem less similar than they are. In

this example, the forward weighting approach fails because the area of the half of the

model residing over the positive � -axis is nearly equal to the area of the half of the model

residing over the negative � -axis.

4.2.3 Invariant to Rotation

While the methods described above provide different approaches to resolve axial ambigu-

ity, they do not adress the fact that in some cases the axes defined by PCA are inconsistent.
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Figure 4.1: An example of a situation in which the forward weighting approach fails. Despite
the fact that the two models are similar, the choice of the positive vs. negative direction for the
principal axes is inconsistent and the two models are not correctly aligned.

An example of this misalignment is shown in Figure 4.2. Despite the fact that the models

in each pair are similar, the principal axes defined by PCA are not consistent, resulting in

the incorrect registration of the models in each pair. The figure shows two different types

of misalignment that can occur. In the first three pairs, the models are misaligned because

the � -, � -, and � -axes are permuted. Thus, though the principal axes are computed cor-

rectly, their ordering based on the magnitude of the corresponding eigenvalue results in

misaligned models. This type of misalignment can be addressed by searching over the six

different permutations for the one minmizing the distance between models. The second

three pairs demonstrate a more general example of the failure of PCA. For these models,

the eigenvectors defined for one model do not overlap with the eigenvectors for the other,

and no permutation of axes would give the correct alignment.

One of the reasons for the failure of PCA in aligning 3D models results from the fact

that when the covariance matrix is degenerate, (i.e. eigenspaces are multi-dimensional)

a unique set of principal axes cannot be established. There are two cases in which the

covariance matrix can be degenerate: First, it is possible for all three eigenvectors to have

the same eigenvalue. In this case the covariance matrix is a multiple of the idenity and
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Figure 4.2: An example of a situation in which the PCA alignment fails. Despite the fact that the
pairs of models are similar, the principal axes are inconsistent and the models in each pair are not
correctly aligned.

any rotation of the model will align the � -, � -, and � -axes with the principal directions.

Second, it possible for two eigenvectors, � & and � � to have the same eigenvalue � and the

third eigenvector � � to have a different eigenvalue � � . In this case any linear combination

of the vectors � & and � � will also be an eigenvector with eigenvalue � , and if the model

is rotated so that its principal axes align with the � -, � -, and � -axes, then any rotation

about the axis � � will also align the principal axes of the model with the � -, � -, and � -

axes. Table 4.1 shows the eigenvalues for the covariance matrix of each of the models in

Figure 4.2. Note that for most pairs of models for which PCA fails, at least one of the

42



models has the property that two of the eigenvalues of its covariance matrix have similar

value.

Model � -Axis � -Axis � -Axis Model � -Axis � -Axis � -Axis

Hat 1 � )������ � � )	��
�� � � ) ��� ��� Glasses 1 � )�
������ � ) � �
� � � ) ����� �
Hat 2 � )	�
����� � )	����
 � � ) ���
� � Glasses 2 � )�� ��
 � � ) ��
 ��� � ) ����� �
Church 1 � )	�
����� � )��
� ��� � ) ���!� � Cup 1 � ) � ����� � )	� � � � � ) ��� ��

Church 2 � ) � ����� � ) �����!� � ) ��� � � Cup 2 � ) � ��
�� � )	� � � � � ) ��� ���
Chair 1 � ) �
� � � � ) ������� � ) ��� � � Dino 1 � )��!� � � � ) � � � � � ) ���
���
Chair 2 � )����!�
� � ) � ����� � ) � � � � Dino 2 � )�
���� � � ) ������� � ) ��
��
�

Table 4.1: The eigenvalues for the different principal directions for each of the models shown in
Figure 4.2. Note that for most pairs of models for which PCA fails, at least one of the models has
the property that two of the eigenvalues of the covariance matrix have similar value.

In this subsection we present two different methods for addressing the rotational

alignment problem by using invariance. The first approach is a hybrid normalization-

invariance approach, which uses PCA to establish one axis of alignment, and then gives a

rotation-invariant representation of a shape descriptor with respect to all rotations about

that axis. The second approach describes a way to for obtaining a rotation-invariant rep-

resentation of a shape descriptor with respect to all rotations. Both approaches utilize

the property that the power spectrum of a function – the collection of amplitudes of the

different frequency components – discards phase and therefore is invariant to rotation.

Invariance to Axial Rotation

One approach that has been described ([63, 62, 17]) for addressing the limitations of

PCA alignment uses the fact that in the case that only two of the eigenvectors have the

same eigenvalue, the PCA approach can be used to define one of the principal axes un-

ambiguously and the circular power spectrum can be used to obtain a representation that

is invariant to rotations about that principal axis.
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The key idea behind this approach is that the spherical harmonic basis functions can

be factored as the product of functions of angles of elevation and azimuth:

���� � � ��� � 
 ��� ����� �����
	 ���
�
� ��	 ��� ���

� �
� ��� � ���

�
���

where the � �� are the associated Legendre polynomials. Thus, if a spherical function is

expressed in terms of its spherical harmonics

� � � ��� � 

��
� � ( �� � � � � � � 
 � ���� � � ��� �

then a rotation by an angle of � ( about the North pole maps the function
�

to a function

with spherical harmonic decomposition

� � � ��� ��� ( ��
 ��
� � ( �� � � � � � � 
 � ���� � � ��� ��� ( � 
 ��

� � ( �� � � � � � � 
 � �
�
����� ���� � � ��� � )

It follows, therefore, that if we represent a spherical function by the complex norms of its

harmonic coefficients:
� � � �

#
� � 
 �

#
� � �

� � � �

we obtain a representation that is invariant to rotation about the North pole.

Since our primary concern is matching shapes, we briefly summarize some of the

properties of this representation in so far as they relate to the comparison of different

spherical functions.

� Invariance: By construction, the representation of a spherical function in terms

of the complex norms of its spherical harmonic coefficients is invariant to rota-

tion about the North pole. In particular, it follows that this representation is also
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invariant to permutations of the two principal axes perpendicular to the North pole.

� Lower Bound: Given two spherical functions
�

and � , the � � difference between

the collection of their complex norms is a lower bound for the � � difference be-

tween the two functions, taken over all rotations in the plane perpendicular to the

North pole. This property follows from the fact that given any two vectors � and �
in a Euclidean space, it is always true that the � � difference between the vectors is

always at least as big as the � � difference between their norms:# � �
� # � �� # � # � # � # �� )
Thus, given two spherical functions

�
and � , expressed in terms of their spherical

harmonic decomposition as:

� � � ��� � 

��
� � ( �� � � � � � � 
 � ���� � � ��� � � � � ��� � 


��
� � ( �� � � � � � � 
 � ���� � � ��� �

we can use the fact that the � �� are orthogonal to show that the � � difference

between the complex norm representations is a lower bound for the � � difference

between the spherical functions:#
� ���

#
� 


��
� � ( �� � � � �

#
� � 
 � ��� � 
 �

#
� �

��
� � ( �� � � � � �

#
� � 
 �

#
�
#
� � 
 �

#
� � )

Furthermore, since the complex norm representation is invariant to rotations about

the the North pole, it follows that the � � difference between the complex norm rep-

resentation is a lower bound for the � � difference between the spherical functions,

taken over all possible rotations about the North pole.
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� Dependence on PCA: While this hybrid normalization/invariance approach pro-

vides a representation of a spherical function that is invariant to rotations about the

North pole, it depends on PCA alignment to effectively determine what the North

pole should be. Thus, it only provides a useful rotation-invariant representation of

the shape in the case that the North pole can be determined robustly.

� Information Loss: Because this approach treats each harmonic coefficient inde-

pendently, the representation does not capture information characterizing how the

different harmonic components of a single function align with respect to each other.

As an example, if the spherical function
�

is the sum of two different harmonics:

� � � ��� � 
 � � 
 � ���� � � ��� � � � ��� 
 � � ���
�� � � � ��� �

then applying a North pole rotation of � ( to only one of the two coefficients results

in a new spherical function � :

� � � ��� � 
 � � 
 � ���� � � ��� ��� ( � � � � � 
 � � ���
�� � � � ��� �

that is not a rotation of
�

but still has the same complex norm representation.

� Choosing the Axis of Rotation-Invariance: This approach provides a represen-

tation of a spherical shape descriptor that is invariant to rotations about the North

pole. In implementing this method, models can be consistently rotated so that any

of the principal axes are mapped to the North pole and a choice can be made with

regards to which principal axis should be the axis of rotation-invariance. In general,

the axis is chosen so that it is the most distinguished. Recalling that a principal axis

is well-distinguished if it is different from either of the other two motivates choos-
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ing either the principal axis with the largest prinicpal eigenvalue or the one with the

smallest principal eigenvalue. The choice between using the smallest and largest

is generally motivated by the database, so that if most of the models tend to be

cylindrical the principal axis with largest eigenvalue is chosen, and if most of the

models tend to be disk-shaped the prinipal axis with smallest eigenvalue is chosen.

If we consider as an example the Princeton Shape Benchmark [47], we find that the

average triple of eigenvalues is:

� 
 )���� � � )	
�
 � � )�� � � )
Thus, models in this database tend to be cylindrical, more surface perturbation is

required to transform the ordering of the two largest principal axis than for the two

smallest one, and the principal axis with largest eigenvalue should be used as the

axis of rotation-invariance. To test this emperically, we computed the precision

vs. recall for the six rotation varying shape descriptors described in Chapters 2

and 3: the Extended Gaussian Image, the Complex Extended Gaussian Image, the

Sectors representation, the Sectors and Shells representation, the Radial Spheri-

cal Extent Function, and the Gaussian Euclidean Distance Tranform. For each

descriptor we computed the complex norm representation where the largest ( � -

axis), middle ( � -axis), and smallest ( � -axis) principal axis was chosen as the axis

of rotation-invariance. The results of the experiment are shown in Figure 4.3. Note

that as expected, for all representations, the middle ( � -axis) principal axis is the

least distinguished and hence gives the worst results. Moreover, since the average

eigenvalues for the database indicate that more of the models are cylindrical, the

largest ( � -axis) principal axis gives the best retrieval results.
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Figure 4.3: Retrieval results with different shape representations, demonstrating the effect of
selecting each of the different principal axes as the axis of rotation-invariance for the complex
norm representation.
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Invariance to General Rotation

This approach, described in [36, 36, 11, 30, 18, 31, 38], generalizes the power spectrum

notion defined for functions whose domain is a circle to a notion of power spectrum

defined for functions whose domain is a sphere. This makes it possible to obtain a rep-

resentation of a spherical function that is invariant to all rotations and hence provides a

method for matching 3D models that is independent of the robustness of PCA.

The key idea of this approach is based on the fact that the spherical harmonic basis

functions provide a representation for the group of rotations (see Appendix A). In par-

ticular, if
�

is a function defined on a sphere, then
�

can be expressed as the sum of its

projections onto the subspaces
� � :

� � � ��� � 

��
� � ( � � � � ��� � with

� � 
  � � � � 
 �
�
�
� � �
� � 
 � ����

where  � is the projection onto the � -th irreducible representation
� � , the

� � 
 � are the

spherical harmonic coefficients of
�

, and � �� are the spherical harmonics forming the

basis for the � -th irreducible representation
� � . Using the fact that the function subspace� � is a representation space for the rotation group, and using the fact that rotations act

linearly on the space of functions, for any rotation � we have:

� � � � 
�� � ��
� � (  � � � ��� 


��
� � (  � ��� � � � � )

Thus, if we use the fact that rotations do not change the � � norm of a spherical func-

tion —

#
�
#


# � � � � # for all rotations � — and we represent a spherical function by the
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size of its projections onto the representations
� � :

� � � ����  � � � � �� � �� � ( 

���� �

�
�
� � �

#
� � 
 �

#
�����	

�

� � (
we obtain a representation that is invariant to all rotations.

