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Abstract

In this dissertation we discuss a variety of techniques that advance the state of the art in the

field of 3D shape acquisition from real world objects. The research was done in collaboration with

Szymon Rusinkiewicz, James Davis, Ravi Ramammorthi, and Tim Weyrich.

Our first contribution is a new framework for the classification of stereo triangulation algo-

rithms. We classify methods according to the dimensions along which observations by both cam-

eras are matched against each other. Different algorithms consider information that extends in

space, in time, or simultaneously in both dimensions. Based on this framework, we design a

novel algorithm for the triangulation of dynamic objects, as well as a new stereo setup based on

unstructured active lighting.

We then present a novel sub-pixel precision refinement algorithm for stereo matches. We treat

both cameras symmetrically, instead of assuming one camera to provide a reference image to be

matched against. By refining match coordinates simultaneously on both cameras, we avoid a source

of bias that can otherwise manifest itself as coherent noise in the reconstructions.

We also provide an efficient algorithm for combining position and orientation measurements

into an optimal surface. Since position and orientation measurements are obtained from inde-

pendent sources, each contains errors with distinct frequency characteristics. By optimizing a

surface to conform to the most precise frequency components from each source, we can produce

reconstructions that are substantially more precise than the original measurements.

Finally, we present a strategy for the acquisition of the 3D shape of shiny objects. Standard

triangulation strategies that rely on captured appearances fail due to the view dependent nature

of the images of such objects. We present a matching cost function based on surface normal

consistency that can be used with standard dense stereo matching algorithms, and discuss the

ambiguities that can arise.
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Chapter 1

Introduction

A growing number of applications require computer models that represent the 3D shape of real

world objects. A quality inspector, for example, may wish to verify that a certain part has been

manufactured according to specification. A movie script may place actors in dangerous, unnatural,

or otherwise impractical conditions, requiring a sequence to be simulated by computer. A surgeon

may wish to replace a damaged part of a patient’s bone with a prosthesis that exactly fits in its

place. For many other examples, see section 1.1.

Although a skilled artist may be able to manually create these models, the budget, precision

tolerance, and speed requirements of many applications can make this alternative unacceptable.

Fortunately, a variety of methods have been developed that greatly reduce or completely eliminate

the need for human intervention in the shape acquisition process. In fact, several companies (for

example Cyberware, Minolta, Inspeck, and Eyetronics) currently market 3D scanning systems that

produce complete models by directly measuring real world objects.

Despite the steady progress in the field, there is still no system or technique that produces

satisfactory results under the entire range of conditions that might be important for different

applications. In this dissertation, we present a variety of results that advance the state of the art

in shape acquisition on different fronts. For example, capturing moving objects is in general more

challenging than capturing static scenes. In chapter 2, we describe a technique that is suitable for

this scenario. The methods described in chapters 3 and 4, on the other hand, focus on high-quality

applications, such as the generation of photorealistic synthetic images. Shiny or glossy objects also

present difficulties for traditional scanning methods, and we discuss an alternative for this case in

chapter 5.

The goal of this introduction is to expose readers to the key techniques, mathematical concepts,

and nomenclature that are required for a thorough understanding of the chapters that follow. Each

chapter is self-contained, and we provide individual introductions that put them into context, as

well as individual overviews of the related literature. Readers that are familiar with the area may

choose to skip the introduction and move directly to the chapters of their interest.
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1.1 Applications

In recent years, there has been a significant growth in the number of applications that take ad-

vantage of 3D models obtained from real world objects. This can be attributed to simultaneous

advances in a variety of related fields. First, 3D scanners have become more affordable, more

precise, and easier to operate. Additionally, the growing computational power of personal com-

puters, especially due to advances in graphics hardware, has simplified the task of manipulating

highly detailed models. Furthermore, advances in solid freeform fabrication technologies (for ex-

ample, stereolithography, three-dimensional printing, and fusion deposition modeling) has made it

straightforward for users to obtain synthetic solid objects directly from computer models. Below

is a non-exhaustive list of some of the applications that benefit from these technologies.

Cultural heritage projects and archaeology: Perhaps the most conspicuous use of 3D

scanning technologies has been in cultural heritage projects [17, 83, 69]. A variety of 3D scanners

have been successful in producing models of famous relics and artifacts, notably of statues [77,

62, 48, 8, 54]. These models are often used by specialists for conservation and analysis purposes.

Alternatively, within the context of museums [105, 122], the digitization of entire collections can

be used to broaden public access via remote visualization techniques [47, 122]. Solid freeform

fabrication can also be used to produce accurate replicas not only of individual artifacts, but of

entire archaeological sites [1]. Computers can also assist in the reassembling of shattered items,

including panels, pottery, and frescoes [33, 97, 71, 58].

Entertainment industry: Feature films, TV shows, and commercials are increasingly making

use of acquired 3D models. The use of the technology is not clearly advertised by the movie

industry, since its main use is in the production of convincing synthetic scenes that are nearly

indistinguishable from reality. The scenes usually involve settings that would either be impractical

to recreate in real life, would pose unnaceptable threats to the actors, or would be too expensive

to produce. In such situations, actors can be scanned and animated, and the sequences can be

generated by computer instead. Evidence of widespread use can be found in the portfolios of 3D

scanner manufacturers (see for example Cyberware and Eyetronics [39, 46]). Computer games also

frequently employ 3D models of human beings, particularly games based in movies or sports. In

order to increase realism, such games often commission scans of an entire movie cast, or even of

hundreds of athletes in a sporting league.

Other applications: In reverse engineering, CAD models can be quickly produced from 3D

scans of machine parts. In computer aided inspection, manufactured parts are scanned to ensure

they meet specifications. In robotics, 3D scanners are used to help in motion planning. In medical

applications, dental prosthetics, bone replacement parts, and ear-canal hearing aids are made to

perfectly match a patient that has been previously scanned. In architecture or civil engineering, as-

built models are obtained with 3D scanners after the completion of construction work on buildings,

industrial plants, bridges etc.

2



1.2 Shape acquisition

Producing a complete 3D model from an object is a multistage process. This process is traditionally

divided into three stages: scanning, alignment, and merger. The scanning stage produces a partial

model of the object, usually containing information about surface as visible to camera from a single

viewpoint. Many scans of the object are captured, until every surface point (or the vast majority)

is present in at least one scan (and hopefully in several). During the alignment stage, all scans

are registered together, so that overlapping areas perfectly match. The multiple aligned scans are

then finally merged into a single model.

Here we are mainly interested in the scanning stage, which is the original source of 3D shape

information. In this section, we introduce two entirely different approaches to 3D scanning, which

will be used in the following chapters. The first approach produces a dense collection position

measurements that sample the surface of the object, and is introduced in section 1.2.2. The second

approach measures the orientation of these surface points, and is introduced in section 1.2.3. Both

acquisition strategies employ cameras to capture images of the desired object, and we therefore

start by describing our camera model. At the end of the section, we briefly describe each of the

remaining steps in the scanning pipeline. A longer discussion can be found, for example, in [6].

1.2.1 Camera model and calibration

The images captured by a camera are organized as matrices I(x, y) of pixel intensities. Throughout

this work, we assume the perspective projection camera model. This model relates the coordinates

of a point P = [X Y Z]⊤, in a camera’s reference frame, to the image coordinates p = (x, y) of its

projection according to the following formula:

(x, y) = (−fx

X

Z
+ cx,−fy

Y

Z
+ cy). (1.1)

The parameters fx and fy, the horizontal and vertical focal lengths in pixels, and (cx, cy), the

principal point, are collectively known as intrinsic parameters. These can be obtained automati-

cally from any of a variety of widely available camera calibration toolkits [22, 92].

In practice, the calibration process also determines radial distortion coefficients, which account

for pincushion or barrel distortion effects, as well as skew correction coefficients. Fortunately,

these effects can be eliminated from the images by ressampling during a preprocessing stage, and

therefore we do not have to include them in our camera model explicitly.

When more than one camera is used, which is often the case throughout this work, we also

need the relative position between them. This information usually comes in the form of rotation

matrices Rij and translation vectors tij , which transform the coordinates of a point P between

the reference frames of each pair of cameras ci and cj :

Pj = RijPi + tij . (1.2)

3



Collectively known as camera extrinsics, these parameters can also be obtained automatically

from camera calibration toolkits. With this information at hand, we are ready to triangulate for

positions.

1.2.2 Triangulating for positions

Consider the camera setup in figure 1.1. Given the image coordinates (x, y) of a surface point P

as seen by a calibrated camera, we can define a ray through that point in the camera’s reference

frame as

P (Z) = p Z =







1
−fx

(x − cx)
1

−fy
(y − cy)

1






Z, (1.3)

where Z, the depth of point P , is unknown.

If we have the image coordinates (xi, yi) of the same point P as seen by two different cameras,

we can obtain two ray equations. These rays must meet at point P . Given the transformation

between the two camera reference frames, as in equation 1.2, we can equate the two rays

R12P1(Z1) + t12 = P2(Z2) (1.4)

to produce a linear system with three equations and two unknowns (Z1 and Z2), which we can solve

by linear least squares to find the intersection. In practice, due to noise and other imprecisions,

the two rays will not intersect. However, the closest point to either ray is usually an acceptable

estimate for P .

Determining the corresponding image coordinates of a point P as seen by two cameras is

significantly harder. Assuming that P projected to image coordinates (x1, y1) in camera c1, we

must find the corresponding image point seen by camera c2. Fortunately, due to the epipolar

constraint, we do not have to consider all image points (x2, y2), but only those lying on an line.

Consider figure 1.1 again. From equation 1.3, we can determine the ray through pixel (x1, y1)

in camera c1. Using equation 1.2, we can transform this ray equation to the reference frame of

camera c2:

R12 p1Z + t12 =







aZ + b

cZ + d

eZ + f






, (1.5)

on which we introduced the constants a–f to avoid expanding the expression.

Now, using equation 1.1, we can project the ray into the image plane of camera c2. The

resulting equations define the epipolar line, which we obtain by substituting the value of Z from

the expression of x2 into the expression for y2:

(x2, y2) =

(

−fx1

aZ + b

eZ + f
+ cx1 ,−fy1

cZ + d

eZ + f
+ cy1

)

⇒ a′x2 + b′y2 + c′ = 0, (1.6)
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Figure 1.1: Triangulation and the epipolar constraint. A point P is observed by two cameras c1

and c2, projecting into the image planes Π1 and Π2 at image points p1 and p2, respectively. Given
the image coordinates of p1 and p2, we can triangulate to find the 3D coordinates of point P . A
point P , along with the centers of projection of cameras c1 and c2, defines a plane Π. Plane Π
intersects the projection planes Π1 and Π2 to define lines l1 and l2. These are epipolar lines. From
the construction, it is clear that if a point P projects anywhere in l1, it must project somewhere
in l2. This is the epipolar constraint.

where again we introduced constants a′, b′, and c′ to simplify out unnecessary details. Clearly, we

can restrict our search for the correspondence of (x1, y1) to this line.

In practice, we use a convenient strategy known as rectification [80]. The idea is to warp the

input images into the images that would be captured by two virtual cameras. The virtual cameras

are parallel to each other and have matching focal lengths. By preserving the center of projection

of the original cameras, the transformations can be expressed as homographies. Under the new

configuration, however, the epipolar lines can be made horizontal, and can even share the same y

coordinate on both images. This greatly simplifies the search for correspondences.

1.2.3 Normals from photometric stereo

The photometric stereo technique [126, 104] is one of the most straightforward methods for the

acquisition of normal fields. In its simplest form, the method requires only three pictures of the

object, lit by point light sources at known positions. Assuming a diffuse surface, the radiance

measured by the camera at each pixel is proportional to n · l, where n is the normal to the surface

point being imaged, and l is a vector in the direction from the surface point towards the light

source.

If we have pictures under three known light sources, we can setup one linear system per pixel,

in the form






L1 l1

L2 l2

L3 l3






α n =







E1

E2

E3






, (1.7)

where the li are row vectors with the light source directions, the Li account for the light source

radiances, the Ei are the recorded image intensities at that pixel, and α is a measurement of surface
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albedo that also accounts for the scaling of reflected radiance values as recorded by the camera.

Both the li and the Li can be obtained during calibration. We can therefore solve the system for

α n, and obtain α by noting that n has unit length.

In practice, we position the light sources far away enough from the object, so that the light

source direction and subintended solid angle do not vary significantly over the object surface.

Finally, we use more than three light sources, and select among them the three best measurements,

trying to avoid both shadows and specular highlights. The larger number of light sources also

simplifies the task of ensuring the matrix in equation 1.7 is non-singular.

1.2.4 Surface representation

In computer aided design applications, it is common to represent surfaces as collections of piecewise

polynomial patches. Each surface patch is defined by a set of control points in a grid, which can be

edited by an artist. A continuous surface is obtained by the blending of polynomial basis functions,

weighted by the control point coordinates, or alternatively as the limit of a subdivision process

performed on the control grid. Medical applications, on the other hand, often deal with volumetric

data, i.e., scalar fields defined over a volumetric domain. These data sets are usually acquired by

Computed Axial Tomography (CAT scans) or by Magnetic Resonance Imaging (MRI scans). Such

input data invite an implicit definition of shape. Surfaces are therefore defined as sets of domain

points that form the preimage of a given measured value.

In the realm of 3D scanning, however, our data sources sample the object surface and produce

a variety of measurements, such as 3D position, surface orientation, and color. We store these

attributes directly in a list of vertices, and the surface can then be defined by connecting these

vertices together to form a set of triangles. This vertex connectivity, which defines the set of

triangles, is traditionally given explicitly or implicitly.

Range images: This strategy defines the triangles implicitly. Vertices are identified with the

nodes of a two-dimensional regular grid. The grid usually follows the arrangement of the input

images used to obtain the samples. Adjacent vertices are implicitly connected, and triangles are

formed that tile the entire grid. In general, 3D scanners produce one range image per view of the

object.

Triangle soups: This strategy defines triangles explicitly. Vertices are stored in an indexed

list, and each triangle is given by a triad of vertex indices. This representation is more general

and is usually adopted at later stages in the pipeline to define a single model that merges the

information from many independent views.

1.2.5 Alignment and merger

In order to produce a complete 3D model of an object, several independent range images must first

be aligned and then merged together into a single model. The alignment process can be divided

into two stages: one that aligns pairs of overlapping scans and a global alignment stage.
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The pairwise alignment is most often performed by one of many variations of the Iterated

Closest Points (ICP) algorithm [10, 31]. The method starts with an initial hand alignment, and

progressively refines it to find the rigid body transformation that minimizes an energy functional

that measures the distance between the overlapping regions of the two surfaces being aligned.

When many range images are merged according to their pairwise alignments, the resulting

errors tend to accumulate from one pair to the next as we move around the object. The goal of the

global alignment stage is to evenly spread this error, reducing this accumulation effect [101]. More

recent approaches consider non-rigid transformations during alignment, trying to account for the

errors caused by miscalibration warps [27].

Once all range images have been aligned, we are left with a point cloud. Although such a

representation is suitable for certain applications, the final product of a 3D scanning system is

usually a triangle mesh that covers the entire surface of the object. The most popular methods

for obtaining such a mesh are volumetric in nature [38, 70]. Combinatorial methods that attempt

to interpolate a subset of the point cloud [7, 2, 72] tend to be less robust to noise.

1.3 Summary

Depth from triangulation has traditionally been investigated in a number of independent threads

of research, with methods such as stereo, laser scanning, and coded structured light all considered

separately. In chapter 2, which was written in collaboration with James Davis, Ravi Ramamoorthi,

and Szymon Rusinkiewicz [42], we propose a common framework called spacetime stereo that unifies

and generalizes many of these previous methods. To show the practical utility of the framework,

we develop two new algorithms for depth estimation: depth from unstructured illumination change

and depth estimation in dynamic scenes. Based on our analysis, we show that methods derived

from the spacetime stereo framework can be used to recover depth in situations where existing

methods perform poorly.

Most dense stereo correspondence algorithms, such as the ones presented in chapter 2, start by

establishing discrete pixel matches and later refine these matches to sub-pixel precision. Traditional

sub-pixel refinement methods attempt to determine the precise location of points, in the secondary

image, that correspond to discrete positions in the reference image. In chapter 3, which is based

on a collaboration with Szymon Rusinkiewicz and James Davis [90], we show that this strategy

can lead to a systematic bias associated with the violation of the general symmetry of matching

cost functions. This bias produces random or coherent noise in the final reconstruction, but can be

avoided by simultaneously refining both image coordinates in a symmetric way. We demonstrate

that the symmetric sub-pixel refinement strategy results in more accurate correspondences by

avoiding bias while preserving detail.

As outlined in section 1.2, we can obtain information about the geometry of surfaces in the form

of either 3D positions (e.g., triangle meshes or range images) or orientations (normal maps or bump

maps). In chapter 4, which is the result of a collaboration with Szymon Rusinkiewicz, James Davis,

and Ravi Ramamoorthi [91], we present an algorithm that combines these two kinds of estimates
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to produce a new surface that approximates both. Our formulation is linear, allowing it to operate

efficiently on complex meshes commonly used in graphics. It also treats high- and low-frequency

components separately, allowing it to optimally combine outputs from data sources such as stereo

triangulation and photometric stereo, which have different error-vs.-frequency characteristics. We

demonstrate the ability of our technique to both recover high-frequency details and avoid low-

frequency bias, producing surfaces that are more widely applicable than position or orientation

data alone.

Finally, in chapter 5 we consider the dense reconstruction of glossy objects. The research is the

result of a collaboration with Tim Weyrich and Szymon Rusinkiewicz. We propose the use of a

specularity constraint, based on surface normal consistency, to define a matching cost function that

can drive standard stereo reconstruction methods. We also present an aggregation method based

on anisotropic diffusion that is particularly suitable for this matching cost function. Following a

theoretical discussion on the types of ambiguity that can arise from the proposed constraint, we

present a controlled illumination setup that includes a stereo camera pair, and one LCD monitor

used as a calibrated, variable-position light source. We use the setup to evaluate the proposed

method on real and synthetic data, and demonstrate its capacity to recover high-quality depth

and orientation from specular objects.
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Chapter 2

Space-time stereo triangulation

In this chapter, we consider methods that obtain depth via triangulation. Within this general

family, a number of methods have been proposed including stereo [44, 110], laser stripe scan-

ning [9, 37, 40, 65], and time- or color-coded structured light [5, 24, 55, 63, 111]. Although a

deep relationship exists between these methods, as illustrated in the classification of figure 2.1,

they have been developed primarily in independent threads of the academic literature, and are

usually discussed as if they were separate techniques. We therefore present a general framework

called spacetime stereo that helps in understanding and classifying different triangulation methods.

By viewing each technique as an instance of a more general framework, solutions to some of the

traditional limitations within each sub-space become apparent.

Most previous surveys classify triangulation techniques into active or passive methods [9, 36,

98, 118]. Active techniques, such as laser scanning and structured light, intentionally project

illumination into the scene in order to construct easily identifiable features and simplify the task

of establishing correspondences. In contrast, passive stereo algorithms attempt to find matching

image features between a pair of general images about which nothing is known a priori. This

classification has become so pervasive that we believe it is artificially constraining the range of

techniques proposed by the research community.

We propose a different classification of algorithms for depth from triangulation that charac-

terizes methods by the domain in which corresponding features are located. Techniques such as

traditional laser scanning and passive stereo typically identify features purely in the spatial do-

main. In other words, correspondence is found by the analysis of the similarity of pixels in the

image plane. Methods such as time-coded structured light and temporal laser scanning make use

of features which lie predominantly in the temporal domain. That is, pixels with similar appear-

ance variation over time are considered match. Most existing methods locate features entirely

within either the spatial or temporal domains. However it is possible—and this paper will argue

desirable—to locate features within both the space and time domains using the general framework

of spacetime stereo.

The insight that triangulation methods can be unified into a single framework is the primary
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Figure 2.1: Most existing depth from triangulation techniques are specific instances of the more
general spacetime stereo framework. Because these methods have been developed largely indepen-
dently, they have often been artificially constrained to a small range of variation. Understanding
that all these techniques lie in a continuum of possible methods can lead to previously unexplored
combinations.

contribution of this chapter. The success of a proposed framework can be measured by its simplicity

and its ability to bring new insights. We believe that this framework is sufficiently simple that

most readers will find it intuitive and almost obvious in retrospect. To illustrate the framework’s

relevance, we show that it leads naturally to two new methods for recovering depth that have not

been previously explored in the literature.

The first new method applies temporal processing to scenes in which the geometry is static,

under uncontrolled illumination variation. We call this condition unstructured light, to distinguish

it both from structured light methods in which lighting variation is strictly calibrated, and from

passive stereo in which lighting variation is typically ignored. In our experiments, this variation

is produced by the light and shadows from a handheld flashlight. The second new method applies

spacetime processing to scenes in which the target object is allowed to move. In addition to

evaluating the method, we analyze the necessity of spacetime processing, and show that optimal

reconstruction is possible only by simultaneously using the spatial and temporal domains.

We are not alone in proposing that spatiotemporal information may be useful. Zhang et al.

have simultaneously developed methods similar to ours, focusing on recovery of dynamic scenes

rather than on constructing an organizing framework [130]. Other applications have been explored

as well. For example, Shechtman et al. suggest that a spatiotemporal framework will be useful for

increasing the resolution of video sequences [115].

This chapter is largely based on a journal article, in collaboration with James Davis, Szymon
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Figure 2.2: (Left) Traditional stereo matching. (Right) Spacetime stereo matching. In traditional
stereo, the epipolar line is searched for similar spatial neighborhoods. In spacetime stereo, the
matching windows include a temporal extent, and therefore the search is for similar spatiotemporal
variation.

Rusinkiewicz and Ravi Ramamoorthi [42]. That article itself consists of a considerably expanded

version of a previous conference paper [41, 42]. The journal article included new results on shape

recovery for dynamic scenes, as well as a discussion of optimal spacetime windows in that context

(as seen in section 2.5). The current text shows several improvements. In particular, we reran

the static scene experiments of figure 2.5, in order to make the presentation consistent with the

dynamic scene experiments shown in figure 2.8.

2.2 The spacetime stereo framework

The spacetime stereo framework can most naturally be understood as a generalization of traditional

passive stereo methods. These methods proceed observing an object from two viewpoints in

known positions, and attempting to find corresponding pixels in the two images. This search

for correspondence can proceed either by comparing specific features, such as corners in each of

the images, or more typically via matching of arbitrary spatial windows in the first image to

corresponding regions along the epipolar line in the second image.

More specifically, traditional stereo finds correspondences by minimizing a matching function.

In its simplest form, the cost can be written as

∥

∥I1(Vs(x1)) − I2(Vs(x2))
∥

∥

2
. (2.1)

Here I1 is the intensity in image 1, I2 is the intensity in image 2, and Vs is a vector of pixels in

a spatial neighborhood around x1 (or x2). This is the standard minimization of sum of squared

differences to find the best matching pixel x2.

There is no reason to restrict the matching vector to lie entirely in a single spatial image plane.

By considering multiple frames across time, we can extend the matching window into the temporal

domain. The contrast between the two approaches is illustrated by figure 2.2. In general, the

matching vector can be constructed from an arbitrary spatiotemporal region around the pixel in

question. In the case of rectangular regions, a window of size N × M × T can be chosen, where

N and M are the spatial sizes of the window, and T is the dimension along the time axis. In this
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general case, we seek to optimize the matching function

∥

∥I1(Vst(x1, t0)) − I2(Vst(x2, t0))
∥

∥

2
. (2.2)

Although the search for the best match follows the epipolar line, which lies entirely in the

spatial domain, there is no mathematical distinction between the spatial and temporal axes, as far

as the matching window dimensions are concerned. By choosing T = 1, we reduce the problem

to traditional spatial-only stereo matching. By choosing N = M = 1 we use a purely tempo-

ral matching window. Under some conditions, a temporal matching vector is preferable to the

traditional spatial vector, such as if the lighting in a static scene is changing over time. When

there is motion, on the other hand, the spatial extent of the matching window becomes important.

In general, the precise lighting and scene characteristics will determine the optimal size for the

spacetime matching window.

2.3 Previous methods

Several well-investigated categories of research are in fact special cases of the general spacetime

stereo framework discussed above. These include traditional stereo, time-coded structured light,

and laser stripe scanning.

2.3.1 Traditional stereo

Traditional stereo matching is a well studied problem in computer vision. A number of good

surveys exist [44, 110]. As discussed in section 2.2, traditional stereo employs matching windows

that lie entirely in the spatial or image domain to determine correspondences.

Surprisingly, no existing stereo methods take advantage of the temporal domain. Presumably

this is due to the ubiquitous classification of techniques into passive and active. Passive techniques

are assumed to have no lighting variation, and thus no need for temporal processing. The frame-

work and examples we present make clear that it is beneficial to extend existing stereo algorithms

to use this additional source of information.

It should be noted that although epipolar analysis includes the language of “temporal” imaging,

that work encodes camera motion on the temporal axis and is thus more closely related to multi-

baseline stereo processing [18].

Most stereo methods can be broken into independent local matching and global regularization

components. Since the ambiguities of passive stereo provide poor quality local correspondences,

nearly all state of the art stereo research focuses on methods for global regularization, such as

dynamic programming [93] or graph cuts [26]. In contrast, we focus on improving the local operator

used for matching, using absolutely no method of global regularization. Many of the global methods

for improved matching in the context of traditional spatial windows could be easily extended to

include spatiotemporal windows for the local matching.
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Methods for improving the local matching metric in stereo have also been proposed, such as

adaptive windows [94] and robust matching metrics [13]. In this work we use very simple matching

in order to isolate the importance of using the spacetime domain. In particular we use constant size

rectangular windows, and accept the disparity that minimizes the SSD as shown in expression 2.2.

More sophisticated matching metrics will of course improve the results beyond what we presented

here.

Some stereo implementations make use of actively projected texture in order to aid the corre-

spondence search. For example, Kang et al. use an uncalibrated sinusoidal pattern and reconstruct

depth using a realtime multi-baseline solution [68]. We group techniques such as this with tradi-

tional stereo, rather than with the coded structured light methods discussed in the next section,

because the correspondence search is inherently spatial, rather than temporal.

2.3.2 Time-coded structured light

Time-coded structured light methods determine depth by triangulating between projected light

patterns and an observing camera viewpoint. A popular survey of these methods is by Batlle

et al. [5]. The projector illuminates a static scene with a temporally varying pattern of light. The

patterns are arranged such that every projected column of pixels can be uniquely identified. Thus,

the depth at each camera pixel is uniquely determined based on the particular pattern observed

at that pixel through time.

These systems rely on strictly controlled lighting, and most existing implementations are very

careful to synchronize projectors, use one scanning system at a time, and remove ambient illumi-

nation. Our work unifies structured light methods with stereo matching, and thus eliminates the

need for precise control over all aspects of scene lighting.

Although depth recovery in these systems is not typically described in terms of stereo matching,

they do fall within the spacetime framework. The camera matching vector is purely temporal and

is matched against a known database of projected patterns and their associated depths. The

matching error metric can be written as

∥

∥I1(Vt(x1, t0)) − P2(Vt(x2, t0))
∥

∥

2
, (2.3)

which is similar to expression 2.2, except that we have replaced the second image I2 with known

projected patterns P2. This is functionally equivalent to having a virtual second camera collocated

with the projector. The virtual camera has the same viewpoint as the light source, so the virtual

image it captures can be assumed identical to the projected light. By making conceptual use

of a second camera, depth recovery in structured light systems can be described in terms of

correspondence between images, similar to traditional stereo. It should be noted that the second

camera need not be virtual. Using an additional real camera has a number of benefits, including

improving the robustness of correspondence determination to variations in object reflectance [28],

and generating high quality ground truth stereo test images [111].
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2.3.3 Laser stripe scanning

Another alternative is laser scanning. A plane of laser light is generated from a single point of

projection and is moved across the scene. At any given time, the camera can see the intersection

of this plane with the object. Informative surveys have been provided by Besl [9] and Jarvis [65].