Since our primary concern is matching shapes, we briefly summarize some of the

properties of this representation in so far as they relate to the comparison of different

spherical functions.

� Invariance: By construction, the representation of a spherical function in terms of

the sizes in its frequency components is invariant to all rotations.

� Lower Bound: Given two spherical functions
�

and � , the � � difference between

their power spectra is a lower bound for the � � difference between the two func-

tions, taken over all possible rotations. This property follows from the fact that

given any two vectors � and � in a Euclidean space, it is always true that the � �
difference between the vectors is always at least as big as the � � difference between

their norms: # � �
� # � �� # � # � # � # �� )
Thus, given two spherical functions

�
and � , expressed in terms of their frequency

components as:

� � � ��� � 

��
� � ( � � � � ��� � � � � ��� � 


��
� � ( � � � � ��� �

we can use the fact that the representations
� � are orthogonal to show that the � �

difference between the power spectrum representations is a lower bound for the � �
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difference between the spherical functions:#
� ���

#
� 


��
� � (

#
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#
� �

��
� � ( �

#
� �
#
�
#
� �
#
� � )

Furthermore, since the power spectrum is invariant to rotation, it follows that the

� � difference between the power spectrums is a lower bound for the � � difference

between the spherical functions, taken over all possible rotations.

� Optimality: The key idea of the power spectrum approach is to decompose a spher-

ical function into components on which rotations act independently and then to ob-

tain a rotation-invariant representation by storing the � � norm of each component.

To this end the quality of the rotation-invariant representation is dependent on the

fine-ness of the resolution of the space functions into rotation-independent com-

ponents. Since the representation spaces
� � are irreducible, it follows that no finer

resolution into linear, rotation-independent subspaces is possible. Thus, from a lin-

ear perspective, the power spectrum representation is an optimal rotation-invariant

representation.

However, in shape matching applications the linearity condition is not necessary

and finer resolutions can be obtained by decomposing each subspace
� � into orbits

under the action of the rotation group – subsets (not subspaces) of
� � obtained by

taking a function
� � � � � and looking at the set of functions, obtained by applying

all the different rotations to
� � . (We will discuss this in more depth at the end of the

chapter.)

� Information Loss: Because this approach treats each frequency component in-

dependently, the representation does not capture information characterizing how
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the different frequency components of a single function align with respect to each

other. Figure 4.4 shows a visualization of this for two spherical functions. The one

on the bottom is obtained from the one on the top by applying different rotations to

the different frequency component. Though the two functions differ by more than

a single rotation, their power spectrum representations are the same.

Figure 4.4: The bottom spherical function is obtained by rotating the different frequency com-
ponents of the function on top by different angles. Although there is no rotation transforming the
function on the top to the one on the bottom, their power spectrum representations are the same.

Furthermore, for each frequency component
� � , the power spectrum only stores

the energy in that component. For � � � it is not true that if

#
� �
#


#
� �
#

then

there is a rotation � such that � � � � � 
 � � . Thus knowing only the norm of the � -
th frequency component does not provide enough information to reconstruct the

component up to rotation. (This form of information loss does not occur for the

power spectrum representation of circular functions, as two circular functions with

the same amplitude and frequency can only differ by a rotation.) Figure 4.5 shows

a visualization of this for three spherical functions. The functions are all of the
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same frequency and have the same amplitude but there is no rotation that can be

applied to transform them into each other. In this example, all three are fourth order

functions with norm equal to 1. Since the space of fourth order functions is 9-

dimensional and since the space of rotations is 3-dimensional, the power spectrum

ends up representing six dimensions of rotation invariant information by a single

value. As a result, five dimensions of information are lost and the power spectrum

representation cannot distinguish between the functions shown in Figure 4.5.

Figure 4.5: These three single-frequency ( ����� ) spherical functions differ by more than rotation
but have the same spherical power spectrum.

4.2.4 Improvements and Variations

We now describe three general methods for improving the matching performance of shape

descriptors representing a 3D model by either a single spherical function or a collection

of spherical functions. The first method describes a way for comparing two PCA-aligned

models, at each of the eight possible axial flips, without necessitating a corresponding

eight-fold increase in compare time. The second method describe a simple way for ob-

taining an axial-flip-invariant representation of these shape descriptors. And the third

method provides a way for improving the power spectrum representation by providing a

finer resolution of spherical functions into rotation-invariant components, giving an im-

proved measure of model similarity over all possible rotations, while maintaining the
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lower bound property of the power spectrum representation.

Exhaustive Axial Flip Alignment

Although a brute force approach for computing the measure of similarity over all per-

mutations of axis flips would result in and eight-fold increase in the time complexity for

comparing two models, spherical harmonics can be used to perform the exhaustive search

without increasing the comparison time. The key idea behind this approach is that if a

spherical function is expressed in terms of its spherical harmonics

� � � ��� � 

��
� � ( �� � � � � � � 
 � ���� � � ��� �

then flipping the � -, � -, or � -axis changes the harmonics as follows:

� � -flip: Reflecting about the � � -plane so that the � -axis flips to the � � -axis sends

each harmonic coefficient
� � 
 � to its complex conjugate

� � 
 � .

� � -flip: Reflecting about the � � -plane so that the � axis flips to the � � -axis sends

the harmonic coefficient
� � 
 � to � ��� � ��� � � � 
 � .

� � -flip: Reflecting about the � � -plane so that the � -axis flips to the � � -axis sends

the harmonic coefficient
� � 
 � to � ��� � � � � 
 � .

Thus, in computing the dot product of
�

with � , we can consider the contribution of

different harmonic components
� � 
 � separately, depending on whether � is even or odd, 	

is even or odd, and if we are looking at the real or imaginary part of
� � 
 � . To do this, we

define:
	���� � 
 �

��� �����
	
��

� � ( �
�
� �

� � � �
�
��� � R � � � � ��� � 
 � � � � � � R � � � � ��� � 
 � � � � �
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where � ��� � � � � � � � � and R � gives the real part of a complex number if � 
 � and the

imaginary part if � 
 � . (Note that computing
	 � � � takes no more time than computing

the dot product of
�

with � .) Then, for any transformation � composed of axis flips, we

can compute the dot product � � � � � � � � by summing the values
	 ��� � with the appropriate

sign. In particular, if we set:

� � ��� 

�����
�

� ��� �
�

� �
� � ��� � � �
� � � ��� � �

�	����



with � �
� � � � � � � � � , then the expression for the � � difference of
�

with the axially flipped

� is: #
� � � � ��� � � � # � 
 #

�
#
� �

#
�

#
� � �

�
� 
 � 
 � ��� ( 
 &�� � � � �

� � � ��� � � �
� � ��� � � � � 	�� � � )
Thus, by computing the eight contributions

	 � � � independently, we can reduce the com-

putation of the dot product of
�

with the different axial flips of � to a signed summation

of these eight contribution terms. As a result, computing the distance at all eight axial

flips can be done with an additional cost of only 64 arithmetic operations, independent of

the size of the shape descriptor.

Invariance to Axial Ambiguity

Using the fact that flipping the � -, � -, and � -axes results in a change of sign in the real

and imaginary components of some of the spherical harmonic coefficients, we can obtain

a representation that is invariant to axial ambiguity by storing only the absolute values of

the real and imaginary components. Furthermore, since the above equations indicate that

the contribution of the value
	 ( ( ( does not depend on the alignment of the axes, further
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discrimination can be obtained by storing the actual values of the real components of
� � 
 �

for the case that both � and 	 are even, and storing the absolute value for all other cases.

In addition to being invariant to axial flips, this method is also partially invariant to

permutations of the axes. In particular, if we consider a rotation � by  �� � (a permutation

of the axes) in the plane perpendicular to the North pole, this rotation acts on the spherical

harmonic by multiplying by a power of � � � :
� � ���� � � ��� � � 
 ���� � � ��� �� �� � � 
 ���� � � ��� � � � ��� � ��)

Thus, in the case that 	 is even, this amounts to multiplication by � � , so that storing

just the absolute value of the real and imaginary coefficients is invariant to this type of

rotation. In particular, this demonstrates that the absolute value representation is partially

invariant to permutation of the axes that are perpendicular to the North pole.

Quadratic Resolution with PCA

One of the limitations of only storing the energies at the different frequencies of a spheri-

cal function is that it does not allow us to reconstruct the frequency components uniquely,

up to rotation. In the past, this problem has been addressed by using algebraic methods to

obtain additional rotation-invariants for the different frequency components[11, 36, 38].

The difficulty with these approaches is that the derived 0-th order rotation-invariant ten-

sor are often redundant and consequently, cannot be directly compared to obtain a lower

bound for the minimum � � difference between two spherical functions.

We present a new geometric approach for computing orthogonal invariants and de-

scribe an implementation for the quadratic components of a spherical function. This

approach is based on the idea that for a spherical function
�

, we can generate the man-
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Figure 4.6: The minimum distance between two functions � and � , taken over the space of all
rotations, is equal to the distance between the two manifolds ��� and ��� , where ��� and ��� are
obtained by tracing out the image of the functions � and � under the action of the rotation group.

ifold ��� , defined as the image of
�

under all rotations. For two spherical functions
�

and � , the minimum difference between
�

and � , taken over the space of all rotations, is

precisely the distance between the two closest points on the manifolds �	� and � � , (Fig-

ure 4.6). The goal then, is to be able to index these manifolds in such a way that the � �
difference between two sets of indices is exactly the distance between the two manifolds.

The key idea of our approach is to use PCA to explicitly solve for the alignment

that minimizes the � � difference between the constant and quadratic components of two

spherical functions. This approach provides a representation of the constant and quadratic

components that is invertible, up to rotation and eliminates the problem of intra-frequency

loss in the second order components that is otherwise suffered by the power spectrum

approach.

Theorem 4.2.1 If
�

and � are two spherical functions consisting of only constant and

second order harmonics, then the � � difference between the two is minimized when each

is aligned to its own principal axes.

Proof: Because
�

and � consist of only constant and second order terms, we can repre-
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sent the two functions by symmetric matrices � and � where

� � � � 
 � 	�� � and � � � � 
 � 	�� � )
If we assume that � and � are already aligned to their principal axes we get:

��


�����
�
� & � �
� �

� �
� � �

�

� ����

 and � 


�����
�

� & � �
� � � �
� � � �

� ����



Thus, if � is any rotation we get:

� � 	 � � � � � � 
 ��� � � � Trace ��� ��� � 	 � � �
��� 
 � � &

�
�
� �

where � 
 � ��� � � 	 � and � 
 � �	� � � � �
	

� define the lengths and angles between the

functions � �

�
on the unit sphere. We would like to show that the dot product is maximized

when � is a permutation matrix so that �
� � 	 is diagonal.