Most commercial laser scanners function in the spatial domain. The laser sheet has an assumed

Gaussian cross section, and the location of this Gaussian feature is known in the laser frame of

reference. Given a known laser position, the epipolar line in the camera image is searched for a

matching Gaussian feature [107]. This match determines corresponding rays, and thus a depth

value. Since the feature set lies only on one line in image space, rather than densely covering the

image plane, only a single stripe of depth values is recovered. This process is repeated many times,

while the laser stripe sweeps the entire object.

Laser scanners that function in the temporal domain have also been built [3, 67, 23]. As the

laser sweeps past each pixel, the time at which the peak intensity is observed is recorded and

used to establish correspondence. Curless and Levoy [37] provide an analysis of the benefits that

temporal correlation provides over the traditional spatial approach in the context of laser scanning.

Moreover, they show that the optimal matching uses feature vectors that are not strictly aligned

with the time axis, but are “tilted” in spacetime.

As with coded structured light, laser scanning can be framed as standard stereo matching by

replacing the calibrated laser optics with a second calibrated camera. With this modification, the

laser stripe functions as the high frequency texture desirable for stereo matching. However, since

the variation occurs in a small region, only a small amount (one stripe’s worth) of valid data is

returned at each frame. Two-camera implementations have been built that find correspondence in

both the spatial [21, 40, 85] and temporal [102] domains.

2.3.4 Partial spacetime methods

As we have seen, most previous triangulation systems can be thought of as operating either in

the purely-spatial or purely-temporal domains. Recently, however, researchers have begun to

investigate structured light systems that make use of both space and time, though typically with

many restrictions. One such system uses primarily temporal coding, adding a small spatial window

to consider stripe boundaries (i.e., adjacent pairs of stripes) [55, 106]. Another approach uses a

primarily spatial coding, adding a small temporal window to better locate stripes [129]. Still

another approach considers “tilted” space-time windows that have extent in both space and time,

but are only a single “pixel” thick [37].

Thus, as shown in figure 2.3, researchers have begun to explore the benefits of windows that

are not purely spatial or temporal. However these methods were limited in the class of matching

windows they considered, and expanding the domain of methods to encompass arbitrary space-time

windows leads to improvements in robustness and flexibility.
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Figure 2.3: Previous triangulation methods can be rephrased as special cases within the spacetime
stereo framework. Most methods use purely-spatial or purely-temporal matching windows, while
a few others use hybrid, though restricted, window shapes.

2.4 Depth from unstructured illumination change

Consider the class of scenes which includes static objects illuminated by unstructured but variable

lighting. This class includes scenes for which existing methods perform poorly, in particular tex-

tureless geometry lit by uncontrolled natural illumination, such as sunlight. Without resorting to

global smoothness assumptions, traditional spatial stereo methods will not be able to recover any

depth information in the textureless areas. On the other hand, active methods are not applicable

because they rely on carefully controlled illumination patterns.

Spacetime stereo can recover high quality depth maps for this class of scenes. By analyzing

reconstruction errors across the full range of possible spacetime window sizes, we can determine

the best dimensions, which turn out to be purely temporal (i.e., temporal stereo). To illustrate

the gains from this analysis, we present visual results showing that temporal stereo is capable

of recovering depth with far greater accuracy than traditional spatial-only analysis. The reader

should keep in mind that although temporal stereo is straightforward in light of the spacetime

framework, it represents a truly new algorithm which has not been investigated previously.

2.4.1 Experimental setup

We used two scenes to evaluate our method, pictured in figure 2.4. One consists of blocks of

wood, while the other contains a sculpture of a cat and a teapot. Stereo pairs were acquired

using a single camcorder, with mirrors producing the two viewpoints. The working volume is

approximately 50cm3, and the viewpoints have a baseline separation of about 60°. Each viewpoint

was manually calibrated using a target.
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Figure 2.4: Sample stereo pairs for two of the scenes used in our experiments. The cat statue
is illuminated by a flashlight, which was moving slowly over the scene. The blocks of wood were
illuminated with a pattern of shadows cast by a hand in front of a fixed light source. Note the
regions of uniform texture and lighting, which make traditional spatial stereo matching difficult.

We have experimented with a variety of different lighting configurations, moving a flashlight

manually across the objects, moving a hand in front of a light source to cast a sequence of shadows,

and using a hand-held laser pointer to illuminate the scene with a moving line. Under all these

conditions, we were able to produce good reconstructions using spacetime stereo.

2.4.2 Spatiotemporal matching

In order to study the performance of spacetime stereo, we compared reconstructions of the data set

of wooden blocks illuminated by a flashlight, using each possible spatiotemporal window size. Since

ground truth is unavailable, we approximate it with the visually estimated best result obtained

from the processing of a much larger data set of the same scene. For each spacetime window, we

computed the fraction of wrong disparities, with regard to this “ground truth”.

Figure 2.5 shows the results as a function of both spatial and temporal window sizes. For all

spatial window sizes, we can see that increasing temporal window length is beneficial. There are no

adverse effects from increasing the temporal length. In fact, the additional temporal information

increases the probability of finding the correct match. Another insight, confirmed by the graph, is

that after only a few frames of temporal information become available, it is no longer desirable to

use any spatial extent at all: the lowest error was obtained using a spatial window of only a single

pixel. This corresponds to the fact that spatial windows behave poorly near depth discontinuities.

It should be noted that the temporal order of frames in the video sequence was randomly

shuffled to negate any effects caused by the specific path of flashlight motion. This has the effect

of increasing the temporal information available in short temporal windows, since it removes cor-

relation between neighboring frames. As a result, using a 1 × 1 spatial window becomes optimal

after only 18 frames of temporal information are available. If we had not shuffled the frames, the

number of frames required to outperform spatial stereo would have been higher, related to the
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Figure 2.5: The the wood-block scene, illuminated with a flashlight, was reconstructed with a
variety of matching window sizes. Results were compared against ground truth and the graph
shows the percentual number of incorrect matches for each case. We conclude that for static
scenes, longer temporal extents are always beneficial, and that best results can be obtained with
a spatial window of 1 × 1.

speed at which the flashlight moves. The original sequences in this case had approximately 64

frames, and 20 frames would have been enough to obtain a good approximation of depth.

Although an analysis of only one sequence is shown, we have recovered depth for hundreds of

scenes and believe that the conclusions generalize. In particular, given static scene geometry and

variable illumination, it is desirable to use a purely temporal matching vector.

2.4.3 Comparison of spatial and temporal matching

To show the practical utility of the spacetime stereo framework, we use our conclusions from the

preceding analysis and compare purely spatial matching, as in standard stereo, with purely tempo-

ral matching. Spatial matching is computed using a 13× 13 window; results were visually similar

for other spatial window sizes. Temporal matching uses a single pixel, with a time neighborhood

including the entire temporal sequence. Figure 2.6 shows the results.

We first consider the same sequence, in which wood blocks are illuminated with a flashlight.

Spatial stereo matching is unreliable because the wooden blocks have large regions of almost

uniform texture. Hence, the results are uneven and noisy. On the other hand, lighting variation

creates texture in the time domain, making temporal matching robust. To show that our results

generalize to a variety of conditions, we repeated the experiment using different geometry and

lighting, a sculpted cat was subjected to shadowing. The results are similar: temporal matching

produces much better results than spatial matching.
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Spatial matching Temporal matching Spatial matching Temporal matching

Figure 2.6: Depth maps show a comparison between using spatial stereo matching with 13 ×
13 neighborhoods against temporal stereo. (Left) The wooden blocks with lighting variation by
manually moving a flashlight. (Right) The cat and teapot scene with lighting variation from
shadows. Note that traditional spatial stereo depth estimates are uneven and noisy, while temporal
stereo is relatively robust and accurate.

The scene of a white cat in front of a white wall was designed to be difficult or impossible

for spatial stereo. Nevertheless some readers may be surprised that spatial stereo produces such

poor depth estimates. We wish to reiterate that in order to compare only the proposed changes to

local matching, no global regularization was used in these experiments. The addition of smooth-

ness constraints would presumably improve the recovered depth regardless of whether spatial or

temporal matching was used.

2.5 Depth of moving scenes

Scenes with motion represent a new set of challenges. Traditional passive stereo can process each

frame of a sequence, but produces relatively low quality results. Active methods can not, in general

be applied, since nearly all rely on a static object. Fortunately, the spacetime stereo framework is

much more robust to motion. By subjecting the scene to high frequency illumination variations, a

spacetime window can be used to recover depth. Although this is a straightforward application of

the spacetime framework, it is unlikely that it would have been proposed by either the passive or

active triangulation communities. The passive community would not propose active lighting, and

the active community strictly controls lighting and does not speak in terms of stereo matching.

2.5.1 Experimental Setup

Moving objects require significantly higher-frequency (but still uncontrolled) lighting variation

than static objects. In order to accommodate this need, we revised our experimental setup. A pair

of cameras with a triangulation angle of approximately 15° were arranged to observe a working

volume of approximately 30cm3. Instead of using a hand-held light source, an LCD projector

was placed outside the camera baseline, but as nearby as is feasible, as shown on the left in
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Figure 2.7: The experimental setup for moving scenes. (Left) Two synchronized cameras capture
stereo views at 40Hz, while a projector displays random high frequency patterns at 60Hz. (Mid-
dle) A Sample stereo pair produced by the setup. (Right) The setup can capture static scenes with
a quality comparable to a laser scanner, as the rendering shows.

figure 2.7. As before, the cameras were calibrated and synchronized with respect to one another,

but the projector was left completely uncalibrated. Since the projected image can be changed at

60Hz, arbitrary high frequency lighting variation is possible. We simply projected random stripe

patterns onto the scene. Our cameras are capable of capturing at approximately 40Hz. The middle

of figure 2.7 shows a captured stereo pair. On the right is a reconstructed and rendered view of

the object, captured while stationary. Note that although the lighting was unknown, the resulting

accuracy is equivalent to a laser scanner.

In order to evaluate the optimal window size when objects are moving, we again needed ground

truth data. Since this is not possible while an object is actually moving, we created “moving” data

sets using stop-motion photography. The frog statue was moved by hand, under both linear and

rotational motion, and a single image was taken at each position. When combined, these images

simulate actual object motion. In order to obtain ground truth for a given frame, the frog was left

stationary while additional lighting variation was projected and recorded.

2.5.2 Spatiotemporal matching

For each moving sequence, depth was computed using all possible combinations of spatiotemporal

window sizes, and later compared to the ground truth. The percentage of correct wrong disparities

was again obtained at each case.

For scenes with motion there is a trade-off in the temporal domain between obtaining additional

information and introducing confounding distortions. If we repeat the analysis performed on static

scenes, we expect U-shaped error curves, in which accuracy first improves and then decays as the

temporal window size increases.

In the first condition, the frog was moved along a linear path at the rate of 1mm per frame. This

is equivalent to roughly 3-4 pixels of motion in the image. Figure 2.8(top) shows the robustness

of various window sizes. As expected, since the object is in motion, it is no longer preferable to

use a very large temporal window. Disambiguating information must come from somewhere, and
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Figure 2.8: (Top) Matching error for a linearly moving scene as a function of temporal window
size, for a variety of spatial window sizes. The result is a U-shaped curve for which the error first
decreases with more disambiguating information, but then increases as motion makes matching
difficult. Hence, a finite temporal window is desirable, and a 9 × 9 × 3 spacetime window is seen
to provide best results in this case. (Bottom) Matching error for a rotating scene, as a function of
temporal window size for several spatial window sizes. The result is a U-shaped curve similar to
the linear motion case. In this case, a 3 × 3 × 8 spatiotemporal window is optimal, and is better
than either spatial or temporal matching alone.
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since the temporal window is smaller, a single-pixel spatial window no longer provides good results.

In this case, we found a 9 × 9 × 3 spatiotemporal window to be optimal. We also computed the

optimum window size when the frog was subjected to rotation. When we used a rotation speed of

0.3° per frame, the optimal temporal window size was 8 frames long, and the spatial window size

was 3 × 3. Figure 2.8(bottom) shows the same type of graph, but for the rotation scenario.

It is reasonable to wonder what would happen if the object moves either faster or slower. We

increased the rotation speed by an order of magnitude to 3.0° per frame (a relatively high rate of

rotation). Although the plot is not shown, the optimal temporal window size becomes very short,

reducing to 2 frames. In this extreme case, object motion is so large that it is essentially best to

treat each frame separately with spatial stereo.

The optimal window size is a function of the speed of object motion, the camera frame rate,

the spatial texture available and the rate of temporal lighting variation. Although it is true that

projected lighting will improve any stereo algorithm, we have shown that for some scenes optimal

reconstruction requires the use of a spatiotemporal window.

When the object moves either very quickly or very slowly a degenerate form of spacetime stereo

is optimal. For fast scenes spatial-only stereo is desirable, while for static scenes temporal-only

stereo is desirable. Both spatial and temporal texture is desirable, and this texture should have a

frequency roughly equivalent to the sampling frequency along that dimension.

2.5.3 Capturing motion

In order to demonstrate the capability of spacetime stereo on real dynamic scenes, we captured

the motion of a deforming face. Rather than use stop motion photography as in the previous

experiments, the cameras captured video at 40Hz, while the projector displayed stripe patterns

at 60Hz. Depth was recovered at each frame of the sequence using a window size of 7 × 1 × 7.

This window size was chosen because both the horizontal and temporal dimensions have high

frequency texture that is useful for matching. The vertical dimension (which is aligned with our

stripe pattern) has relatively little texture, so does not contribute substantially to matching. This

sequence cannot be reconstructed reliably using either spatial-only matching or temporal-only

matching. The recovered depth was triangulated and several frames are shown rendered with

lighting in figure 2.9a.

Rendered images of polygonal models with lighting are sensitive to the mesh surface normal.

Since we show data prior to regularization it will appear noisy even if the error has low magnitude.

Figure 2.9b visualizes the mesh after filling holes and smoothing the surface normals. These steps

are analogous to the global regularization that is ubiquitously used in traditional stereo. Figure 2.9c

shows a plot of the mesh depth along the line indicated above. Note that the noise level is well

below 1mm.
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Figure 2.9: (a) Rendering of the 3D reconstructions of three frames in a dynamic scene that
shows a face smiling (yours truly), captured at 40Hz. Note recovery of subtle features like the
cheek deformation. (b) Recovered geometry before and after filling holes and smoothing mesh
normals. (c) Plot of the mesh depth along the line indicated above. Note that although noisy
normal estimates are perceptually distracting, the actual mesh geometry is accurate to under a
millimeter, evident by visual inspection of the smoothness of this plot.

2.6 Conclusions

In this chapter, we presented a new classification framework, spacetime stereo, for depth from

triangulation. Rather than distinguish algorithms as active or passive, we classify algorithms based

on the spatial or temporal domain in which they locate corresponding features. This classification

unifies a number of existing techniques, such as stereo, structured light, and laser scanning into a

continuum of possible solutions, rather than segmenting them into disjoint methods.

As a demonstration of the utility of the spacetime stereo framework, we introduced two new

methods: depth from unstructured illumination, and shape recovery for dynamic scenes using

spacetime windows. In both cases, we demonstrated depth recovery results that are superior

to those obtainable using traditional spatial-only stereo. Furthermore, we analyzed the optimal

spacetime windows and showed that, for some classes of scenes, spacetime windows must be used

for optimal reconstruction.

In summary, we believe that the spacetime stereo framework provides a useful way of thinking

about many triangulation-based depth extraction methods, and the insights from it will lead to

new applications.
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Chapter 3

Symmetric Sub-pixel Refinement

The computation of precise sub-pixel stereo correspondences is vital to areas such as 3D scanning

and image based modeling and rendering. Most dense stereo correspondence algorithms start by

determining discrete pixel matches and later refine these matches to sub-pixel precision [110]. In

global matching algorithms, the initial set of correspondences is usually computed by minimization

of a matching cost function (such as the spacetime stereo metric described in chapter 2) that has

been evaluated on an integer grid and stored in a disparity space image (DSI) [16, 128].

Sub-pixel refinement of correspondences can be performed over a finely sampled or continuously

reconstructed neighborhood of the DSI around the initial integer match. The continuous recon-

struction strategy has the advantage of being simple and efficient. On the other hand, although

computationally more expensive, the supersampling alternative tends to be more accurate. Efforts

have been made both to improve the quality of reconstruction-based refinement [116, 119] and to

improve the efficiency of supersampling [49].

In this chapter, we identify a new source of bias for reconstruction-based sub-pixel refinement

strategies (section 3.2). It can be observed when one image is considered as reference and the

refinement is performed on the corresponding coordinate in the matching image. It arises from the

sensitivity of this “traditional” approach to the varying confidence of the matching cost function

when evaluated at neighboring pixels. In the final reconstruction, the bias can be experienced as

random or coherent noise, as the “texture embossing” addressed by Curless and Levoy [37], or as

the “striping effect” addressed by Zhang et al. [131].

To avoid bias, our symmetric sub-pixel refinement strategy refines both the reference and the

matching image coordinates simultaneously, in a symmetric way, by looking for the minimum

of the matching cost function along a direction that is insensitive to its confidence variations

(section 3.3). We present results on both synthetic data and real scans, obtained using active

stereo (section 3.4), which show that this new method significantly reduces bias in high-variance

situations. Additionally, we demonstrate that one of its variants avoids the “pixel locking” effect

addressed by Shimizu and Okutomi [116].
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(a) (b) (c) (d)

Figure 3.1: Examples of matching cost functions. (a) Sum of squared differences. (b) Normalized
cross-correlation. (c) Birchfield and Tomasi [12]. (d) Sum of absolute differences. Note the
matching ridge and how the functions are symmetric with regard to it.

This chapter is largely based on a previously published conference paper [90], written in col-

laboration with Szymon Rusinkiewicz and James Davis. The current text brings a simplified proof

for equation 3.6, as well as improved figures.

3.2 The symmetry of matching cost

Consider two rectified cameras C1 and C2, producing images I1 and I2 of an object, such that

the scan-lines in each image are corresponding epipolar lines [80]. In this setup, Yang et al. [128]

reduced the problem of stereo matching to that of finding a surface in the disparity-space image

Ξ(x1, y, d), which measures the cost of matching points (x1, y) in I1 and (x1 + d, y) in I2. The

matching cost is defined by a metric M that compares neighborhoods of pixel values, so that

Ξ(x1, y, d) ≡ M(I1(x1, y), I2(x1 + d, y)). Note that for a given scan-line y, the problem simplifies

even further to that of finding a matching ridge, which is the extremum curve in Ξy(x1, d).

Instead of working in disparity space, we prefer to work directly with image coordinates. The

concept of disparity implies taking one camera as reference and, as we shall see, this is a source of

bias. The direct parameterization Fy(x1, x2) ≡ Ξy(x1, x2 − x1) is more symmetric and simplifies

our analysis. Figure 3.1 shows examples of popular matching cost functions under this direct

parametrization. In each case, the matching ridge is clearly visible. We also notice a certain

symmetry of the matching cost values, which we explain below.

Consider the intersection between the object being imaged and a given epipolar plane, as shown

in figure 3.2. It defines a curve Oy(t) that is projected into I1 and I2. If r1(t) and r2(t) are the

corresponding parametrizations for these projections, the matching ridge is simply the curve defined

by Ry(t) = (r1(t), r2(t)). Given a perfect matching pair (x1, x2), it is clear that Ry goes through

(x1, x2) for some t. If r1 and r2 are continuous and smooth at t, then (x1 + dr1(t), x2 + dr2(t)) is

a first order approximation for Ry. It follows that (x1 ± dr1, x2 ± dr2) are also on the matching

ridge and therefore are also matching pairs.
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Figure 3.2: The slope of the matching ridge. The geometry of the setup yields an expression for
the slope dr2/dr1, as given by equation 3.6. Each intersection U between the object tangent and
the baseline of the cameras produces a different slope.

Comparing the values of Fy(x1 + dr1, x2 − dr2) and Fy(x1 − dr1, x2 + dr2), we notice that they

must be similar:

Fy(x1 + dr1, x2 − dr2) ≡
≡ M(I1(x1 + dr1, y), I2(x2 − dr2, y)) (3.1)

= M(I2(x2 − dr2, y), I1(x1 + dr1, y)) (3.2)

≈ M(I1(x1 − dr1, y), I1(x1 + dr1, y)) (3.3)

≈ M(I1(x1 − dr1, y), I2(x2 + dr2, y)) (3.4)

≡ Fy(x1 − dr1, x2 + dr2) (3.5)

Steps 3.1 and 3.5 are by definition. Step 3.2 follows from the symmetry of M . Steps 3.3

and 3.4 come from the fact that, since x1 ± dr1 matches x2 ± dr2, I1(x1 ± dr1, y) must be similar

to I2(x2 ± dr2, y). The continuity of M then leads to the approximations.

We have thus shown that Fy is locally skew-symmetric about Ry. The symmetry is such that, if

a segment of the matching ridge is the diagonal of a rectangle, then symmetric pairs can be found

along symmetric lines parallel to the other diagonal. These may or may not be perpendicular to

the matching ridge (see figure 3.3).

The slope of the matching ridge (which is also the symmetry axis) is given by dr2
dr1 . This ratio

can be written as a function of the baseline distance between the cameras and the tangent to the

object at the point being imaged (equation 3.6). For a geometric derivation, assume a linear object

segment PQ as in figure 3.2. The slope dr2

dr1
is equal to the ratio between the lengths of segments

p2q2

p1q1
. From triangles PC1Q1 and PC2Q2, we conclude that p2q2

p1q1
= PQ2

PQ1
. By the same reasoning

on triangles UQC1 and UQC2, we reach PQ2

PQ1
= UC2

UC1
. We have thus proved that

dr2

dr1
=

UC2

UC1
=

Z − X2
dZ
dX2

Z − X1
dZ
dX1

(3.6)

The slope is π
4 if the two cameras coincide or if the object tangent is parallel to the baseline.

When the tangent goes through either center of projection, the ridge is perpendicular to the
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Symmetry axis Symmetric structures

Figure 3.3: The skew-symmetry of matching cost. (Left) If a segment of the matching ridge (shown
in red) is the diagonal of a rectangle (shown in white), symmetric pairs can be found along the
other diagonal (shown in blue). (Right) The symmetry becomes clear by applying a colormap to
the sample matching cost functions of figure 3.1. Even structures considerably far away from the
matching ridge tend to have correponding features on the other side.

corresponding axis. Interestingly, any object tangent going through a given point U in the baseline

produces the same matching ridge slope. When U falls between C1 and C2, only one of the cameras

can see the object, because the other camera sees it from behind. It follows that the slope of the

matching ridge is always positive.

With these observations in mind, we proceed to an analysis of the traditional approach to

sub-pixel refinement.

3.2.1 Traditional sub-pixel refinement

Assume (i1, i2) is a pair of integer best matches. Considering C1 as the reference camera, the

traditional approach is to determine a sub-pixel precision correspondence i2 + t̄2 for each i1. To

determine the optimal value of the displacement t̄2, a continuous constant-i1 cut is reconstructed

from the matching cost function values neighboring (i1, i2), and t̄2 is chosen to bring the recon-

struction to its extremum. It is common practice to fit a parabola or other curve to the values

Fy(i1, i2 − 1), Fy(i1, i2) and Fy(i1, i2 + 1).

Unfortunately, a closer look at the matching ridges of figure 3.3 reveals that their “widths”

vary considerably. This variation reflects the changing confidence of matching cost functions when

applied to different pairs of epipolar points. For example, uneven surface texture and illumination

might cause the matching function to be highly discriminating in one part of the surface, leading

to a higher and narrower ridge. Elsewhere, the matches might be more ambiguous, leading to a

lower and flatter ridge.
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(a) (b) (c) (d)

Figure 3.4: Uncertainty bumps. (a) Sliding an axis-aligned cut across uncertainty bumps causes
bias. (c) On the other hand, cuts aligned to the symmetric lines of the matching cost function are
insensitive to the bumps. Figures (b, d) show schematic views of the real data shown in figures (a,
c). Curved lines show a hypothetical uncertainty bump and dashed lines show the cut directions.

As we compute the sub-pixel matches for each i1, we slide the constant-i1 cut past several

of these uncertainty bumps in the matching ridge. As each bump goes by, the fit is biased first

to one side, then to the other. Figure 3.4a shows the phenomenon in real data, and figure 3.4b

explains why it happens schematically. This bias is responsible for most of the noise seen in the

“traditional” reconstructions of figures 3.6 and 3.7.

As suggested by figures 3.4c and 3.4d, we can avoid this problem if we look for the extrema

along the symmetric lines of the matching cost function. Neither camera is considered as reference,

and the refined matches will have sub-pixel precision in the coordinates of both images. This is

the fundamental idea behind our symmetric sub-pixel refinement method.

3.3 Symmetric sub-pixel refinement

Guided by the desire to capture the symmetry of the matching cost function, we consider a 2D

neighborhood of matching cost values around (i1, i2), and reconstruct a continuous surface S(t1, t2)

from it. We then define C(t) = S(s1t, s2t), a cut through the reconstruction in the [s1 s2]
⊤direction.

The symmetric sub-pixel refined match is given by the pair (i1+s1t̄, i2+s2t̄), where [s1 s2]
⊤ follows

the lines of symmetry of matching cost, and t̄ is chosen to bring the cut to its extremum.

All that is left to do is choose the surface reconstruction method and find the direction of the

cut. Below we investigate some options.

3.3.1 Quadric interpolation

One candidate for reconstruction is a quadric that interpolates all 9 values in the 3×3 neighborhood

N3 around (i1, i2). This quadric is uniquely defined by the following formulas:

Sq(t1, t2) = q⊤(t2)N3 q(t1), (3.7)

q(t) =







1
2 t(t + 1)

1 − t2

1
2 t(t − 1)






. (3.8)
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Note that, under this reconstruction, the traditional approach of fitting a parabola to the

constant-i1 cut reduces to finding the extremum in the [0 1]⊤ direction.

Since a cut through a quadric is at most a degree 4 polynomial, there is a closed form expression

for the position of its extremum. However, since the initial bracket is trivial and the target precision

is modest, the extremum can be easily and efficiently determined with a golden section search [99].

3.3.2 Uniform B-spline approximation

Moving away from interpolation, we can consider a larger neighborhood and use a B-Spline ap-

proximation for the matching cost function. Consider a 5 × 5 neighborhood around (i1, i2). It is

composed of four overlapping 4 × 4 neighborhoods N j
4 . We can define cubic patches for each of

these, and use their union as the B-Spline approximation:

Sb(t1, t2) = Sj
b (t1 − oj

1, t2 − oj
2), (3.9)

Sj
b (t1, t2) = b⊤(t2)N j

4 b(t1), (3.10)

b(t) =
1

6













t3

−3t3 + 3t2 + 3t2 + 1

3t3 − 6t2 + 4

−t3 + 3t2 − 3t + 1













. (3.11)

The offsets oj
1 and oj

2 simply adjust (t1, t2) to local patch coordinates. Note that Sb is C2

continuous everywhere, and only the 3 × 3 neighborhood around (i1, i2) influences the surface at

the center of the parametrization.