Using the fact that the differentials of a rotation � are defined by �
� where � is a

skew-symmetric matrix, it suffices to solve for:

��

	
	 �

�
�
	 � ( Trace ��� ����� � ��� ��� � � 	 � � � � 	 � � 
 Trace � � 	
� � ����� ����� � � )

But � is a skew-symmetric matrix so that, ��� ����� is a symmetric matrix with � ’s along
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the diagonal:

��� ����� 


�����
�

� ��� � � � & � � & � � � � � � & � � & ���� � � � & � � & � � � � � � � � � � � �
��� � � � & � � & � ��� � � � � � � � � �

�	����



Thus, if � 	 � � is a diagonal matrix then the derivative is zero, independent of the choice

of � . Conversely, if the �
�

are distinct and � 	 � � is not diagonal, we can always choose

values for � & � , � & � , and � � � such that the derivative is non-zero, implying that if � 	 � � is

not diagonal it cannot maximize the dot product. (Note that if � & 
 � � 
 � � then � is a

constant multiple of the identity so that the dot product is independent of the choice of

rotation. Similarly, if �
�

 � � then rotations in the plane spanned by �

�
and � � also do not

change the dot product.)

This shows that the � � difference between the functions
�

and � is at an extremum if

and only if � and � are diagonal matrices. The minimum � � difference is then attained

when � �
�
�
�

is maximal. So, if � & � �
� � �

� then we must also have � & � � � � � � , and

the � � difference between
�

and � is minimized precisely when
�

and � are aligned to

their principal axes.

This theorem shows that the � � difference between the quadratic components of two

spherical functions is minimized when the two functions are aligned with their principal

axes. Thus, we can represent the constant and quadratic components by the three scalars

� & � �
� � �

� , where after alignment to principal axes:

� ( � �
� 


� & � � � �
� � � � �

� � � )
The indices � � & � � � � � � � uniquely define the constant and quadratic function up to rotation,
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but because the functions � � � � � � � � � � are not orthogonal, they do not have the property

that the � � difference between two sets of indices is the minimum of the � � differences

between the two functions. To address this, we fix an orthonormal basis � � & � � � � � � � for

the span of � � � � � � � � � � and represent the function
� 
 � ( � �

� by the three scalars

��� & � � & � � � � � � � , where � is the matrix whose columns are the orthonormal vectors � � .
This provides the desired orthogonal indexing for the constant and quadratic components

of a spherical function, which define the components uniquely, up to rotation.

4.2.5 Matching Results

In order to evaluate the utility of the different rotation normalization methods, we mea-

sured the retrieval performance of the different spherical shape descriptors described in

Chapters 2 and 3. As in Chapter 3, we used the Princeton Shape Benchmark to obtain

precision vs. recall plots comparing the performance of the different shape descriptors

when the different methods for addressing the rotational alignment problem were used. In

particular, we computed the (1) Extended Gaussian Image, (2) Complex Extended Gaus-

sian Image (3) Sectors representation, (4) Sectors and Shells representation, (5) Radial

Spherical Extent Function, and (6) Gaussian Euclidean Distance Transform, for each of

the models in the test database. For each model and each type of shape representation,

we obtained retrieval results with the different rotational alignment techniques: (1) mod-

els were aligned by exhaustively searching over the space of all rotations for the optimal

rotation (Exhaustive Search), (2) models were aligned with their principal axes and the

best of the eight axial flips was chosen for alignment (PCA + 8x(Axial Flips)), (3) models

were first aligned with their principal axes and then the descriptor were made invariant to

the eight axial flips by storing the absolute values of the appropriate real and imaginary

components of the spherical harmonic coefficients (PCA + Abs), (4) models were first
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aligned with their principal axes and then the descriptors were made invariant to rotations

about the principal axis with largest eigenvalue by storing the complex norm of each

spherical harmonic coefficient (PCA + Fourier (X-axis)), (5) models were aligned with

their principal axes and forward weighting was used to normalize for ambiguity in the ax-

ial directions (PCA (Heaviest Axis), (6) models were represented in a rotation-invariant

manner by storing the power spectrum of the shape descriptors and using the quadratic

resolution method to refine the energy decomposition within the second order frequency

(Harmonic + Quadratic), (7) models were represented in a rotation-invariant manner by

storing the power spectrum of the shape descriptors (Harmonic).

The results of the retreival experiments are shown in Figure 4.7. In general, they indi-

cate that the inability of PCA to resolve the axial ambiguity greatly hampers the matching

performance of the different descriptors. Even methods that use forward weighting are

not stable and do not consistently align axial directions within a class. Thus, methods

that address this issue (e.g. Abs, Fourier, and 8x(Axial Flips)) greatly improve the match-

ing performance of the different descriptors and can often be competitive, in precision,

with exhaustive search. As a result, we find that (for this dataset) the need for rotation-

invariance is not well motivated and representations of shape descriptors in terms of the

energies in the different frequencies (e.g. Harmonic and Harmonic + Quadratic) result

in worse retrieval performance as a result of the inherent information loss in the power

spectrum. Thus, in order for the rotation-invariant power spectrum representation to be

effective in shape retrieval, it is necessary to regain some of the information lost in storing

only the size of the different frequency components. (We discuss methods for addressing

this issue in the next chapter.)

It is interesting to note that both the Fourier and the Abs approach are competitive

with exhaustive search for resolving axial ambiguity. In general, these approaches tend
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Figure 4.7: Retrieval results with different shape representations, demonstrating the effect of
different rotational-alignment techniques on retrieval performance.
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to discard more information and we would expect them to be less discriminating. We

believe that part of the explanation for this resides in the limitations of PCA, as indicated

in Figure 4.2. In particular, there are a number of classes whose constituent shapes can

appear at different anisotropic scales. For these models, PCA alignment can fail not

only because it does not correctly choose the correct direction of the principal axis, but

also because in some cases the ordering of the principal axes gets changed. The Fourier

and Abs representations begin to address this issue by introducing some invariance to

permutation of the axes and we believe that this part of the explanation for the reason

that their retrieval performance is often better than the performance of the approach that

exhaustively searches for the best alignment over all possible axial flips.

The sizes of the different descriptors and the comparison time for the different meth-

ods are shown in Tables 4.2 and 4.3. These tables highlight several properties of the

representations:

� The fact that the Extended Gaussian Image, Complex Extended Gaussian Image,

and Sectors representation all represent a 3D model by a spherical function is re-

flected in the fact that these descriptors are an order of magnitude smaller than

the Sectors and Shells representation, the Radial Extent Function, and the Gaus-

sian Euclidean Distance Transform which represent a 3D model by a collection of

spherical functions.

� The rotation-invariant representations are an order of magnitude smaller than the

PCA-aligned ones. This is because the power spectrum represents the ��� � ��� di-

mensions of information contained in the � -th frequency by the single value corre-

sponding to the amplitude. Thus, it represents a two-dimensional spherical function

by a one-dimensional array of energy values.
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� The axial rotation-invariant representation (Fourier) described in [63, 62, 17] is

roughly half the size of the initial spherical function because each complex spheri-

cal harmonic coefficient is represented by its norm.

� Exhaustively searching for the optimal rotation for model alignment tends to be

independent of the size of the descriptor. This is related to the fact that the lim-

iting step in correlating the shape descriptors is computing the Inverse Wigner-D

Transform (as described in Appendix A). Since only one such computation needs

to be performed, regardless of the number of spherical functions used to represent

a model, we find that the average comparison time for exhaustive search is not

proportional to the size of the descriptor.

� While a brute force implementation of the exhaustive search for the optimal axial

flip would increase the comparison time eight-fold, we find that in practice the

method presented for finding the optimal axial alignment is only 54% slower, on

average.

EGI CEGI Sectors Sectors + Shells REXT GEDT
Exhaustive Search 256 512 256 8192 8192 8192
PCA + 8x(Axial Flips) 256 512 256 8192 8192 8192
PCA + Abs 256 512 256 8192 8192 8192
PCA + Fourier 136 272 136 4352 4352 4352
PCA (Heaviest Axis) 256 512 256 8192 8192 8192
Harmonic + Quadratic 17 34 17 544 544 544
Harmonic 16 32 32 512 512 512

Table 4.2: Number of floats that need to be stored in order to represent the different shape descrip-
tors shown in Figure 4.7 as a function of the method used for comparing across rotations. Note
that the rotation-invariant descriptors are an order of magnitude smaller than the PCA-aligned
ones.
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EGI CEGI Sectors Sectors + Shells REXT GEDT
Exhaustive Search 15.979 16.407 15.924 20.696 21.470 20.585
PCA + 8x(Axial Flips) 0.031 0.063 0.033 0.972 0.951 0.934
PCA + Abs 0.019 0.037 0.021 0.641 0.680 0.671
PCA + Fourier 0.010 0.020 0.011 0.335 0.354 0.320
PCA (Heaviest Axis) 0.019 0.038 0.020 0.641 0.634 0.628
Harmonic + Quadratic 0.001 0.003 0.002 0.037 0.037 0.039
Harmonic 0.001 0.002 0.001 0.037 0.035 0.035

Table 4.3: Average time to compare two models using the different representations of the differ-
ent shape descriptors shown in Figure 4.7. Note that, with the exception of the exhaustive search
approach, comparison time is proportional to model size. Comparison time is in milliseconds.

4.2.6 Extending Descriptors

The spherical power spectrum approach described above is a general method for trans-

forming a rotation-varying descriptor into a rotation-invariant one. In this section we

show that the two descriptors designed to be rotation-invariant, namely the Shells [5]

and the D2 [43] distributions, are actually very specific instances of the power spectrum

approach. In particular, we show that using the methodology of the power spectrum ap-

proach these two representations can be transformed into more discriminating descriptors

without sacrificing rotation-invariance.

Shape Histograms (Shells)

We recall that the Shells representation of a given model is obtained by computing the

distribution of the distances of surface points from the center of mass. Another way to

obtain this representation is to compute the Shells and Sectors representation, giving the

distribution of points as a function of distance from the center of mass and spherical an-

gle, and then extract the rotation-invariant Shells representation by fixing the distance

from the center of mass and averaging the values of the distribution over all spherical
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Figure 4.8: Comparison of the Shells and the D2 descriptors with their power spectrum general-
ization. As less rotation-invariant information is discarded, the descriptors become more discrim-
inating.

angles. From a signal processing perspective, this approach is analagous to computing

the Shells and Sectors representation, as a collection of spherical functions, and then

obtaining a rotation-invariant representation by computing the spherical harmonic repre-

sentation of each spherical function and storing only the constant order term. As we had

seen above, rotation-invariant information can actually be gleaned from every frequency

using the power spectrum. Consequently, we expect the Shells representation to be less

discriminating than the more general power spectrum representation of the Shells and

Sectors descriptor. This is verified empirically in Figure 4.8(s) which shows that there

is a marked improvement in retrieval performance when the entire power spectrum of

the Shells and Sectors descriptor is used over the retrieval performance when only the

constant order terms represented in the Shells descriptor are used for matching.
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Shape Distributions (D2)

As with the Shells descriptor, the D2 descriptor can be realized as the set of constant

terms of a collection of spherical functions. In particular, we can represent a model

with a 3D histogram, obtained by iterating over all pairs of points on the surface of

the model, and for each pair of points � and � , voting with a unit weight in the bin

indexed by � � � . Restricting the 3D histogram to concentric spheres about the origin,

we obtain a translation-invariant representation of the initial model by a collection of

spherical functions, giving the distribution of distances between pairs of surface points,

as function of spherical angle. In this context, the D2 descriptor can be realized by

storing the constant order component of each spherical restriction. Again, we can get

a more refined rotation-invariant representation by storing not only the constant order

component, but the entire power spectrum. As is shown in Figure 4.8(b), the addition of

information about the energy distribution in higher frequencies gives rise to a descriptor

that is more discriminating and gives better matching performance in precision vs. recall

experiments.
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Chapter 5

Symmetry

One of the limitations of the spherical power spectrum representation described in Chap-

ter 4 is that shape information is lost as a result of the fact that the representation is local

to frequency space. As a result, the representation contains no information about the

alignment of information across different frequencies. In order to improve the discrim-

ination power of this representation, we are motivated to augment the power spectrum

with information that is global to frequency space.

In this chapter we present the symmetry descriptor, a representation of a 3D model

in terms of its reflective and rotational symmetries about all axes passing through the

model’s center of mass. To each axis of symmetry, the descriptor associates a value rep-

resenting the extent to which the model is symmetric about that axis. Thus, the descriptor

captures global shape information that is determined by the alignment of information

across different frequencies and is well suited for regaining some of the information lost

by the power spectrum representation.

We begin this chapter by presenting a general method for defining the measure of a

model’s symmetry and provide an efficient signal processing based algorithm for com-
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puting the symmetry descriptor. We describe some of the theoretical properties of the

symmetry descriptor and show how these properties can be used to guide methods for

augmenting the frequency-local power spectrum representation with frequency-global

symmetry information. Finally, we conclude by demonstrating the practical efficacy of

the symmetry augmentation approach in shape retrieval experiments.

5.1 General Symmetry

Definition: Given a vector space
�

and a group
�

that acts on
�

, we say that � � �
is

symmetric with respect to
�

if � � � � 
 � for all � � � .

Definition: We define the symmetry distance of a vector � with respect to a group
�

as

the � � distance to the nearest vector that is symmetric with respect to
�

:

sd � � � � 
 � ���
� � � � � � � �

# � ��� # )
Using the fact that the vectors that are invariant to

�
define a vector subspace of�

, it follows that the nearest
�

-invariant vector � is precisely the projection of � onto

the subspace of invariant vectors. That is, if we define  � to be the projection onto the

subspace invariant under the action of
�

and we define  ��� to be the projection onto the

orthogonal subspace then:

sd � � � � 
 # � �  � � � � # 
 #  �� � � � #
so that the symmetry distance of � with respect to

�
is the length of the projection of �

onto a subspace indexed by
�

.
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In general, computing the projection of � onto the subspace of vectors invariant under

the action of
�

is a difficult task. However, in our case we can use the fact that the

elements of
�

are orthogonal transformations. In particular, we can apply a theorem

from representation theory [50] stating that a projection of a vector onto the subspace

invariant under the action of an orthogonal group is the average of the vector over the

different elements in the group. Thus, in the case of a vector � and a group
�

, we get:

sd � � � � � 
 ����� � � �
� � �

�
� � �

� � � � �����
�


# � # � � �

� � �
�

� � �
� � � � � � � �

5.2 Defining the Symmetry Descriptor

In order to evaluate the measure of symmetry of a 3D model, it is necessary to compare a

model with its reflections/rotations. A variety of shape descriptors can be used to compare

the model with its transformation, and in this paper we focus on those that represent a

model by a spherical, or 3D, function that rotates with the model.

Notation: For any integer
�

and any unit vector � we let
� �� denote the

�
-fold rotational

symmetry group with respect to � . If
�

is positive, then
� �� is the group generated by

the transformation � � �
	 ��

which is the rotation about the axis � by the angle �* �� �
. If

�
is

negative, then
� �� is the group generated by the transformation � � �

	 �� � � , where � is the

antipodal map, sending a point � to the point � � .
For example,

�
� � & 
 ( 
 ( � is the group generated by rotating by � � � �

about the � -axis,

consisting of 3 elements, while
�
� �� ( 
 & 
 ( � is the group generated by reflecting through the

� � -plane, consisting of two elements.

Definition: Given a shape descriptor
�

, we define its
�
-fold symmetry descriptor as the

function on the sphere whose value at some point � describes the amount of
�

that is
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symmetric with respect to
� �� and the amount of

�
that is anti-symmetric:

SD � � � ��� ��
 � #  ���� � � � # � #  ����� � � � #��
where  ���� is the projection onto the space of functions that are

�
-fold symmetric about

the axis � , and  �� �� is the projection onto the orthogonal complement. (Note that since#
�
#
� 


#  ���� � � � # � � #  ����� � � � # � it suffices to compute one of

#  ���� � � � # and

#  ����� � � � # .
Despite the redundancy, we store both the pair of values, as they can be used for bounding

shape similarity.)

Figure 5.1 shows a visualization of the symmetry descriptors for a number of models.

The descriptors are represented by scaling points on the unit sphere in proportion to the

measure of symmetry

#  � � � � # , so that points corresponding to axes of near symmetry are

pushed out from the origin and points corresponding to axes of near anti-symmetry are

pulled in to the origin. Thus, for the 2-fold (respectively
�

-fold) symmetry descriptors,

peaks in the descriptors correspond to axes of near perfect 2-fold (respectively
�

-fold)

rotational symmetry.

Several important properties of the symmetry descriptors are demonstrated in the im-

age. (1) Looking at the cube, we observe that if a model is antipodally symmetric, it

has no odd frequency components and the
�

-fold and � �
-fold symmetry descriptors are

equal. (2) The example of the tetrahedron shows that a model can have � �
-fold sym-

metry even when it is not anitpodally symmetric. In particular, though the tetrahedron

does not have antipodal symmetry, and it is not � -fold symmetric about any axis, it does

have � � -fold symmetry about the axes passing through the centers of the model’s edges.

(3) The symmetry descriptors of the vase indicate that the information characterized by

the descriptors is not orthogonal. In particular, if a model has axial symmetry, than it
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Figure 5.1: A visualization of the symmetry descriptors for a collection of models. The visual-
ization is obtained by scaling unit vectors on the sphere in proportion to the measure of rotational
symmetry about the axis through the center of mass, in the direction of the vector.

must also have all other symmetries. More generally, a model can only have
� � � -fold

symmetries, if it also has
�

-fold symmetry.

5.3 Computing the Symmetry Descriptor

We will now show how to compute all the
�

-fold symmetry descriptors of a shape de-

scriptor efficiently. The key idea is that in computing the symmetry descriptor of a shape
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descriptor
�

, it is necessary to compare
�

with its rotations. This amounts to computing

the autocorrelation of
�

across the group of rotations, � � � � � � � � , and signal processing

methods for computing the autocorrelation described in Appendix A can be used to com-

pute the symmetry descriptor efficiently.

In order to compute the symmetry descriptors of a function
�

, it suffices to compute

the lengths of the projections:

��  ���� � � � �� � 
 �
� � �� � �

� � ���� �
� � � � � � �

for all
�

and all points � on the unit sphere. When
�

is positive then the elements in
� �� are

all rotations. Thus, having computed the values the autocorrelation we can reconstruct

the symmetry descriptor SD � � � ��� � . However, when
�

is negative, some elements of
� ��

will be of the form � 
 ���� � � – products of a rotation and the antipodal map. In this

case, we can use the same method as in Appendix A, decomposing the function into the

sum of its even and components,
� 
 � � � �

� with:

� � � � ��

� � � � � � � �
� �

� and
�
� � � � 


� � � � � � � � � �
� )

Then, instead of computing the autocorrelation of
�

, we compute the autocorrelation

of the even and odd parts independently to get:

� �
� � � � 
 � � � � � � � � � � and

�
�� � � � 
 � � � � � � � � � �

This provides a general expression for the value of ��  � �� � � � �� for all
� �
 � and all axes �
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as: ��  ���� � � � �� � 
 �
� � � �

�� � � � ��
� � &

� �
� � � � � �

	 �� � � � Sgn � � � � � � �� ��� � � �
	 �� �

�
 )
Note that if

�
is odd and negative, the contributions from

�
�� cancel each other out,

and the measure of the
�

-fold symmetry of
�

is equal to the measure of � �
-fold symmetry

of the even components of
�

: #  ��� � �� � � �
#


#  ����� � �� � � � �

# )
Complexity: For both spherical functions and 3D functions the complexity of computing

the autocorrelation over all rotations is bounded by � � �	�	� . Since computing the
�

-th

symmetry descriptor requires � � � � summations for each of � ��� � � points on the sphere

the overall complexity of computing the � � ��� symmetry descriptors is � � ���	� .

5.4 Properties of the Symmetry Descriptors

Work in symmetry detection has been motivated, in part, by the recognition that symme-

try is a property characterizing global shape information so that storing a small amount of

symmetry information for each model should provide an efficient bound for the similarity

of two models. In this section, we formalize this intuition by explicitly describing how

the difference in the symmetries of two models relates to their measure of similarity.
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5.4.1 Globality

A fundamental property of the symmetry descriptors is that they characterize global prop-

erties of a model and hence if the symmetry descriptors of two models differ at even one

point, we expect this to imply that the models must be different. This property can be

formulated explicitly by stating that the � � difference between symmetry descriptors is

a lower bound for the � � difference of the models:

��� �� �� SD � � � ��� � � SD � � � ��� � �� � � �� � � � �� � )
The explicit proof of this bound derives from the fact that the values of the symmetry

descriptors of a function are equal to the lengths of its projections onto two orthogonal

subspaces. Hence, for any
�

-fold symmetry, and any axis � we have:

�� � ��� �� � 
 ��  ���� � � � �  ���� � � � �� � � ��  ����� � � � �  ����� � � � �� �
�

� ��  ���� � � � �� � ��  ���� � � � ��
�
� �

� ��  �� �� � � � �� � ��  �� �� � � � ��
�
�


 �� SD � � � ��� � � SD � � � ��� � �� �
so that the difference between the symmetry descriptors of two models at any point is an

explicit bound for the proximity of the two models.

5.4.2 Continuous Symmetry Classification

One of the challenges of shape retrieval stems from the fact that often 3D models are not

a priori aligned, and many methods for comparing two models require an initial step of

pair-wise registration. For these types of applications, the globality property mentioned

above cannot be utilized without first aligning the models. In this section we show how
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symmetry information can be used for comparing two models without requiring the initial

alignment step.

We are motivated in our approach by early work in symmetry detection [6, 64, 21]

where the goal was to classify models in terms of the types of symmetry that they have.

These methods sought to assign a binary value to each integer
�
, indicating whether or

not a model had
�
-fold symmetry. Since such a representation did not specify the axis of

symmetry, it was inherently rotation-invariant.

Using the symmetry descriptors, we can extend these binary classifications into a

continuous framework where for each
�
, we store the optimal measure of

�
-fold symme-

try, even when the model is not
�
-fold symmetric. In particular, setting � � � � � to be the

maximal value of
�

-fold symmetry of
�

:

� � � � ��
 ��� �� � � � ��  ���� � � � ��
we define the optimal

�
-fold symmetry of

�
as the pair:

Sym � � � � 
 �
� � � � � ��� #

�
#
� � � � � � � �

� )
This gives a continuous, rotation-invariant classification of a model in terms of its sym-

metries. Furthermore, as a direct corollary of the globality property, it follows that the

symmetry classification can be used to bound the proximity of two models:

� � �� �� Sym � � � � � Sym � � � � �� � �� � ��� �� )
Thus the symmetry classifications can be used for matching models without requiring an

initial step of pair-wise registration.
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5.5 Symmetry Augmentation

Motivated by the properties described above, we would like to use the continuous sym-

metry classification for efficiently comparing models in a rotation-invariant manner. In

particular, we would like to augment existing shape descriptors with symmetry informa-

tion, but would like to do so in a manner that is not redundant. To this end, we consider

the power spectrum representation described in Chapter 4.