3.3.3 Gaussian cylinder approximation

Since the matching cost function neighborhoods we are interested in are part of the matching ridge,

we can design a surface with meaningful degrees of freedom. To this end, the following surface

represents a Gaussian Cylinder generated by a straight line:

Sg(t1, t2) = G(D(t1, t2)) (3.12)

G(d) = ae−d2

+ b, (3.13)

D(t1, t2) = s1t1 + s2 t2 − p. (3.14)

This surface enforces a ridge-like shape for the reconstruction. The parameters a, b, s1, s2,

and p can be determined by non-linear least squares minimization on the 3 × 3 neighborhood

around (i1, i2). The line D(t1, t2) = 0 then gives the local approximation for the matching ridge,

from which the sub-pixel estimate can be easily found. Usually, a few iterations of the Levenberg-

Marquardt method, as implemented by Lourakis [81], are enough for a good fit.
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3.3.4 Choice of cut direction

As suggested by figure 3.4, the direction [s1 s2]
⊤ that follows the symmetric lines of the matching

cost function is the right choice for a cut through S. Besides respecting the symmetry of matching

cost, this direction will in general be more stable than axis aligned directions. Unfortunately, since

formula 3.6 requires previous knowledge about the scene, we can not directly use it to determine

the cut direction.

We notice, however, that the principal direction of highest curvature of S at (0, 0) provides a

good estimate for [s2 s1]
⊤. This is because the highest curvature happens for cuts almost perpen-

dicular to the matching ridge. From that, [−s1 s2]
⊤ is an approximation for the matching ridge

direction and [s1 s2]
⊤ is therefore a good estimate for the direction we are looking for.

In practice, this is how we obtain the cut direction for the quadric interpolation and the B-Spline

approximation. For the Gaussian cylinder, the estimate is not required (it is directly available from

the surface parametrization).

3.4 Results

To evaluate our method, we tested it with real and synthetic data, using a temporal stereo tri-

angulation scanner setup [42, 130]. In this active scanning technique, random stripe patterns are

projected onto the scene while two cameras capture synchronized images. Since each point in the

visible surface receives a unique light profile through time, it is possible to establish correspon-

dences in a fashion similar to the area-based matching of standard stereo, but using windows that

extend only through time (i.e., with spatial width and height of just one pixel). This strategy has

the advantage of producing perfect correspondences and of being unaffected by depth discontinu-

ities. It provides us with a way to isolate the sub-pixel refinement evaluation from other sources

of error that could mask the effects we want to analyze.

Our real scanner is composed of two Sony DFW-X700 1024 × 768 firewire cameras and a

Toshiba TLP511 projector with the same resolution. The cameras are calibrated using the toolbox

by Bouguet [22] and synchronized by an external trigger. Our virtual scanner uses similar cam-

era parameters, but produces image pairs from a 3D model, simulating the stripe patterns with

projective textures. Both scanners have an estimated resolution of 0.2mm and a working volume

2000 times as large. Our tests are performed with static scenes, using sequences of 32 images, and

with the normalized-cross-correlation metric. Fewer images would be sufficient, but the additional

information improves the quality of the matching cost function. Figure 3.5 shows examples of

input images to our system. The close-ups shown correspond to two of the pairs used to produce

the object reconstruction on the left of figure 3.6.

We use two synthetic reference models: a sphere, for its wide range of smooth depth and

orientation variation, and a parametric surface Z(r, θ), for its sharp features and arbitrarily small

details:

Z(r, θ) = − 1

10
r| sin 16 θ|. (3.15)
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Figures 3.6 and 3.7 show renderings of data recovered by the virtual and real scanners respec-

tively, using the traditional parabolic fit, the method by Shimizu and Okutomi [116], and our

symmetric method employing each of the proposed reconstruction alternatives. The figures show

that our method eliminates most of the visible noise equally well for each reconstruction alterna-

tive. In particular, note how the “striping effect” has been eliminated from the Greek panel in

figure 3.6.

The Gaussian cylinder reconstruction also reduces the “pixel locking” effect addressed by Shimizu

and Okutomi [116]. This is no surprise, since a similar result holds for the traditional sub-pixel

refinement with Gaussian fit [103]. Using the spherical model, we computed histograms of the

estimated sub-pixel displacement from the integer match. Results are shown in figure 3.8.

Figures 3.9 and 3.10 show depth profiles for the reconstructed synthetic sphere and parametric

surface. The profile for the 5mm radius sphere shows a considerable variation in object tangent

direction (about 115 degrees). This in turn produces large variations in the matching ridge slope.

The spherical profiles show that our method performs well across such variations. In the parametric

surface, sharp details are progressively smaller closer to the center. The profiles show that our

method recovers details up to the same resolution as the traditional approach. Therefore, it is not

simply eliminating noise at the expense of detail.

Figure 3.11 shows the “texture embossing” effect on the depth profile of a real planar object

whose reflectance varies sinusoidally. The varying reflectance causes the confidence of the matching

cost function to vary wildly along the matching ridge. Accordingly, severe uncertainty bump errors

disrupt the traditional sub-pixel refinement strategy. In contrast, the noise levels observed in the

symmetric reconstructions are within the expected scanner precision.

3.5 Conclusions

In this chapter we identified a new source of bias in the sub-pixel refinement of stereo correspon-

dences. In reconstructed scenes, the bias manifests itself as random or coherent noise. To avoid

this bias, we presented a novel technique that exploits the inherent symmetry of matching cost

functions and refines matching coordinates in both images simultaneously. Results show that our

approach performs better than previous techniques.
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Left camera Right camera

Figure 3.5: Examples of stereo input images. A close-up is shown from two of the image pairs used
in the reconstruction of the object shown on the left of image 3.6. Patterns of varying orientation
are required to ensure that no ambiguities arise when the projector is placed away from the baseline
of the cameras.

Vase Greek panel

Photograph

Traditional

Shimizu and Okutomi

Vase Greek panel

Our method with Sq

Our method with Sb

Our method with Sg

Figure 3.6: Renderings from reconstructed geometry for the real scanner. Note how the noise level
is reduced by our method. In addition, note how the “striping effect” was eliminated from the
(replica) Greek panel scan.
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Sphere Parametric surface

Ground truth

Traditional

Shimizu and Okutomi

Sphere Parametric surface

Our method with Sq

Our method with Sb

Our method with Sg

Figure 3.7: Renderings from reconstructed geometry for the virtual scanner. From the spherical
model renderings, note how Sg reduces the “pixel locking” effect. From the parametric surface,
note how detail is preserved while noise is eliminated.

−0.25 0 0.25 −0.25 0 0.25 −0.25 0 0.25 −0.25 0 0.25

Traditional Shimizu and Okutomi Our method with Sg Ground Truth

Figure 3.8: Histograms of sub-pixel deviation from the integer match for the spherical model. The
traditional method is biased towards the center, producing a “pixel locking” effect. The method
by Shimizu and Okutomi [116] performs better, but is still biased towards ±0.25. In contrast, the
histogram for the Gaussian cylinder reconstruction is almost flat, as is the ground truth.
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Figure 3.9: Depth profiles for a synthetic spherical model (5mm radius). For each plot, ground
truth is shown in black. Note the reduced noise level for a variety of matching ridge slopes
(produced by the varying object tangent).
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Figure 3.10: Depth profiles for the synthetic parametric surface. For each plot, ground truth is
shown in black. The profiles show that our method does not simply eliminate detail along with
noise.
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Figure 3.11: Depth profiles for a real planar object whose reflectance varies sinusoidally. The
least-squares fit plane is shown in black. The varying albedo generates severe systematic biases
in the traditional sub-pixel estimation. On the other hand, the noise observed in the symmetric
reconstructions is within the scanner precision.
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Chapter 4

Combining Normals and Positions

As we discussed in the introduction, scanned 3D models of real-world objects are being used in

rendering, visualization, and analysis applications. Although the absolute accuracy of such scanned

data can be satisfactory, even a small amount of noise in measured positions can cause large errors

when surface normals are computed. Therefore, lit renderings of such scanned models may produce

low quality images, as seen in figure 4.1a.

Instead of computing normals from the measured positions, we can directly measure an in-

dependent normal field. As we have shown in section 1.2.3, there exist technologies based on

shape from shading or photometric stereo [126] that directly measure surface orientations. Using

these independently-measured fields as normal maps allows for high-quality renderings from cer-

tain viewpoints (see figure 4.1b), even when the actual mesh has low quality or low resolution.

One drawback to simply pasting a “good” normal field onto “bad” geometry, however, is incorrect

parallax and occlusion at grazing views (figure 4.2a). In addition, some rendering and mesh pro-

cessing effects such as shadowing or accessibility shading [86] inherently operate on only the surface

positions, not the normals. Thus, the poor performance of such techniques on noisy geometry (as

shown in figure 4.2b) cannot be directly ameliorated by the availability of high-quality normals.

Although it is sometimes possible to directly integrate the high-resolution normal field to produce

a surface without using additional geometric information, the lack of constraints between multiple

disconnected patches, as well as the frequent presence of low-frequency distortion (as shown later

in the chapter), can lead to bias in the reconstruction.

In this chapter, we present a hybrid algorithm that produces a surface that optimally conforms

to given surface positions and normals, taking advantage of both sources of information. Figures 4.1

and 4.2 show results of running our algorithm. Although most of our examples focus on combining

the depth information from a triangulation scanner with the normal information from photometric

stereo, the technique is applicable to positions and normals (or bump maps) acquired through

scanning, manual editing, or signal processing algorithms. Our method is efficient on dense,

real-world datasets, since we formulate our optimization in a way that requires solving only a

sparse linear system. In addition, only the most reliable frequency components of each source
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(a) (b) (c) (d)

Figure 4.1: (a) Rendering of 3D scanned range image, (b) same scanned geometry, augmented with
a measured normal-map (from photometric stereo), (c) our hybrid surface reconstruction, which
combines both position and normal constraints, (d) photograph. Note how our method eliminates
noise from the range image while introducing real detail. The surface normals computed from the
hybrid geometry are of the same quality or better than those from photometric stereo, while most
of the low-frequency bias has been eliminated.

3D scanned positions with measured normal map Hybrid reconstruction using our algorithm

(a) (b) (c) (d)

Figure 4.2: Rendering at grazing angles (a) and accessibility shading (b). High-quality normal
maps are not appropriate in these cases. The examples require the precise geometry our method
can produce with the same input data (c, d).

(a) (b) (c) (d)

Figure 4.3: Range scanners frequently have noise in position measurements that is on the order of
sample spacing, leading to noise in estimated normals (a). The popular approach of downsampling
or smoothing the raw measurements either leaves remaining noise (b) or blurs out relevant surface
detail (c). In contrast, our method combines measured positions with measured normals, leading
to noise elimination while adding real detail (d).
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are considered, resulting in a reconstruction that both preserves high-frequency details and avoids

low-frequency bias.

Our method is motivated by an analysis of the common error characteristics of measured

normals and positions (section 4.3). It proceeds in two stages: first, we correct for low-frequency

bias in the measured normal field with the help of measured surface positions (section 4.4.1).

Then, we optimize for the final surface positions (sections 4.4.2–4.4.4) using linear constraints and

an efficient sparse solver. We analyze the performance and quality of the algorithm on a variety

of datasets (section 4.5), demonstrating its ability to reconstruct accurate and precise geometry

suitable for rendering and mesh processing.

This chapter is based on a previous conference paper, written in collaboration with Szymon

Rusinkiweicz, James Davis, and Ravi Ramamoorthi [91]. The most important addition to the

current text is the improved formulation for the full model optimization, presented in section 4.4.4,

which replaces the version presented in the original paper. We also include new results in figures 4.8

and 4.11. Finally, the new implementation of the algorithm is freely available for download by

interested researchers.

4.2 Relation to previous work

Positional measurement: Of the many range scanning technologies available (see [9, 98, 35]

for surveys), methods based on triangulation have become popular, since they can be flexible,

inexpensive, and accurate. However, a fundamental limitation of triangulation-based methods is

that their depth accuracy is some fixed multiple of their (horizontal) sample spacing, which typically

results in noisy estimated normals. Although downsampling or blurring the raw measurements

is sometimes acceptable, it frequently leads to oversmoothing of detail (figure 4.3). The only

effective means of reducing noise is to combine multiple measurements. Curless and Levoy [38]

have investigated a volumetric method for combining multiple range scans, showing that their

VRIP algorithm is essentially a least-squares estimator that can average away noise while keeping

detail. In contrast, we investigate combining the fundamentally different data types of measured

positions and measured normals. Although Kazhdan et al. [70] have recently proposed a Poisson

formulation for the volumetric reconstruction problem using a set of points with normals as input,

their work focuses on obtaining a watertight surface from a point cloud, rather than on obtaining

a precise surface estimate from uncorrelated position and normal measurements.

Orientation measurement: The photometric stereo method [126], which obtains surface ori-

entation from shading information, is part of a larger set of methods known as shape-from-

shading [57]. These include methods whose outputs are surface normals, or sometimes simply

single components of surface normals. Although it is possible to integrate the normals to find

the shape of the surface, this approach is fragile when accurate surface reconstruction is desired,

largely because integrating normals is prone to introducing low-frequency biases (recall that the

action of the integration operator in frequency space is to scale energy at some frequency ω by an
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amount proportional to 1/ω, hence exaggerating any low-frequency noise). Furthermore, when the

surface consists of multiple disconnected components, integration has no way of determining the

relative position of those components. Therefore, most of the use of measured surface orientations

in graphics has been in rendering, by directly using the measured normals as normal maps [8],

which produces effective results in some but not all applications (figure 4.2).

Combining positions and orientations: Much of the existing work on combining measured

positions and orientations is intended for rough surface reconstruction in computer vision [123, 4,

50, 75], rather than for accurate reconstruction of surfaces for rendering or mesh manipulation.

Accordingly, orientation measurements are taken into account mostly because dense estimates are

available, and can help fill holes left by stereo correspondences based on sparse features.

Of methods that are general, one class integrates normals to yield a surface, then merges the

resulting mesh with the measured positions as a final step. As mentioned above, this typically

has the side effect of introducing bias and robustness problems. Some of these methods [34, 87]

address the problem of low-frequency deformation by performing frequency-dependent processing.

Although our method has a similar effect, it is inherently more stable in the presence of bias and

disconnected components, as are other techniques that avoid explicit integration of normals.

A final class of methods combines positions and normals by formulating the reconstruction

as a nonlinear optimization of constraints provided by the different measurements [59, 60, 29].

However, for the typical scanned meshes used in computer graphics, which contain 105 polygons

and above, nonlinear optimization methods can be prohibitively expensive. Our formulation of

the optimization using a sparse, typically diagonally-dominant, linear system results in efficient

optimization for large meshes, such as the ones shown throughout this chapter.

4.3 Motivation and quality assessment

In this section we motivate our method by showing some of the typical error characteristics of

acquired positions from depth scanners and acquired normals from photometric stereo techniques.

It should be noted that, although we focus on this application, our method can be applied to a

wider range of scanning, modeling or mesh processing techniques, being independent of the specific

methodology or experimental setup. In the remainder of this section, we first describe the specific

scanner we used in this work, followed by an assessment of the quality of recovered positions and

normals.

4.3.1 Experimental setup and hybrid scanner design

Consider the setup shown in figure 4.4. To acquire positions, we use a temporal stereo triangulation

scanner (such as in chapter 2), which combines the accuracy of active triangulation with the ease

of calibration of stereo. It is composed of two Sony DFW-X700 firewire cameras and a Toshiba

TLP511 projector. The cameras are calibrated using the toolbox by Bouguet [22], and synchronized
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by an external trigger. The projector flashes a series of random stripe patterns onto the object

while the cameras simultaneously capture images from two different viewpoints.

Because each surface point on a given epipolar plane receives a unique lighting profile through

time, it is possible to establish unique correspondences by simply correlating the intensity vari-

ations in both images. There is no need to calibrate or even synchronize the projector with the

cameras. Given the correspondences, the 3D positions of each point as seen by either camera can

be determined by triangulation.

To acquire normals, we augment our scanner with a number of fixed light sources and use the

photometric stereo technique [126]. Although there are more sophisticated formulations for the

method [120, 52], we rely, as others [45], on the redundancy provided by extra light sources in

order to avoid regions that deviate from the Lambertian assumption and from shadows. We use 5

white Luxeon® LED emitters arranged in a pentagon around the reference camera.

In our setup, the triangulation scanner and the photometric stereo scanner share the same

reference camera. Therefore, normals and positions are automatically registered. Other hybrid

scanner designs use independent cameras for depth and normal capture, usually acquiring normals

at a higher resolution [8]. In these cases, after registration, depth data can be up-sampled to match

the measured normal field, resulting in an output similar to that of our scanner.

4.3.2 Quality assessment

We need a way to assess the quality of measured normals and positions, and the accuracy of

our results. Our triangulation scanner has been tested by scanning simple objects with known

geometry, by comparing results with that of other scanners, and by analyzing how well different

scans from the same object align together. We are confident that position errors are below 0.2mm.

One way to obtain ground truth for further comparisons is to produce a high-resolution range

image with our triangulation scanner and use it as ground-truth when comparing to data obtained

from much lower resolution input images. In practice, we compare full resolution scans with quarter

resolution scans.

Following this idea, figures 4.5a and 4.5b present comparisons between the output of our scan-

ners and ground truth for a closeup of the target object seen in figure 4.4. Position errors are

defined as the distance to ground truth samples along lines of sight of the camera. Normal field

errors give the angular deviation with respect to ground truth normals. To facilitate visualization,

error values are mapped to colors.

Figure 4.5a shows the results for directly measured positions from our triangulation scanner.

We can also compute normals from this geometry. Position errors in this example were below

0.5mm and can result from noise in the captured images, from speckles or from imperfections

in the sub-pixel estimation of correspondences. The errors essentially take the form of random

high-frequency noise throughout the object. Although relatively small, such errors can produce

deviations in excess of 30° in the estimated normal field. When rendered with shading, these

deviations are responsible for the distracting bumps seen in figure 4.1a.
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Target

Light

Camera
Projector

Figure 4.4: Hybrid scanner setup. For position measurement, two cameras capture synchronized
images while a projector flashes random stripes at the object. For normal acquisition, one of the
cameras takes pictures under illumination by 5 different, calibrated light sources. Part of this
object is pictured in figures 4.2 and 4.5.

Position error Normal error Position error Normal error

(a) Measured positions (b) Measured normals

Position error Normal error Position error Normal error

(c) Corrected normals: section 4.4.1 (d) Optimization results: section 4.4.3

45°15° 30° 60°
3/4mm1/2mm1/4mm 1mm

0°
0mm

Figure 4.5: Quality assessment. (a-b) Notice how measured data contains considerable error. This
takes the form of high-frequency noise for measured positions from a geometric scanner, and low-
frequency bias for measured normals from a photometric scanner. (c-d) The combination of the
two sources of data corrects most of the error present in the original data.
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Figure 4.5b shows the results for normals measured by our photometric stereo scanner. Errors

in measured normals are low-frequency in nature and often manifest themselves in terms of a

systematic bias that can reach as much as 30°. These can be the result of interreflections, shadows,

or of the oversimplification of the lighting model [104, 76]. When these normals are used to

integrate for positions, large errors appear in the reconstructed surface.

4.4 Hybrid reconstruction algorithm

On the basis of the preceding error analysis, we conclude that the prevailing errors in measured

normals, such as from photometric stereo, are low-frequency in nature, whereas measured positions,

such as from a geometric depth scanner, contain mostly high-frequency noise. Therefore, our

algorithm for combining these data sources considers frequency components independently. While

it is possible to do this in a single step, we find that it is more efficient to proceed in two stages:

first correcting the bias in the normals, then optimizing the geometry to conform to both the

corrected normals and the measured positions.

Efficiency is one of our main design goals. Our normal correction step is very efficient and

simply involves low-pass filtering and rotations. Combining the corrected normals and measured

positions into an improved surface is more challenging. We formulate this as an optimization

problem, with careful development of the objective function to enable solution as a sparse linear

system. This allows our algorithm to operate efficiently on the large meshes typically found in

computer graphics.

We start with the normal correction, then we describe an algorithm specialized to work on

single range images, and finally we describe a method that operates on full models, i.e., arbitrarily

tessellated triangle meshes.

4.4.1 Using positions to improve normals

A method to eliminate the bias in the measured normals that takes advantage of the underlying

measured positions was presented by Rushmeier and Bernardini [104]. This method is specific to

the photometric stereo setting, and therefore we developed a technique that can be applied to a

wider range of input data.

As we have seen, the bias present in measured normals is low-frequency. On the other hand,

the noise in normals computed from measured positions is high-frequency (compare figures 4.5a

and 4.5b). By combining the appropriate frequency bands, we can obtain higher quality normal

estimates.

Let Np be the normal field indirectly computed from measured positions and let Nm be the

directly measured normal field. Conceptually, we wish to replace the low-frequency component

of Nm with data from Np. We start by smoothing both fields by the same amount, which should

be enough to eliminate the high-frequency noise present in Np and the high-frequency detail present

in Nm. The smoothing can be performed by individually convolving the coordinate functions of

the normals with a Gaussian and then renormalizing (3D distances can be used instead of geodesic
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distances). The resulting smoothed fields, S
(

Np
)

and S
(

Nm
)

, correspond to the low-frequency

components of the original fields.

We then compute a rotation field R representing the rotations which move each normal in

S
(

Nm
)

to the corresponding normal in Nm. Finally, we compute the corrected normal field

N c = R S
(

Np
)

by applying the rotation field to the smoothed normal field obtained from measured

positions. The rotation field captures the high-frequency detail in Nm, but is free of low-frequency

information. Unlike vector addition, rotations transfer detail uniformly from one normal field to

the other, regardless of the angular distance between the corresponding smoothed fields. Notice

that since the normal field Np is only used after severe smoothing, it can be obtained by virtually

any method that produces normals from positions.

Figure 4.5c shows the resulting corrected normals and the improved positions obtained from

their integration. We have eliminated the high-frequency noise in figure 4.5a, and significantly

reduced the bias in figure 4.5b. There are still some errors, especially in terms of surface positions

due to the inherent problems of integrating the surface normals without depth information. These

will be addressed in the next subsection.

4.4.2 Using normals to improve positions

Our problem is to find, for each point, a new optimized position that conforms to the normals

corrected by the method of section 4.4.1. We also would like to prevent these points from mov-

ing too far away from their original positions. Given the two objectives, we proceed by energy

minimization, looking for the surface S that minimizes the weighted sum of two error terms, the

position error Ep and the normal error En:

arg min
S

λEp + (1 − λ)En. (4.1)

Here, the parameter λ ∈ [0, 1] controls how much influence the positions and normals have in the

optimization. The two error terms are measured in units of squared distance, and therefore λ is

dimensionless. When λ is 0, the algorithm considers normals exclusively, with help from measured

positions only in boundary conditions, much like shape-from-shading (in fact, this is the method we

use to integrate normals for comparison purposes in this paper). When λ is 1, the algorithm simply

returns the original positions. For intermediate values, the method finds the optimal weighted

combination of normals and positions.

We restrict our formulation to error terms that lead to sparse linear least squares minimization

problems. After all, we are dealing with large problems that can contain hundreds of thousands,

or even millions of variables. Efficiency both in time and space are therefore vital. In order to

guarantee linearity, we restrict ourselves to terms in the form

∑

i

∣

∣

∣

∣Li(S) + ci

∣

∣

∣

∣

2
, (4.2)
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where the Li are linear operators, each involving a subset of the variables defining the surface S, and

the ci are arbitrary scalar constants. To guarantee sparsity, we make sure that each Li references

only a small (i.e., constant) number of variables.

In this case, it is easy to see that the resulting optimization problem is equivalent to the

solution, in the least squares sense, of the linear system













L1

L2

. .

Ln













S =













c1

c2

. .

cn













, (4.3)

where Li are rows defining each linear constraint, ci are the associated constants, and S is a

solution vector defining the optimal surface. This solution vector will contain depths in the range

image case, and displacements in the normal direction for the full model formulation. Additionally,

the method can be extended to use individual confidence estimates for each normal and position

constraint by simply pre-multiplying the system by a diagonal weight matrix (i.e., using weighted

least squares).

Another key feature in our formulation is that the optimization process commutes with the

scaling, rotation, and translation of the input. By including only lengths and projected lengths

in our error terms, we can express them as dot products. These are preserved by rigid body

transformations, which leads to rotation and translation invariance. The scale invariance, on the

other hand, comes from the fact that both the position and normal errors are scaled by the same

amount, and therefore the optimal solution remains unchanged.

We have tested a variety of sparse solvers and all of them were able to deal with the linear

systems that we formulate. Our first implementation was based on the Paige and Saunders [96]

distribution of their Conjugated Gradient method for solving sparse least squares problems. We

then moved to an implementation based on the PETSC library [84], which offers a variety of

sparse preconditioners that improve the convergence of the iterative solver. Our latest implemen-

tation uses the direct solver of the CHOLMOD library [43], which is based on sparse Cholesky

factorizations.

4.4.3 Range image formulation

Raw measured positions usually come organized in a range-image. The pixel coordinates on the

reference camera induce a natural parametrization of the corresponding surface. Accordingly,

under perspective projection, the coordinates of a surface point can be written in terms of a depth

function Z(x, y). In other words, given the pixel coordinates, the position of the corresponding

surface point P (x, y) has only one degree of freedom, Z(x, y):

P (x, y) =
[

X(x, y) Y (x, y) Z(x, y)
]

⊤ (4.4)

=
[

− x

fx

Z(x, y) − y

fy

Z(x, y) Z(x, y)
]

⊤, (4.5)
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where fx and fy are the camera focal lengths in pixels, and we have assumed the principal point

to be at the origin.

We can define the position error as the sum of squared distances between the optimized positions

and the measured positions:

Ep =
∑

i

∣

∣

∣

∣Pi − Pm
i

∣

∣

∣

∣

2
, (4.6)

where Pi is the ith optimized position, and Pm
i is the corresponding measurement. To evaluate the

position error as a function of depth only, we substitute equation 4.5 into equation 4.6 to obtain

∣

∣

∣

∣Pi − Pm
i

∣

∣

∣

∣

2
=

(

Xi − Xm
i

)2
+

(

Yi − Y m
i

)2
+

(

Zi − Zm
i

)2
(4.7)

=
(

( xi

fx

)2
+

( yi

fy

)2
+ 1

)

(

Zi − Zm
i

)2
(4.8)

= µi

(

Zi − Zm
i

)2
, (4.9)

where µi =
(

xi

fx

)2
+

(

yi

fy

)2
+ 1 is a per-pixel constant that can be precomputed. It is clear that

expression 4.9 is a linear term, in the form of expression 4.2.

The normal error could be defined in a number of different ways, including the sum of angular

errors between corresponding normals in the optimized surface and the corrected normal field,

or the sum of squared distances between each normalized or un-normalized pair. However, most

formulations do not agree with expression 4.2 and lead to non-linear optimization problems. Our

solution is to consider the tangents to the optimized surface instead. The corrected normals (which

are constant) and the tangents to the optimized surface should be perpendicular. Recall that the

surface tangents Tx and Ty at a given pixel can be written as linear functions of the depth values

and their partial derivatives:

Tx =
∂P

∂x
=









− 1
fx
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x∂Z
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+ Z
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− 1
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y ∂Z
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, (4.10)

Ty =
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∂y
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y ∂Z
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



. (4.11)

We now define

En =
∑

i

[

Tx(Pi) · N c
i

]2
+

[

Ty(Pi) · N c
i

]2
, (4.12)

where N c
i is the corrected normal corresponding to Pi. En is the sum of squared projected lengths

of the tangents to the optimized surface into the corrected normal field. It is minimized when all

tangents are perpendicular to the corrected normals. To evaluate Tx(Pi) and Ty(Pi), we compute

the partial derivatives of the depth function and substitute in equations 4.10 and 4.11. Since we

are dealing with a uniform discrete sampling of the depth function, we can approximate the partial
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derivatives by considering 3× 3 neighborhoods and the following convolution kernels, assuming all

neighbors are available:

∂Z

∂x
= Z ∗ 1

12

-1 0 1

-4 0 4

-1 0 1

, (4.13)

∂Z

∂y
= Z ∗ 1

12

1 4 1

0 0 0

-1 -4 -1

. (4.14)

Occasionally, around boundaries and depth discontinuities, some neighbors will not be present.