The power spectrum representation is a general method for obtaining a rotation-

invariant representation of spherical shape descriptors that describes the descriptors in

terms of the distribution of energies across different frequencies. The advantages of this

representation are two-fold: First, the representation is rotation-invariant by construction,

making it possible two compare models without first aligning them. Second, in going

from a spherical function to its power spectrum, the dimensionality of the representation

is reduced, contracting a 2D spherical function to a 1D array of energy values.

However, this representation treats each frequency component independently and

does not capture information characterizing the alignment between different frequency

components. Symmetry, by contrast, depends strongly on the manner in which the dif-

ferent frequencies align, and therefore captures information that is missing in the power

spectrum representation. Thus, augmenting the power spectrum representation with sym-

metry information should provide a more discriminating representation, combining the

local (in frequency space) information of the power spectrum with global symmetry in-

formation.

Figure 5.2 demonstrates the motivation for this approach. In this figure, a database is

queried with the near-axially symmetric table on the left, and retrieval results are shown

without (top) and with (bottom) symmetry augmentation. Note that the addition of sym-
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Figure 5.2: An example of the type of improvement gained by augmenting the power spec-
trum representation with symmetry information. The database was queried with the near axially-
symmetric table on the left and results are shown for retrieval without (top) and with (bottom)
symmetry augmentation. Note that symmetry augmentation improves matching performance by
introducing a preference for models which have near axial symmetry.

metry induces a preference for models that are near-axially symmetric, and pushes away

models (such as the square table, second model in the non-augmented results) that do not

have such a symmetry.

In order to augment the power spectrum representation we make the assumption that

symmetry is uniformly distributed across all the non-constant frequencies, so that if
�

is

a shape descriptor and Sym � � � � is the measure of the
�

-fold symmetry of
�

then:

Sym � � � � ��
 Sym � � � � �
#
� �
##

�
#

where
� � is the � -th frequency component of

�
. Thus, we replace the original power
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spectrum representation (PSR) with the symmetry augmented representations:

PSR � � � � 
�� # � ( # � Sym � � � � �
#
� &
##

�
#
� ) ) )�� Sym � � � � �

#
� �
##

�
#�� )

Then, to compare two descriptors, we find the symmetry type for which the two models

vary most and compare the corresponding symmetry augmented representations:

� � � � � � 
 � � ��
#
PSR � � � � � PSR � � � � # )

Figure 5.3 demonstrates the process of symmetry augmentation. Given a spherical

shape descriptor (shown in the top left), its power spectrum representation is computed

by expressing the spherical function in terms of its frequency components, � � ( � � & � ) ) ) � ,
and storing the norm of each component (shown in the top right). The symmetry de-

scriptors are computed and the continuous,
�
-fold symmetry of

�
is extracted (shown in

the bottom left). Finally, the power spectrum representation is augmented with symme-

try information by scaling with the
�

-fold symmetry of
�

to obtain a finer resolution of

non-constant frequency information (shown in bottom right).

5.6 Comparing the Symmetry Augmented Descriptor

Despite the fact that the symmetry augmented representation now requires a copy of the

spherical harmonic representation for each symmetry type, in theory encumbering both

storage and comparison, the symmetry augmented representation is in fact compact and

compares efficiently. In particular, if we compute the symmetry dot product:

SDot � � � � � 
 ��� �� � Sym � � � �#
�
#

� Sym � � � �#
�

# �
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Figure 5.3: The augmented power spectrum representation of a shape descriptor (top left) is
obtained by first computing the power spectrum representation (top right) and the � -fold sym-
metries of � (bottom left). The � -fold symmetries are then used to provide a finer resolution of
non-constant frequency information by multiplying each frequency norm by the pair of � -fold
symmetry values (bottom right).

and the frequency dot product:

FDot � � � � � 

��
� � &

#
� �
# #
� �
#
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independently, we can separate the role of symmetry information from frequency infor-

mation in the measure of shape similarity:

� � � � � � � 

#
�
#
� �

#
�

#
� � �

#
� ( # # � ( # � � SDot � � � � �	� FDot � � � � � )

Thus, in comparing two descriptors, the symmetry information is separated from fre-

quency information and only a single copy of the power spectrum representation needs to

be stored. Furthermore, the separation of symmetry information from frequency informa-

tion allows for efficient comparison of two models since the computations of SDot � � � � �
and FDot � � � � � are both efficient computations that can be performed independently and

then combined to give the measure of similarity.

Finally, the separation of symmetry information from frequency information provides

an easy method for modulating the importance of symmetry in the measure of model

similarity. In particular, we can define the family of shape metrics:

� �
�
� � � � � 


#
�
#
� �

#
�

#
� � �

#
� ( # # � ( # � � SDot � � � � � � � FDot � � � � � )

indexed by the parameter � . When � 
 � symmetry plays no role in shape comparison

and we revert to the power spectrum representation. When � 
 � we obtain the symmetry

augmented representation described above. More generally, as � is increased, symmetry

plays a more defining role in evaluation of shape similarity.

We observe that while the motivation for this section was the orthogonality of sym-

metry information to the information captured by the power spectrum representation, the

method can be generalized to augmenting any rotation varying shape descriptors (not just

those represented by their power spectrum). Thus, an augmented shape descriptor can be

obtained and the value of � can still be used to modulate the importance of symmetry in
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the evaluation of similarity.

5.7 Matching Results

To measure the efficacy of the symmetry augmented power spectrum representation in

tasks of shape retrieval, we measured the retrieval performance of the different spherical

shape descriptors described in Chapters 2 and 3 comparing the results obtained with and

without symmetry augmentation. In particular, we computed the (1) Extended Gaussian

Image, (2) Complex Extended Gaussian Image, (3) Sectors representation, (4) Sectors

and Shells representation, (5) Radial Spherical Extent Function, and (6) Gaussian Eu-

clidean Distance Transform, for each of the models in the test dataset of the Prince-

ton Shape Benchmark [47]. For each model and each type of shape descriptor, we

represented the descriptor with its rotation-invariant power spectrum and its rotation-

normalized PCA-aligned representation. We obtained retrieval results with and without

symmetry augmentation, where the power spectrum of the shape descriptor was aug-

mented with
�
-fold symmetry information, with

� 
 � � � � � � ��� � � ��� corresponding to

reflective, 2-fold, 3-fold, 4-fold, 5-fold and axial symmetry information. A value of

��
 � was used to amplify the importance of symmetry in retrieval – this was empiri-

cally determined to give the best results in classification experiments run on the training

dataset.

The results of the retreival experiments are shown in Figure 5.4, comparing the re-

trieval performance of augmented and un-augmented descriptors. These results highlight

two important properties of the symmetry descriptor:

� First, symmetry augmentation results in markedly improved precision for the rotation-

invariant representations while effecting only negligible improvements for the rotation-
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normalized ones. This underscores the fact that the improved precision for the

power spectrum representation is not simply the result of the amplification of the

importance of symmetry in shape matching. Specificially, these results validate the

initial motivation for the symmetry descriptor as a frequency-global shape descrip-

tor that can be used to regain some of the information lost by the frequency-local

power spectrum.

� Second, we note that symmetry augmentation is less helpful to the Extended Gaus-

sian Image and Complex Extended Gaussian Image than to other shape descriptors.

This observation reinforces the fact that the symmetry descriptor is computed by

comparing the shape descriptors of a single model, at different rotations. Thus,

the quality of the symmetry descriptor is integrally tied to the quality of the un-

derlying shape descriptor. In particular, shape descriptors such as the Extended

Gaussian Image and Complex Extended Gaussian Image, which perform poorly in

shape retrieval experiments (see Figure 3.2), give rise to less effective symmetry

augmentation.
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Figure 5.4: Retrieval results with different shape representations, demonstrating the effect of
symmetry augmentation on retrieval performance.
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Chapter 6

Anisotropy

In this chapter, we consider the implications of anisotropy on shape matching. In partic-

ular, we propose a novel method for matching 3D models that factors the shape matching

equation as the disjoint product of anisotropy and geometric comparisons. We provide a

general method for computing the factored similarity metric and show how this approach

can be applied to improve the matching performance of many existing shape matching

methods.

In order to separate anisotropy from the shape matching equation, we propose a

method for matching two 3D models that first removes the anisotropy from each of the

models, compares the geometry of the isotropic models, and then expresses the measure

of similarity of the two models as a function of both geometric and anisotropic similar-

ity. This approach is motivated by earlier work in the area of isotropic scale normaliza-

tion, which we reviewed in Chapter 4. We show how these results can be generalized to

anisotropic scale and describe a method for removing the anisotropy from models. We

conclude by describing a method for comparing two models, providing a family of shape

metrics that is parameterized by the importance assigned to anisotropy.
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6.1 Anisotropic Scale

In Chapter 4, we had shown that if two point sets are uniformally rescaled so that their

mean variance is equal to one, then they are optimally scale aligned. We now show

how these results can be generalized to solve for the optimal anisotropic scale. Given

two point sets � 
 ��� & � ) ) )������	� , with �
�

 � �

�
� ���

�
� ���

�
� � , and � 
 ��� & � ) ) ) ��� � � , with

�
�

 � �

�
� ���

�
� ���

�
� � , the sum of squared differences between the two point sets is given by

the equation: �� � � & � �
�
� � �

�
� � � � � �

�
� � �

�
� � � � � �

�
� � �

�
� � � )

It follows from the results of unform scale alignment that if we search for the optimal

anisotropic scale in any single direction � , then this occurs when the point sets � and �
are normalized so that that their variance in the direction � is equal to � . Consider, for

example, the case of solving for the optimal anisotropic scale in the � direction. In this

case, we would like to solve for the values of � and
�

that minimize

�� � � & �
� �

�
� � � �

�
� � � � � �

�
� � �

�
� � � � � �

�
� � �

�
� � �

subject to the constraint:

�� � � & �
� �

�
� � � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � � � �

�
� � � 


�� � � &
#
� �
� #
�
#
�
� #
� )

As in the case of isotropic scale, if the variance in the � -direction is equal to one, then the

models are optimally aligned with respect to scale along the � -axis.

More generally, if both point sets satisfy the property that the variance in any direc-

tion is equal to 1, it follows that any anisotropic scaling of one of the two points sets

will only increase the sum of squared differences and the models are in fact optimally
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anisotropically aligned.

In order to transform an arbitrary point set into one that has unit variance in any

direction, it suffices to compute its covariance matrix � and then apply the transformation

� � & 	 � to the point set. (Since we assume that the points are not all coplanar, the matrix

� is positive definite and hence can be inverted, and has a real square root.) To see this,

note that the covariance matrix of a point set � 
 ��� & � ) ) )������ � can be defined by the

equation:

� � 
 ��� 
 � � & � �
�
� � ��� � � � � � � � �
	 �

where the double summation is taken in order to account for the variance with respect to

center of mass. If we set � to be the transformed point set � 
 � � � & 	 �� � & � ) ) ) � � � & 	 �� ��� �
then the covariance matrix of � is given by:

� � 

��� 
 � � & � � & 	 �� � �

�
� � �	� � � � � � � �	�
	 � � & 	 ��


 � � & 	 �� � ��� 
 � � & � �
�
� � �	� � � � � � � ���
	 � � � & 	 ��


 � � & 	 �� � � � � � � & 	 �� 
 ��)
Thus, the covariance matrix of the transformed point set is equal to the identity, and the

variance in any direction is equal to 1. As with isotropic rescaling, this approach has

the advantage that it can normalize for anisotropic scale on a per-model basis, allowing a

model to be transformed in a pre-processing stage independent of the model that it will

be matched against.