We can detect these cases by analyzing the measured positions and use the best possible discrete

derivative, down to simple one-sided derivatives. When there are no neighbors, the point can be

removed from the minimization. In every case, the resulting term is still linear, in the form of

expression 4.2.

The optimal surface is then given by expression 4.1, which can be minimized by linear least

squares. Each range image pixel generates at most 3 equations: one for the position error, and one

for the normal error in each of the x and y directions. Fortunately, the matrix is sparse. In fact, the

number of non-zero entries is linear in the number of pixels because there are at most 7 non-zero

entries per row (one coefficient for the depth of the reference pixel and at most six others for the

neighbors used to find the partial derivatives).

The resulting range image is accurate in both positions and normals, as the example in fig-

ure 4.5d shows. A variety of other examples are shown in figure 4.8.

4.4.4 Full model formulation

In some cases, we might be given a full 3D model with a normal map, and no access to the original

range maps. This might be because the range maps never existed (e.g., a depth acquisition method

that does not yield regularly-spaced range images was used), or because they are not available

anymore. A generalization of the 2.5D method presented in the previous section to arbitrarily

tessellated 3D meshes can be very useful in these cases.

In defining the new normal error Ên, we no longer have a trivial way to compute the partial

derivatives of the optimized surface at each vertex (needed to compute tangents), because there

is no obvious parametrization. A solution that proved adequate is to consider the polygon formed

by the neighbors of each vertex as an approximation to its tangent space. For each edge in

each polygon, we add a term to the normal error that favors edges that are perpendicular to the

measured normal at the central vertex:
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u

v
w

Ên =
∑

v

1

|v|
∑

u,w

[

N c
v ·(Pu−Pw)

]2
. (4.15)

Here u, w iterate over all edges in the 1-ring of v, and |v| represents the number of such edges.

N c
v is the corrected normal at vertex v and is therefore constant. Hence, this formulation has the

advantage of being linear. Furthermore, since small tangential vertex motions do not change the

resulting surface significantly, we can restrict vertex motion to the corresponding corrected normal

direction. This gives each vertex a single degree of freedom. To that end, let Pi = Pm
i + δiN

c
i .

The normal error assumes the form

Ên =
∑

v

1

|v|
∑

u,w

[

N c
v · (Pu − Pw)

]2
(4.16)

=
∑

v

1

|v|
∑

u,w

[

N c
v · (Pm

u + δuN c
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w − δwN c
w)

]2
(4.17)

=
∑

v

1

|v|
∑

u,w

[

δu N c
v · N c

u − δw N c
v · N c

w + N c
v · (Pm

u − Pm
w )

]2
(4.18)

=
∑

v

1

|v|
∑

u,w

[

a(v,u)δu − a(v,w)δw + b(v,u,w)

]2
, (4.19)

where a(u,v) = N c
u ·N c

v and b(v,u,w) = N c
v ·(Pm

u −Pm
w ) are scalar constants that can be precomputed.

The position error assumes an even simpler form, reducing to

Êp =
∑

i

∣

∣

∣

∣

∣

∣
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i −
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Pm
i + δiN

c
i

)

∣

∣

∣

∣

∣

∣

2

=
∑

i

δ2
i . (4.20)

Both terms conform to expression 4.2 on the unknown δi, and therefore expression 4.1 can once

again be minimized by linear least squares. The matrix is extremely sparse. In fact, each row has

at most two non-zero coefficients. On a manifold mesh with n vertices, the average degree is 6,

and therefore the number of equations is approximately 7n (n for Êp and 6n for Ên). The problem

can be solved just like the 2.5D version of the algorithm, and λ plays the same role.

The resulting full model has less high-frequency noise and more high-frequency detail than the

simple merging of range scans. Examples of full model optimization are shown in figures 4.9, 4.10,

and 4.11, and are discussed in the results section.

4.5 Results

In this section, we first evaluate the algorithm, discussing the setting of parameter values, and

the accuracy and efficiency. We then discuss some applications, showing examples of some of the

reconstructions we have produced using our method.
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Accuracy and robustness: The precision of our method is one of its key features. The color-

coded error renderings of figures 4.5c and 4.5d provide an indication of the quality of the results.

Another way to assess the accuracy of our method is to analyze depth profiles for a reference object,

as in figure 4.6. The plots show that measured positions are noisy and integration of corrected

normals creates extraneous detail, whereas the optimized surface eliminates noise while closely

following the ground truth.

Another important measure of surface precision is how well partial scans align with respect to

each other. In a standard scanning pipeline, partial scans are first manually brought close to their

aligned positions. Then, ICP [10] is run to precisely align scans pairwise. A global registration

pass [101] is used to spread registration error evenly across pairwise alignments. Finally, all scans

are merged into a single model using the VRIP volumetric method [38].

Good alignments are vital if details are to be preserved. In addition, since warped scans do

not align properly, it is possible to use alignment quality to verify that scans are free of warp.

Figure 4.7 compares our results against the alignment obtained by directly measured positions

and by integration of photometric stereo normals. Low-frequency warps are clearly visible in the

results of integration of normals. Conversely, high-frequency noise can be observed in the directly

measured positions. By contrast, the results of our method are free of warp and align very well.

In general, our method is robust with regard to outliers both in positions and normal estimates.

Position outliers can be easily detected and eliminated with the analysis of shapes and sizes of the

triangles produced from the measured range images. Although harder to detect, the influence of

normal outliers is limited to a small neighborhood.

Relative importance of positions and normals—setting λ: The λ parameter provides

simple and effective control over the behavior of the algorithm, which consistently produces good

results. Recall that λ is a dimensionless parameter in the range [0, 1] and controls the relative

contribution of normals and positions in the optimization. For instance, when the measured

positions are noisy, a smaller λ, giving less weight to geometric data, will smooth the noise away.

In general, we find that values in the range of [0.1, 0.3] are most suitable for λ, and the method

is not very sensitive to parameters in that range, with satisfactory results obtained for all the

examples we tested. Values outside this range can be appropriate when the quality of positions

and normals is less balanced.

Efficiency: One important characteristic of our method is its efficiency. By formulating only

linear constraints, we are able to solve the minimization by linear least squares. Since each con-

straint refers to a constant number of variables, and the number of constraints is linear in the

number of variables, the memory requirements are also linear. As the weight λ assigned to mea-

sured positions increases, the identity part of the linear system dominates (see equation 4.3) and

convergence is greatly improved when using the LSQR method. Hence, optimizing a range image

with λ = 0 (corresponding to integrating the surface normals directly) may require several minutes.

However, using a value of λ within the suitable range [0.10, 0.30] allows us to obtain high quality

results within seconds on models having hundreds of thousands of vertices. On the other hand,

46



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4
D

e
p

th
 (

m
m

)

 2.5

 3

 3.5

 4

ground truth integrated normals measured positions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

D
e

p
th

 (
m

m
)

 2.5

 3

 3.5

 4

ground truth optimized

Figure 4.6: Depth profiles (in 0.5mm) for a reference object. (Left) Measured positions and
integration from corrected normals, (Right) optimized surface. Note how the optimized profile
follows the ground truth profile closer than the others.
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Figure 4.7: Distance between two aligned scans of a 30cm plaster penguin. (Left) Integration of
normals, (Center) directly measured positions, (Right) optimized surfaces (λ = 0.1). Our method
produces results that are free of warp and therefore align very well.
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when using the PETSC library with preconditioning enabled, or when using the direct solver of

CHOLMOD, the value of λ has little or no impact on the running times, which are always in the

order of seconds.

Range image optimization: Our method can produce very high-quality reconstructions of

complex objects with hundreds of thousands of triangles, including sharp and high-frequency spatial

features. Our results can be used for rendering, as well as other visualization and signal-processing

tasks. In the course of this research, we have used our algorithm to create reconstructions of

several objects, some of which are shown in figure 4.8. These were all optimized with the range

image formulation of our error terms (section 4.4.3). The top row in figure 4.8 shows a closeup

of 16 aligned scans of the plaster penguin used in figure 4.7. The second row shows a closeup of

illustrations on a porcelain gravy boat. The third row shows a model obtained from a sea shell.

The fourth row is a copy of figure 4.1, for completeness. The last row shows a scan of a human

face, courtesy of Jones et al. [66] and the USC Institute for Creative Technologies.

As discussed in the introduction, errors in the normals estimated from the scanned geometry

produce unpleasant bumps (a). Using the normals acquired by photometric stereo (b) eliminates

the bumps, but introduces bias. The optimized geometry (c), on the other hand, is almost free

of noise or bias. Furthermore, we obtain accurate renderings at grazing angles, and with mesh

operations like accessibility shading (figure 4.2). Indeed, many rendering tasks like ray-tracing

reflections, silhouette computations, suggestive contours, and lighting will benefit from the noise

free, unbiased normals of our method.

Full model optimization: We present three results of the full model version of our algorithm

(subsection 4.4.4). The model shown in the left part of figure 4.9 is the result of the alignment

and merging of 15 raw range scans into a full model. Normals for the same object were measured

by another 15 photometric stereo scans. These normals were then corrected for bias (as in sec-

tion 4.4.1) and mapped to the vertices of the merged model. Finally, the vertex positions were

then optimized to conform to the mapped normal constraints. The result, shown in the right of

figure 4.9, clearly has less high-frequency noise and more detail.

As an example of application of our method to unconventional sources of surface normal and

geometry information, consider the quarter in figure 4.10. The model was produced by the mesh

optimization of flat geometry with a bump map. The flat geometry was generated procedurally,

from the specification of the coin dimensions. The bump maps for the two sides of the coin were

produced with a flat-bed scanner. The bump map for the edge was produced procedurally from

the specification of the number of ridges. The figure shows a model lit by normals computed from

the optimized geometry.

Finally, the dataset shown on figure 4.11 was courtesy of Weyrich et al. [124] and the Mitsubishi

Electric Research Laboratories. The output of their triangulation scanner consists two range images

merged into a single face model. The setup also captures a registered normal field, which we used

to improve the geometry. The results allowed their group to investigate the fine surface detail of

a large collection of human faces.
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(a) (b) (c) (d)

Figure 4.8: Rendering comparisons. (a) Rendering of 3D scanned range image, (b) same scanned
geometry, augmented with a measured normal-map (from photometric stereo), (c) our hybrid
surface reconstruction, (d) photograph. The first row is the result of aligning several range images
for the penguin shown in figure 4.7. The second row shows a closeup of a porcelain gravy boat.
The third row shows scans of a sea shell. The fourth row shows scans of a plaster replica of a
Greek panel. The last row shows scans of human face (the dataset was courtesy of Jones et al. [66]
and the USC Institute For Creative Technologies).
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Figure 4.9: (Left) Several range scans were
aligned and merged. (Right) Normals coming
from photometric stereo were mapped to the
merged model, which was then optimized with
your method. Notice how the noisy geometry
was improved.

Figure 4.10: The figure shows an example with
alternative sources for geometry and normals.
A model of a quarter was produced from ini-
tially flat geometry and a bump map. The fig-
ure shows optimized model with normals recom-
puted from geometry.

(a) (b) (c)

Figure 4.11: The scanner that produced the model in (a) does not return range images. Instead,
it outputs the result of merging two range images. A light dome was used to capture registered
normals (b). The data was later optimized using our algorithm. Notice how the detail was
transfered from the normal field to the geometry (c). The dataset was courtesy of Weyrich et al.
[124] and the Mitsubishi Electric Research Laboratories.
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4.6 Conclusions

3D geometry is commonplace in computer graphics. Typically, this information comes in the

form of depth and vertex positions, or normals and surface orientations. However, neither depth

information alone, normal information alone, nor a simple combination such as a bump map provide

a complete solution for computer graphics modeling and rendering. In this chapter, we have shown

that when we have access to positions and normals for a 3D model, it is possible to combine these

two sources of information into an optimal surface. If only the most reliable component of each

source of information is considered, the resulting surface will be more precise than that obtainable

by each source independently. We presented an analysis of the common error characteristics of

standard position and normal acquisition systems, and designed our algorithm to account for these

types of errors. By formulating the problem in a particular way, we reduced it to the solution of a

sparse linear system, enabling very efficient computation of optimal surfaces for large meshes. Our

algorithm represents the first practical technique in computer graphics for combining position and

normal information into a precise surface reconstruction.
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Chapter 5

Specularity triangulation

A popular class of systems for determining the 3D shape of real-world objects relies on the no-

tion of multiview consistency. These systems may be thought of as hypothesizing 3D points, then

evaluating whether their projections into two or more viewpoints are consistent with images taken

from those views. In the simplest case, the consistency is evaluated based on color. More sophis-

ticated systems might evaluate the consistency of windows of pixels (as is the case in many stereo

systems), or might consider temporal variation (as in temporal active stereo or structured light

systems). Any of these consistency criteria may be used to construct a matching cost function,

which is then used to perform triangulation to find geometry (possibly with an additional stage

that may enforce smoothness of matches etc.). With few exceptions, however, such systems have

focused on reconstructing diffuse objects and scenes.

In this chapter, we consider the problem of reconstructing specular objects, positioned in a

scene or environment of known geometry and appearance. Because the images of these objects

consist entirely of reflections of the scene around them, simple consistency metrics based on color,

pixel windows, or temporal variation will not be effective. Instead, we rely on a specular consis-

tency criterion that considers the reflections of the scene visible in the object. This specularity

consistency criterion must therefore operate on position/normal tuples, rather than on positions

alone. To evaluate whether a proposed position/normal exhibits specularity consistency with re-

spect to one image, we reflect the ray from the camera to the given point off a surface patch having

the given normal. The consistency criterion is that the intersection of the reflected ray with the

known scene is consistent with the pixel observed in the camera image.