The difficulty with applying this method directly to triangulated models is that the

transformation � � & 	 �� rescales area patches as a function of their normal direction. Thus

points that are unformally distributed along the untransformed model need no longer
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Figure 6.1: Uniform point samples from the surface of an iris model are shown on the left. The
same points after anisotropic rescaling, are shown on the right. Though the point set on the right
has unit variance in every direction, it no longer represents a uniform sampling from the surface
of the rescaled iris.

be uniformally distributed on the anisotropically rescaled model. This phenomenon is

illustrated in Figure 6.1 which shows points uniformly sampled from a model of an iris

(left). After an anisotropic transformation is applied to the point set (right), the positions

of the points are transformed and they no longer represent a uniform sampling of the

surface. Note that points on the stem are tightly clustered, while points on the petal

become more spread out. This property of 3D meshes results in the undesired effect that

transforming a triangulated model with the inverse square root of its covariance matrix

need not give rise to an isotropic model.

In order to address this issue, we propose an iterative approach to transform the model.

At each step of the iteration, the model is first translated so that its center of mass is

at the origin, the covariance matrix is computed, and finally the model is rescaled by

the inverse square root of the covariance matrix. In our experiments, we find that this
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Figure 6.2: A visualization of a pen model and its covariance ellipsoid is shown on the left.
The transformed model and its associated covariance ellipsoid, after one, two, and three iterations
are shown on the right. Note that though the model is very anisotropic, after the third iteration
of anisotropic rescaling we obtain a model that is nearly isotropic, with the covariance ellipsoid
converging to a sphere.

approach converges efficiently to an isotropic model and, in practice, no more than five

iterations of this process are neccessary to obtain a nearly isotropic shape. Figure 6.2

shows a model of a pen and the transformed model after several steps of the iteration

process. The figure also draws the associated covariance ellipsoids, which converge to a

sphere as the model becomes isotropic. Note that after the first iteration, the transformed

model is still not isotropic, though, as the figure indicates, the iterative process converges

quickly to an isotropic model. We provide a proof of the convergence of this approach in

the next section.

6.2 Iterative Anisotropic Rescaling

In this section, we prove the convergence of the iterative rescaling algorithm for obtaining

an isotropic model from an anisotropic one. We assume that the model is not coplanar,

so that the variance in any direction is non-zero and we show that iteratively rescaling the
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model by the inverse square root of the covariance matrix is a process that converges to

a model with constant variance, independent of direction. In particular, the steps of each

iteration are:

1. Anisotropically rescale the model by the inverse square root of the covariance ma-

trix

2. Isotropically rescale the model so that the minimum and maximum eigenvalues of

the covariance matrix of the new model are reciprocals,

and we show that iterating these steps forces the minimum and maximum eigenvalues of

the covariance matrix to converge to 1. To this end, we use the following equation for the

covariance matrix of a model � :

� � 
 $ � $ � � ��� � � � � ��� � � 	 	 � 	 �

so that the variance of � in a direction � is given by:

Var �
��� � � 
 � 	 � � � 
 $ � $ � � �	� � � � � � 	 � 	 � )
We will first show that a model with non-zero variance in any direction can always be

rescaled so that the minimum and maximum eigenvalues are reciprocals. Next, we prove

two lemmas describing the decomposition of � into an even partition and the corre-

sponding decomposition of the variance of � across such a partition. Finally, we use the

lemmas to show that the extremal eigenvalues must converge to 1.
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Isotropic Rescaling: Given a model � and scale factor � , the covariance matrix of � �
is defined as:

���
� 
 $
�
� $ ��� � �	� � � � � �	� � � 	 	 � 	 �


 �
� $ � $ � � �	� � � � � �	� � �
	 	 � 	 � 
 �

�
� � )

Thus, given a model � whose covariance matrix ��� has eigenvalues ��� � & � � �
� � � ,

we can rescale the model by � � � & � � � � � & 	 � to obtain a new model whose covariance

matrix has as its smallest and largest eigenvalues the reciprocals � � & � � � and � � � � � & .
Lemma 6.2.1 Given a continuous function

�
defined on � , there exists an even partition

of � into subsets � �
and � � and a value � such that � � � � 
 � � � � and

� � � � � ��� �
� � � � � for all � � � � �

and all � � � � � .

Proof: To prove that such a decomposition must exist, we define the function � � � � that

gives the area of the subset of � with value less than or equal to
�
:

��� � � 
 �� � � & � � � � � � � � ��
Then � � � � is a non-decreasing, right-continuous function that starts at � and grows to

� � � , and is discontinuous at points
� ( such that � � � & � � ( � ��� � . We set

�
to be the closure

of the set of values
�

for which ��� � � � � � � � � . Since � � � � is monotonic we know that
� 
 � � � �	� � , for some value � . Then for all

� �
� we have � � � � � � � � � � and for all
�
��� we have ��� � � � � � � � � . If � ��� � 
 � � � � � we can set � � equal to the inverse

image of
�

on the range � � � �	� � , and we can set � � 
 � � � � . Otherwise the

function � � � � is discontinuous at � and we must have � � � & ��� � � � ���
� � � � � � � � . Thus
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we can set � �
to be the union of the inverse image of

�
on the range ��� � � � and any

subset of
�
� & ��� � that has area � ��� � � � � � � � .

Lemma 6.2.2 Given a partition of � into equal sized subsets � �
and � � , the variance

across � �
and � � is at least as large as half the variance within � �

and half the

variance within � � . That is, if

� � �
� � � � 
 $ ��� $ ��� � � � � � � � � 	 � 	 �
� �
�� � � � 
 $ ��� $ � � � �	� � � � � � 	 � 	 �

�
� �� � � � 
 $ � � $ � � � �	� � � � � � 	 � 	 �

then we must have:

� � �
� � � � � � � � �� � � � and

�
� �� � � � � � � � �� � � � )

Proof: We show that
�
� �� � � � � � � � �� � � � , by integrating

� �
�� � � � over � � and using the

triangle inequality.

� � � �� � � � 
 � $ ��� $ � � � ��� � � � � � 	 � 	 �

 �

� � � � $ � � $ � � $ ��� ��� � � � � � � � � � � � � � � � � � � � � � 	 � � 	 � � 	 � �
By the triangle inequality, we know that:

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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so that:

� � � �� � � � � �
� � � � $ � � $ � � $ � � � � � � � � � � � � 	 � � 	 � � 	 � �


 � � � �
� � � � $ � � $ � � � � � � � � � � � � 	 � � 	 � �


 �
� �� � � �

as desired. The proof for
� � �
� � � � � � � � �� � � � is analogous.

Anisotropic Rescaling: Given a model � , we set ��� to be the covariance matrix of

� , � � � & � � �
� � � 
 � � � & to be the eigenvalues of � � , and ��� 
 � � & 	 �� to be

the inverse square root of � � . Applying ��� to the model � , we obtain a model whose

variance in direction � is given by:

Var � ��� ��� � � � � 
 $��
� � � � $��

� � � � � �	� � � � � � 	 � 	 � (6.1)


 $ � $ � � ��� � � ��� � � � � � � � � � � � � � 	 � 	 �
where � � � � is the differential change of area at the point � and must satisfy:

� � &� � �

� � � � � � �� � & � � �
)

Using the fact that each summand in Equation 6.1 is positive, we can apply the above

inequalities to get:

$ � $ � � � � � � ��� � � � � � 	 � 	 � � &� �

�
Var ����� �
� � � � � � $ � $ � � � � � � ����� � � � � 	 � 	 � �

� & � � �
)
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Using the fact that ����
 � � & 	 �� it follows that

$ � $ � � � � � � ��� � � � � � 	 � 	 ��
 # � # �
and we know that the variance of the transformed model in any direction (

# � # 
 � ) can

be bounded by
� &� �

�
Var ����� �
� � � � � �

� & � � �
)

We observe that when we rescale the model so that minimal and maximal eigenvalues

of the covariance matrix are reciprocals, the minimal eigenvalue is no smaller than � & so

that transforming � by ��� cannot make the minimal variance smaller, nor can it make

the maximal variance larger.

To show that the minimal and maximal eigenvalues must actually converge to 1, we

use the lemmas above. To do this, we use the function � � � � and Lemma 1 to evenly

partition � into � �
and � � and obtain a value � satisfying:

�
� &� �

� � � � � � � � � � � � � � �
� �

� & � � �

for all � � � � � and � � � � �
. (Though � � � � is not continuous on � , it is only

discontinuous on a closed subset with 0 area, so Lemma 1 still holds.) Expressing the
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variance of ��� ��� � in the direction � in terms of this partition we get:

Var ����� �
� � � � � 
$ � � $ � � � � � � � � � ��� � � � � � � � � � � � � � � � 	 � � 	 � �
� � $ � � $ ��� � � � � � � � ��� � � � � � � � � � � � � � � � 	 � � 	 � �
� $ � � $ � � � � � � � � � ��� � � � � � � � � � � � � � � � 	 � � 	 � �

This allows us to bound the minimal variance by:

Var ����� �
� � � � � � � � �� � ��� � � � � � &� �
� � � � �� � ��� � � � � � �

� &� �
� � � �
� � ��� � � � � � � )

Since
�
� �� ����� � � � � � � � � �� � ��� � � � � � � � �

� � ��� � � � � 
�� , since � � & � � �
�
� , and since

� � � �� � ��� � � � � � � � �� ����� � � � � , it follows that the minimum variance is bounded by:

���� � � �
� ���� �

�
�

Var � ��� �
� � � � � )
In a similar manner we can get an upper bound for the variance:

���� � � �
� ���� �

�
�

Var � ��� ��� � � � � � &� ��� � � � � � &� ��� � �
�

Isotropically rescaling ��� �
� � to get a model �� with minimal and maximal vari-

ances that are reciprocals, we get:

� & ��� � � � � � � &��� � � � � � � &
�

Var �	���� � � )
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In order to find the minimal value of the variance, over all possible � , we set

� � � � 
 ��� � � � � � � &��� � � � � � � &
and compute the derivative:

��� � � ��
 � � � � � & � � � � � � &� ��� � � � � � � & � � )
Since � & � � , the derivative is never negative, and hence the variance of �� is minimized

when � is as small as can be, which is to say � 
 � � & � � � . In this case we get:

� &
� �
��� � &

�
Var � ���� � � � �

� &
�
��� � &� )

Thus, the minimal and maximal variances of the model are guaranteed to converge to 1,

and the iterative method described in the previous section is guaranteed to converge to a

model with variance 1 in every direction.

In order to evaluate the empirical performance of this approach, we measured the effi-

ciency of convergence by computing the magnitude of the largest eigenvalue as a function

of the number of iterations. In particular, for each model in the Princeton Shape Bench-

mark [47], we iteratively (1) computed the covariance matrix of the model, (2) trans-

formed the model by the inverse square root of the covariance matrix, and (3) rescaled

the models so that its smallest and largest eigenvalues were reciprocals. We measured

the efficiency of the iterative approach by evaluating how quickly the largest eigenvalue

would converge to 1. (Since the model is uniformally rescaled so that the smallest eigen-

value is the reciprocal of the largest eigenvalue, when the largest eigenvalue is equal to

1, the covariance matrix reduces to the identity and the model is isotropic.) Figure 6.3
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Figure 6.3: A graph of the magnitude of the largest eigenvalue as a function of the number of
anisotropic rescaling iterations performed. The red plot shows the average value of the largest
eigenvalue for a database of roughly 1800 models, while the yellow plot shows the maximum
value. Note that even though some of the models are initially quite anisotropic, in practice the
iterative approach converges efficiently and a nearly isotropic model is obtained within very few
iterations.

shows a plot of the magnitude of the largest eigenvalue as a function of the number of

iterations, with the red plot showing the average value of the largest eigenvalue, averaged

over all the models in the benchmark, and the yellow plot showing the maximal value of

the largest eigenvalue, after each step of the iteration. Note that even though some of the

models are initially quite anisotropic, after five iterations even the most anisotropic of the

models is transformed into a nearly isotropic model, indicating that the iterative approach

converges very efficiently in practice.

6.3 Anisotropy Factoring

The method that we propose for anisotropy factoring is a general one that can be applied

to any of the many methods [23, 27, 5, 63, 43, 18] that matches two models by inde-
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Figure 6.4: We create a new shape descriptor by computing the outer product of the rotation-
invariant anisotropic scales with the shape descriptor of the isotropic model.

pendently representing each one by a shape descriptor, and then defining the measure of

model similarity as the � � difference between the corresponding descriptors. In partic-

ular, we anisotropically rescale a model � to obtain an isotropic model �� , storing the

sorted triplet of eigenvalues � � 
 � � � & � � �� � � �� � of the matrix transforming � into �� .

The triplet � � is a rotation-invariant representation of the anisotropy of � and, for sim-

plicity, we normalize the triplet so that

#
� �

#

 � . We compute the shape descriptor ����

of the isotropic model and, using the fact that the information contained in ���� is orthog-

onal to the information contained in � � , we represent the initial model � by the new

shape descriptor ���� � � � , as shown in Figure 6.4.

At runtime, when a query model � is presented to the database, we compute the

anisotropy factorization of � and define the measure of similarity between � and a

database model � to be the value:

�
�
�
����� ��


# ���� # � � # ���� # � � � � ���� � ���� � � � ��� � ��� � )
If � 
 � then �

�
������� � is the � � -difference between the vectors ���� � � � and �	�� �
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� � . More generally, � can be treated as a fixed constant representing the importance of

anisotropy information in the context of shape matching. Thus, in the case that � 
 � ,
anisotropy information plays no role in the matching and the matching method is invariant

to anisotropic scale. If additionally the shape descriptor is itself rotation-invariant [5, 43,

18] then we obtain a matching method that is invariant to all affine transformations.

The advantage of this matching approach is that the shape metric defines similarity as

the product of the similarity of the shape descriptors and the similarity of the anisotropies.

Thus, the new shape descriptor only needs to store three additional values, corresponding

to the normalized eigenvalues of the symmetric matrix transforming an anisotropic model

into an isotropic one. This means that neither the storage nor the comparison time of

the aniosotropy factorized shape descriptor is significantly larger than the corresponding

storage and comparison time for the original shape descriptor.

6.4 Matching Results

To measure the efficacy of the anisotropy augmented descriptor in tasks of shape re-

trieval, we measured the retrieval performance of the different shape descriptors described

in Chapters 2 and 3, comparing the results obtained with and without anisotropy aug-

mentation. In particular, we computed the (1) D2 distribution, (2) Shells distribution,

(3) Extended Gaussian Image, (4) Complex Extended Gaussian Image (5) Sectors rep-

resentation, (6) Sectors and Shells representation, (7) Radial Spherical Extent Function,

and (8) Gaussian Euclidean Distance Transform, for each of the models in the test dataset

of the Princeton Shape Benchmark. For each model and each type of shape representa-

tion, we obtained retrieval results with and without anisotropy factorization. A value of

� 
 � was used to amplify the importance of anisotropy in retrieval – this was empiri-
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cally determined to give the best results in classification experiments run on the training

dataset.

The results of the retrieval experiments for the histogram descriptors are shown in

Figure 6.5. The figure shows plots of the retrieval results comparing the retrieval per-

formance of the descriptor without anisotropy factorization to the performance of the

descriptor with anisotropy factorization. For the anisotropy factorization we show two

different plots. In the first plot, results were obtained by setting ��
 � , amplifying the

importance of anisotropy (Histogram + Scale). In the second, results were obtained by

setting � 
 � , ignoring the initial difference in anisotropy scales (Histogram – Scale).

Figure 6.5: Retrieval results with shape descriptors representing a 3D model by 1D histograms,
demonstrating the effect of anisotropy factorization on retrieval performance.

Combining the approaches described in this chapter and the previous one, we obtain

a method for augmenting shape descriptors with both symmetry and anisotropy informa-

tion. This approach can be applied to any spherical descriptor that rotates with the model

and we show the results for this hybrid approach for descriptors that represent a model by

a single spherical function in Figure 6.6, and for descriptors that represent a model with

multiple spherical functions in Figure 6.7.
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Several properties of symmetry augmentation can be observed from the results of the

retreival experiments for both the rotation-invariant descriptors shown in Figure 6.5 and

the rotation-varying descriptors shown in Figures 6.6 and 6.7.

� First, we note that amplifying a shape descriptor’s anisotropy information improves

the performance of the shape descriptor, independent of the representation. Thus,

anisotropy factorization provides a simple an effective method for comparing 3D

models in a more meaningful manner.

� Second, we note that, as apposed to symmetry augmentation, anisotropy factor-

ization improves the matching performance of all descriptors, independent of their

retrieval quality. This observation reinforces the fact that anisotropy is a property

of the geometry of the model and does not depend on the method used to represent

shapes.

� Third, we note that in the case that anisotropy factorization is performed and no

weight is assigned to anisotropy comparison ( � 
�� for Histogram – Scale, PCA +

Abs – Scale, and Harmonic + Quadratic – Scale) the matching performance does

not generally improve and for the rotation-invariant representations (Histogram and

Harmonic + Quadratic) the matching performs actually exhibits a marked deteriora-

tion in performance. We believe that the reason for this is associated with the man-

ner in which rotation alignment is addressed. Specifically, the rotation-invariant

methods address rotation after the model has been normalized for anisotropy while

the PCA-normalization methods first normalize for rotation and only then normal-

ize for aniosotropy. Thus, the rotation-invariant approaches actually match models

across a wider class of transformations, finding the best alignment over the space

of all affine transformations, while PCA-normalization methods do not actually
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match over shears. Since shears are not a type of transformation associated with

intra-class variation, the rotation-invariant methods match over too large a class of

transformations and consequently are less capable of distinguishing between mod-

els in different classes.

� Finally, we note that when the power spectrum is used to represent a shape de-

scriptor in a rotation-invariant manner, anisotropy and symmetry augmentation can

be combined to amplify two important characteristics of 3D models. In this case,

we find that the improved precision obtained using both methods of augmentation

simultaneously is roughly the sum of the improved precisions obtained using each

augmentation method separately. Thus, these two augmentations approaches are

orthogonal, providing independent methods for amplifying essential shape proper-

ties.
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Figure 6.6: Retrieval results with spherical shape representations, demonstrating the effect of the
combination of anisotropy and symmetry augmentation.
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Figure 6.7: Retrieval results with multi-spherical shape representations, demonstrating the effect
of the combination of anisotropy and symmetry augmentation.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we explored a number of the issues associated with the challenge of re-

trieving shapes from lage repositories of 3D models and we have focused on general

methods for addressing some of the central challenges of shape matching. In particular,

the contributions of this thesis are four-fold.

First, we introduced the Gaussian Euclidean Distance Transform, a new shape de-

scriptor characterizing a model by a function that peaks at the surface of the model and

falls off exponentially away from it. We designed the descriptor so that the difference be-

tween the descriptors of two models approximates the minimum sum of squared distances

between the two corresponding surfaces. In empirical evaluations, we have demonstrated

that the new descriptor is more effective in retrieval tasks than existing shape descrip-

tors and have shown that the retrieval performance of the GEDT is nearly identical to

the performance obtained when comparing models by explicitly computing the minimum

sum of squared distances between their surfaces. Thus, this new descriptor provides the
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discriminability of a shape metric, while maintaing the ease of comparison of a vector-

based shape representation, making it particularly useful for shape matching applications

designed for interactive search.

Second, we presented a general framework for addressing the rotation-alignment

problem in shape matching. We reviewed the standard PCA method for aligning mod-

els into a canonical coordinate system and the power spectrum approach for transforming

rotation-varying shape representations into rotation-invariant ones. We presented an anal-

ysis of the limitations of these approaches and presented novel methods for addressing

these limitations. In particular, we presented two methods for addressing the axial am-

biguity of PCA alignment, (1) giving a method for efficiently performing an exhaustive

search over the space of all axial flips, and (2) describing an approach for representing

shape descriptors in an axial-flip-invariant manner. We have also shown how some of

the inherent information loss occuring in the power spectrum can be ameliorated by pro-

viding a full resolution of the second order frequency information into rotation-invariant

components.

Third, we introduced the symmetry descriptor, a representation of the reflective and

rotational symmetries of spherical shape descriptors. We have shown how spherical sig-

nal processing techniques can be used to compute the symmetry descriptor efficiently and

we have shown how the obtained symmetry information can be used to augment shape

descriptors, giving rise to new shape descriptors which exhibit improved retrieval perfor-

mance without sacrificing efficiency. While this approach is a general one that can be

applied to many types of shape descriptors, we have demonstrated that it is particularly

well-suited for methods that use the power spectrum representation. This allows many ex-

isting shape descriptors to leverage the advantages of the power spectrum representation

(e.g. rotation-invariance and compactness) without suffering from the impaired matching
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performance previously associated with the information loss inherent in this approach.

Finally, we introduced the anisotropy factorization method, a general approach for

transforming anisotropic models into isotropic models that are better suited for shape

matching. By contrast with the symmetry descriptor, anisotropy factorization acts on

the model directly, rather than on the shape descriptor and hence is a technique that can

be applied to a more general class of shape retrieval methods. We provided a general

approach for augmenting existing shape representations with anisotropy information and

shown that anisotropy augmented representations gives rise to shape descriptors with

improved retrieval performance without sacrificing efficiency in matching. We have also

shown that for applications that use the power spectrum to represent a model in a rotation-

invariant manner, the two augmentation methods — symmetry and anisotropy — can be

combined to give still more discriminating results than either method alone.

7.2 Future Work

The work presented in this thesis suggests a number of different venues for possible future

work:

7.2.1 Alignment

In Chapter 4 we presented a variety of approaches for addressing the challenge of rotation

alignment for shape matching. Though we have found that the power spectrum approach

provides a conservative estimate of the measure of model similarity at the best possible

orientation while simultaneously reducing the dimensionality of the information needed

to represent a 3D model, we have also seen that this representation discards too much

information and is consequently less discriminating than PCA-normalization methods.
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In the future, we would like to consider the possibility of extending the power spec-

trum representation to contain more rotation-invariant information, thereby obtaining a

more discriminating representation that is still more compact than the underlying shape

descriptor, allowing for efficient retrieval of 3D shapes in real world applications.

7.2.2 Symmetry

The method for computing the symmetry descriptor that we presented in Chapter 5 takes

as its input a representation of a 3D model and returns the measure of the
�
-fold sym-

metries of the model with respect to all axes passing through the center. As such, this

approach is focused on the detection of symmetries of whole objects. In the future, we

would like to consider applications of this method to the symmetry detection of partial

objects. The advantage of such an approach are two-fold. First, it would allow for the

possibility of detecting local symmetries in a model, guiding methods for segmenting

models into symmetric components. Second, it could be used to guess at the symmetries

of models with missing data (e.g. parts that are occluded in the course of 3D scanning)

thereby suggesting approaches for reconstructing the missing regions.

More generally, both local and global symmetry capture the inherent redundancy of

information within a model. As such, it is natural to consider methods for utilizing sym-

metry to guide compression algorithms for providing more compact representations of

3D shapes.

7.2.3 Anisotropy

In Chapter 6 we provided an iterative approach for transforming anisotropic 3D models

into isotropic ones and proved that this approach is guaranteed to converge to a model

108



with unit variance in every direction. In experimental evaluation, we have found that the

convergence to an isotropic model is substantially more efficient than the one suggested

by the proof. In the future, we would like to examine the possibility of the existance

of a proof with tighter convergence bounds that more closely approximate the efficient

convergence exhibited in practice. We would also like to investigate the possibility of di-

rectly transforming an anisotropic model into an isotropic one, without requiring multiple

iterations. Because the convergence of the iterative process depends on the distribution

of triangle normals over the surface of the model, we believe that it may be possible to

use the Extended Gaussian Image [23] to design a method for directly transforming a 3D

surface into an isotropic one.

7.2.4 Shape Descriptors

Finally, this thesis has described two general methods for extending existing shape repre-

sentations by augmenting them with anisotropy and symmetry information. The value of

these approaches depends fundamentally on the quality of the underlying shape represen-

tation, so that if the underlying representation is not discriminating enough to distinguish

between shapes, the obtained augmented representation will also not be useful. Thus, one

of the challenges in shape matching is the design of an efficient and effective shape repre-

sentation. In the future, we would like to consider the more general questions of: “What

does it mean for two models to be similar?” and “What is a good shape representation for

capturing this notion of shape similarity” We believe that answers to these question ex-

ist both in the general area of shape matching, and in more domain-specific applications

where the notion of model similarity may be more analytically defined. In either case,

we believe that a good shape representation is fundamental to the task of shape matching

and analysis and is a rich area for future research.
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Appendix A

Signal Processing

In many of the applications that we consider, a 3D model is represented by a function
defined on either a sphere or a collection of spheres. In order to study the effects of
rotation on the model it is natural to consider a signal processing approach. In this chapter,
we review two different aspects of signal processing. First, we describe the spherical
harmonics, a basis for the space of functions on the sphere. Second, we describe the
Wigner-D functions, a basis of functions on the group of 3D rotations that describe how
rotations interact with the spherical harmonics.

A.1 Spherical Harmonics

One of the challenges of studying the action of the rotation group on the space of spherical
functions results from the fact that this space is not finite-dimensional. Spherical harmon-
ics provide a solution to this problem by decomposing the space of spherical functions
into a sum of simple, rotationally-independent, finite-dimensional subspaces. Thus, they
reduce the problem of understading the action of rotations on the entire space of spher-
ical functions to the problem of understanding the action of rotations on each of these
subspaces independently.

More specifically, the spherical harmonics are an orthonormal basis for the space of
functions defined on the surface of the sphere:

� ���� � � ��� � � ��� ( 
 � � � � � with ���� � � ��� � 
 ��� � ��� ��� � 	 ���
��� � 	 ��� ���

� � � � � � ���

�
� �

where the � �� are the associated Legendre polynomials. They define the � -th frequency
subspaces: � � 
 Span � � � �� � � � ��� &� � ) ) ) � � � � &� � � �� �
which has the following two essential properties:
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Figure A.1: The spherical harmonics. The functions are visualized by scaling points on the
sphere in proportion to the magnitude of the function at that point, where points with positive
value are drawn in red, and points with negative value are drawn in blue.

1.
� � is a representation: The subspace

� � is closed under the action of rotation, so
that for any rotation � � � � � � � and any function

� � � � � , we have � � � � ��� � � .
2.

� � is irreducible: The subspace
� � cannot be decomposed further as the sum of

(non-trivial) representations. Thus, the decomposition of the space of spherical
functions into the rotationally-independent frequency components cannot be fur-
ther refined.

Figure A.1 shows a visualization of the spherical harmonics. The functions are visual-
ized by scaling points on the sphere in proportion to the magnitude of the function at that
point, where points with positive value are drawn in red, and points with negative value
are drawn in blue. Each row represents a different frequency � , with functions within a
row corresponding to the different � �� , for fixed � . Note that as the frequency increases
(1) the number of different � �� increases, and (2) the number of lobes, or undulations, of
the constituent functions also increases.

Efficient methods for computing the forward and inverse spherical harmonic trans-
form of a spherical function have been developed [15, 20, 56], performing the transfor-
mation in � ��� � ����� � �	� time for functions defined on the surface of a sphere, sampled on
a regular � ��� � � grid.
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A.2 Wigner-D Functions

While the spherical harmonics provide a decomposition of the space of spherical func-
tions into rotation-independent components, the Wigner-D functions describe how rota-
tions act on the spherical harmonics. These are an orthonormal basis for the space of
functions defined on the group of rotations:

� � 
 �� � � � 
 � ���� � � � � �� � ��)
Thus, given the spherical harmonic decomposition of a function

�
as:

� 

��
� � ( �� � � � � � � 
 � ���� �

the coefficients of any rotation of
�

can be expressed in terms of the spherical harmonic
coefficients of

�
and the Wigner-D functions. In particular, for any rotation � � � ��� � � ,

we have:

� � � � 
 ��
� � ( �� � � � � � � 
 � � � ���� � 


��
� � ( �� � � � �

�� �
� � � � �

� � 
 � � � 
 �� ��� � �
 ���� )
Efficient methods for computing the forward and inverse Wigner-D transform of a

function defined on the group of rotations have been developed [15, 33, 20, 55], per-
forming the transformation in ����� �	� time for functions defined on the group of rotations,
sampled on a regular � ��� � � grid.

A.3 Correlation

In this thesis, we are primarily concerned with matching 3D models across different ro-
tations and reflections. To this end, the spherical harmonics transform and the Wigner-D
transform provide tools for the efficient computation of the distance between two models
over the space of all possible rotations/reflections [34]. In particular, given two spherical
functions

�
and � , our goal is to compute:#

� ��� � � �
#
� 


#
�
#
� �

#
�

#
� � � � � ��� � � � �

for every rotation/reflection � � � � � � . This reduces to the problem of computing the cor-
relation of the two functions � � ��� � � � � over the space of all rotations/reflections � � � � � � .
Using the forward spherical harmonic transform to decompose the spherical functions in
terms of their harmonics, cross multiplying harmonic coefficients within each frequency,
and then applying the inverse Wigner-D transform, provides an efficient method for com-
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puting the correlation of the two functions at every rotation. In particular, if we express
the functions

�
and � in terms of their harmonics:

� 

��
� � ( �� � � � � � � 
 � � �� and � 


��
� � ( �� � � � � � � 
 � � ��

then the correlation at a rotation � � � � � � � can be obtained by cross-multiplying har-
monic terms within each frequency:

� � � � � � � � 
 ��
� � ( �

�
�
� 
 � � � � � � � 
 � � � 
 � � ���� � � � � �� � ��


��
� � ( �

�
�
� 
 � � � � � � � 
 � � � 
 � � � 
 �� ��� � )

This gives the value of the correlation as the linear sum of the Wigner-D coefficients and
the inverse Wigner-D transform can be used to get the value of the correlation at every
rotation.

If � � � � � � and � is not a rotation (i.e. � has determinant ��� ) then � is the product
of some rotation � � � � � � � and the antipodal map � – the transformation that sends a
point � to the point � � . In order to compute the value of the correlation of

�
with � at � ,

we observe that the antipodal map acts on a function
�

as follows:

1. If
�

is an even function then the antipodal map leaves
�

unchanged

2. If
�

is an odd function then the antipodal map sends the function
�

to � � .

Thus, we can compute the correlation � � � � ��� � � � � � if we address the even and odd fre-
quencies of

�
and � independently. In particular, we express

�
and � as the sum of their

even and odd components,
� 
 � � � �

� and � 
 � � � � � , with:

� � � � ��

� � � � � � � � � �

� and
�
� � � ��


� � � � � � � � � �
�

�
� � � ��
 � � � � � � � � � �� and � � � � � 
 � � � � ��� � �
� ��

Then, instead of computing the correlation of
�

with � over all rotations, we use the
inverse Wigner-D transform to compute the correlation of the even and odd parts inde-
pendently to get:

� � � � � � � � � � and � � � � � � � � � �
This gives an expression for the correlation of

�
with � over all rotations/reflections, as:

� � � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � 
�� � � � � � � � � � ��� � � � � � � � � �
for all � � � ��� � � . Since any � � ��� � � is either itself a rotation, or the product of some
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rotation � � � � � � � and the antipodal map, this provides a method for computing the
correlation of

�
with � over all rotations/reflections.

Complexity: If the spherical functions are band-limited with band-width � and are
represented as regular samples on a � � � � � grid of spherical angles, then the spherical
harmonic transform can be computed in ����� � ����� � �	� time, the cross multiplication can
be done in � ��� � � time, and the inverse Wigner-D transform can be performed in ������� �
time, resulting in a total running time of ����� �	� to compute the correlation at each of
� ��� � � rotation. (Note that a brute force algorithm would compute the dot-product at each
of � � � � � rotations by performing an ����� � � comparison of

�
with the rotation of � , and

would result in an overall running time of � � � � � .)
Surprisingly, increasing the complexity of the function from a single spherical func-

tion to a collection of spherical functions, does not change the time for computing the
correlation if the number of spherical functions is order � � ��� . In particular, given the col-
lection of spherical functions � � & � ) ) )�� � ��� and � � & � ) ) )�� �!� � , the � � difference between
the two sets of functions, at any rotation/reflection � , is given by:��

� � &
#
�
� � � � � � �

#
� 


��
� � & �

#
�
�

#
� �

#
� �

#
� � � �

��
� � & �

�
� ��� � � � � ��)

Thus, as in the case of a single spherical function, computing the difference over all
rotations/reflections reduces to the problem of computing the correlation. Expressing
each spherical function in terms of its harmonic decomposition:

�
� 


��
� � ( �� � � � � � � 
 � � � � � �� and �

�



��
� � ( �� � � � � � � 
 � � � � � ��

allows us to define the correlation of the functions � � & � ) ) )�� � � � and � � & � ) ) ) � � � � at every
rotation/reflection � � ��� � � as:��

� � & �
�
� ��� � � � � � 


��
� � ( �

�
�
� 
 � � � � �

� ��
� � &

� � 
 � � � � � � 
 � � � � � � � 
 �� � � � )
Complexity: If the spherical functions are band-limited with band-width � and there are
� ���	� of them, then the correlation can be computed in � � � � � time. In particular, the har-
monic transform is computed in �����	� � ����� � ����� � �	� time, the cross multiplication can be
done in � � �	� � ����� � � time, and the single inverse Wigner-D transform is still performed in
� ��� �	� time. Thus, the limiting complexity of � � �	� � for computing the inverse Wigner-D
transform is not exceeded and computing the correlation of two collections of spheri-
cal functions can still be done in � � � ��� time. (Note that a brute force algorithm would

119



compute the dot-product at each of � � � � � rotations by performing an ����� � � comparison
of � � & � ) ) ) � � � � with the rotation of � � & � ) ) )�� �!� � , and would result in an overall running
time of ����� � � .)
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