Given only a single camera position, we find that an infinity of position/normal tuples will

necessarily satisfy the consistency condition: for any proposed point, we can find a normal such

that the reflected ray hits any desired scene point. Two camera positions, however, provide disam-

biguating information, and in most cases restrict us to a single allowed position/normal (exceptions

are discussed later in the chapter). Note that, in general, a point is reconstructed not because

different cameras observe the same part of the scene reflected from it: they observe different

reflections consistent with the hypothesized position/normal.
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The specularity consistency condition proposed above has been previously identified and ex-

ploited in other contexts [108, 19]. We propose to use the constraint to define a matching cost

function for two camera views, and demonstrate that the condition may be used for dense stereo

reconstruction of specular 3D objects. We analyze our system on synthetic imagery, and show

real-world results. Our contributions include:� defining a stereo matching cost function based on specularity consistency;� proposing a novel normal-based anisotropic diffusion scheme for the matching cost, which

strengthens matches lying on a continuous surface;� presenting a theoretical analysis of the ambiguities that can arise from the specularity con-

sistency;� demonstrating dense and accurate 3D reconstruction of specular objects, in a setup in which

the “known scene” consists of a computer monitor displaying temporally-varying patterns.

This chapter presents unpublished work resulting from a collaboration with Tim Weyrich and

Szymon Rusinkiewicz.

5.2 Related work

Specular surfaces have been widely studied in the literature. By imposing continuity and smooth-

ness constraints, depth can be indirectly obtained from normal estimates [56, 117]. In the case of

glossy surfaces, normal estimates can be computed for example by fitting of explicit or parametric

models [61, 32, 88] or by direct detection of highlights [30].

On the other hand, most work on stereo reconstruction in the presence of specularities attempts

to avoid view dependent effects. Approaches that cope with specular highlights include capturing

multiple views [11, 79], masking them out with polarization filters [125, 89], treating them as

occlusions [78], or removing them from the captured images [114, 79].

Naturally, for the class of objects we are considering (i.e., smooth, glossy materials), view-

dependent information provides the most useful of constraints. A wide range of methods derive

local shape information from the identification and/or tracking of the distorted reflections of light-

sources and special known features [14, 15, 135, 95, 109]. These methods tend to produce sparse

reconstructions.

Dense measurements can be produced, for example, by the general framework of light-path

triangulation [74]. Within this framework, our method can be described as a novel technique for

〈2, 1, 1〉-triangulation. Conversely, Bonfort et al. [20] present a method for 〈1, 1, 2〉-triangulation

that requires just one viewpoint, but two known reference points per ray. Outside of this framework,

shape has been recovered by rotating an object under known illumination [132], and by exploring

the Helmholtz reciprocity [134].

The idea of checking for normal consistency across different views has been originally proposed

by Sanderson et al. [108], in the context of feature matching of specular highlights, and later

used by Bonfort and Sturm [19], as part of a voxel carving method for recovering the shape of
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Figure 5.1: The specularity consistency. In order to find the pixel x2 in camera 2 that corresponds
to the image x1 of a point p as seen by camera 1, we compare the normal direction hypotheses
formed by the light source positions s1 and s2 that produce highlights through x1 and x2, respec-
tively. An incorrect match x′

2 is likely to produce normal hypotheses n′
1 and n′

2 that do not agree,
which allows us to reject the match. In contrast, the correct match will always result in consistent
normal estimates by the two cameras.

specular objects. In contrast, by rephrasing this constraint as a matching cost function, we can

leverage decades of research on stereo reconstruction [110]. In particular, we can take advantage

of efficient global matching algorithms that produce satisfactory dense reconstructions even when

the matching cost functions are not particularly discriminant.

5.3 Triangulation by specularity consistency

The reconstruction method we propose relies on the ability to densely identify environmental scene

points reflected by a specular surface. This can be achieved by illuminating the specular object with

a dense set of controllable light sources. Various setups have been proposed to create a temporally

encoded lighting environment using monitor pixels as light sources [136, 121, 20]. Using a suitable

encoding scheme, the source position s of light reflected by a specular surface point p toward a

camera can be decoded from the camera’s intensity observations over time. In section 5.6, we

present a similar prototype system to evaluate our approach.

With the light source position s known, the normal n at a point p ∈ IR3 can easily be computed

as the bisector

n =
l + v

‖l + v‖ (5.1)

between lighting and viewing directions

l =
s − p

‖s − p‖ and v =
c − p

‖c − p‖ , (5.2)

with c the center of projection of the observing camera. In the context of stereo reconstruction,

however, depths and hence surface point positions are not known in advance. Instead, a candidate
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point p corresponding to a disparity hypothesis has to be tested for consistency.

Consider figure 5.1. A point p on the specular surface projects to pixel x1 as seen by camera 1.

Assume we also know the light source position s1 that casts a highlight through x1. We want

to find the corresponding pixel x2 to which p projects at camera 2, so we can triangulate for its

position. Naturally, we must be able to distinguish the wrong candidate matches x′
2 from the

correct match x2.

The figure shows a sample incorrect match x′
2. By triangulation, this match determines an

incorrect position p′ along the line of sight through x1. Given p′ and s1, camera 1 hypothesizes a

normal direction n′
1 (equation 5.1). Camera 2, on the other hand, makes an independent normal

direction hypothesis n′
2. This hypothesis comes from p′ and the light source position s′

2 that casts

a highlight through x′
2. Recall that, in the figure, p does not project to x′

2. Some other surface

point p′′ does, with corresponding normal direction n′′. This is the point responsible for the light

source position s′
2 that is visible through x′

2. The independence between points p and p′′ is likely

to cause the normal direction hypotheses to disagree, in other words n′
1 6= n′

2.

In contrast, the correct correspondence x2 actually images the point p. Triangulation produces

the correct depth, and the light source position s2 visible through x2 is in fact reflected from p.

Since both x1 and x2 observe the same surface point, the normal direction hypotheses n1 and n2

will agree. We present a framework for dense stereo reconstruction that exploits this fact.

5.4 Dense stereo framework

Dense stereo reconstruction generally requires a metric that assesses a disparity hypothesis d for a

given image point (x, y). This is typically expressed by assigning a matching cost value C(x, y, d)

to this hypothesis. A dense stereo algorithm then aims at assigning minimum-cost disparities to

all pixels in a reference image, for instance, the image captured by camera 1. Algorithms differ in

whether disparity minimization takes place locally or globally, and in how an overall minimum is

defined and computed [110]. However, matching costs are universal, and arbitrary cost functions

can be directly used with most existing algorithms.

5.4.1 Matching Costs

Stereo matching cost computation is usually based on image intensities and considers squared or

absolute differences between corresponding pixels in the image pairs. That is, the cost of matching

pixel (x, y) in image 1 with a pixel (x + d, y) in image 2 can be expressed as

C(x, y, d) = ||I1(x, y) − I2(x + d, y)|| , (5.3)

with Ii(x, y) denoting the intensity at a pixel (x, y) in the image captured by camera i.

In contrast to this, our reconstruction framework is based on differences in normal hypotheses

rather than intensities. A given disparity hypothesis d for a pixel (x, y) corresponds to a candidate

point p in space. As explained in section 5.3, p produces two normal estimates ni(p) from the two
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cameras. We use the angular difference

δ(x, y, d) = cos−1
(

n1(p)⊤n2(p)
)

(5.4)

between the normal estimates as a correspondence measure for a hypothesis (x, y, d). If p exactly

coincides with a specular surface, δ is expected to be zero. In a realistic setting, however, there will

be a slight error in the normal estimate due to noise and to pixel- and light-source quantization,

that is, the measured δ will deviate from the ideal δ0 by δ = δ0 +δ∗. Assuming the error term δ∗ to

be mean-free and normal-distributed with standard deviation σ, the likelihood of δ(x, y, d) denoting

a match is

P (x, y, d) =
1

σ
√

2π
e−

δ(x,y,d)2

2σ2 . (5.5)

In our experiments, we choose σ to be within 5◦ and 8◦, depending on the data quality. From P

we set the matching cost function to be

C(x, y, d) = 1 − P (x, y, d) . (5.6)

This cost function can now be used with a variety of existing stereo reconstruction algorithms.

Section 5.7 shows example reconstructions using different alternatives.

5.4.2 Normal-aware cost aggregation

In traditional (intensity-based) stereo, the cost computation is often extended to a window region

around the point of interest. This increases the reliability of the cost assessment for textured

regions. Cost aggregation within a window can be expressed as a 2D or 3D convolution

C′(x, y, d) = (w ∗ C)(x, y, d) (5.7)

with a window function w [110]. This convolution can alternatively be expressed as a possibly

anisotropic diffusion process [112].

When w is anisotropic, it introduces a bias for a certain slope during the surface reconstruction

stage. In particular, if w is a 2-dimensional kernel over x and y (a common choice), the convolution

corresponds to the integration over a window in the image domain, introducing a bias for image-

parallel surface slopes.

We exploit the additional knowledge of normal directions to specifically bias the surface re-

construction toward the surface orientation corresponding to the normals. The intersection of

the object surface with the epipolar (xd-)plane of y corresponds to a minimum-cost ridge in the

cost function C(x, y, d). Any surface reconstruction algorithm has to trace this ridge. In order

to improve the precondition of the surface reconstruction, we perform anisotropic diffusion of the

symmetrized cost function Fy(x1, x2) ≡ C(x1, y, x2 − x1), aggregating costs along the ridge direc-

tion predicted by the normal estimates. As we have shown in equation 3.6 of section 3.2, given
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Source Fy F ′
y after 4 iterations F ′

y after 16 iterations

Figure 5.2: Consistency values within an epipolar plane (red line) through a problematic region
with many false matches. High confidence values are displayed in red; the black line shows the
result of a disparity optimization using dynamic programming. Anisotropic diffusion according to
the normal estimates attenuates false positives. The images show (from left to right) unmodified
consistency values Fy(x1, x2) and F ′

y(x1, x2) after 4 and 16 diffusion steps, respectively.

a pair of rectified cameras, the unit tangent direction t to the matching ridge at (x1, x2) can be

expressed as

t ∝ (n⊤p1, n
⊤p2)

⊤ (5.8)

where n and pi are, respectively, the 2D projections of the normal and position of the surface

point at (x1, x2), on the epipolar plane of y relative to camera i.

Following equation 5.7, we convolve Fy by a spatially-varying oriented Gaussian filter kernel g:

F ′
y(x1, x2) = (g ∗ Fy)(x1, x2) , (5.9)

with

g(u, v) = e−x
⊤
V

−1
x, x = (u, v)⊤ , (5.10)

controlled by a spatially-varying variance matrix V ∈ IR2×2 dependent on the location of the filter

application (x1, x2):

V = raaI + rd

∑

i∈{1,2}

titi
⊤+ Fy(x1, x2)t̄it̄i

⊤ , (5.11)

with ti the unit vector in direction of the slope according to the normal estimate ni and t̄i unit

length and orthogonal to ti. Each summand after the summation sign implements the variance

matrix of an oriented Gaussian along ti, each converging to an isotropic Gaussian as the local

matching cost reaches one. Adding the variance matrices corresponds to convolving the respective

Gaussians. The additional summand raaI provides an anti-aliasing prefilter to guarantee a faithful
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Figure 5.3: Weak ambiguities. Given a surface point p, observed as (x1, s1) by camera 1, and a
false candidate match x′

2, the surface cannot go through the intersection point p′. However, for
each other point p′′ along the ray through x′

2, there is a surface orientation that results in an
observation (x′

2, s
′
2), consistent with (x1, s1).

discretization of g. In our implementation we use raa = 0.4 and rd = 1.41. Finally, in order to

ensure energy preservation, each filter kernel is normalized after discretization to add up to one.

By iteratively applying equation 5.9, minimum-cost ridges are emphasized where both normal

estimates agree with the matching ridge, while spurious ridges are attenuated. Figure 5.2 shows

an example of problematic epipolar plane through the quarter dataset: the complex leaf pattern

on the coin, and the non-specular background object introduce many spurious matches that are

gradually smoothed out by the diffusion process.

5.5 Ambiguities

Even disregarding interreflections, the specularity constraint can lead to ambiguities. An observa-

tion by camera i can be described by a pair (xi, si), where xi is the pixel coordinate and si the

light source position that produces a highlight through xi. Here, for simplicity, and without loss of

generality, we assume that the light source lies along the baseline between the two cameras (as in

figure 5.3). Ideally, for any surface, and for each observation (x1, s1) by camera 1, there would exist

only one corresponding consistent observation (x2, s2) by camera 2. Unfortunately, this is not the

case. We can distinguish between two types of ambiguity. A week ambiguity occurs when at least

two different observations, (x2, s2) and (x′
2, s

′
2), are consistent with (x1, s2). A strong ambiguity

occurs when every observation (x2, s2) is consistent with (x1, s1).

5.5.1 Weak ambiguities

Consider a pixel x′
2 from camera 2 that does not correspond to x1, as shown in figure 5.3. By

triangulation, we can determine the position p′ for a (non-existent) hypothetical surface point:

p′(x1, x
′
2) = (X ′, Z ′)⊤= (

x1T

x1 − x′
2

,
T

x1 − x′
2

)⊤. (5.12)
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From p′ and s1, we can compute the normal direction expected by camera 1 at p′. This normal

direction is uniquely determined by the intersection point n′
1 of the normal ray at point p′ with

the baseline between the two cameras. To find the intersection, we use the angle bisector theorem

on the triangle formed by points p′, c1, and s1:

n′
1(x1, s1, x2) =

s1

√

X ′2 + Z ′2

√

X ′2 + Z ′2 +
√

(X ′ − s1)2 + Z ′2
. (5.13)

If (x′
2, s

′
2) is consistent with (x1, s1), then the light from s′2 must reflect at p′ towards the ray

through x′
2. Using p′ and n′

1, and the angle bisector theorem on the triangle formed by points p′,

c2, and s′2, we can compute:

s′2(x1, s1, x
′
2) = −n′

1
2
(T − 2X ′) + (T − 2n′

1)(X
′2 + Z ′2)

n′
1
2 + 2T (X ′ − n′

1) − (X ′2 + Z ′2)
. (5.14)

Even though the ray through x′
2 does not hit a surface point at p′ (this point would occlude p,

which is by assumption visible through x1), the ray may intersect the surface at another depth Z ′′.

For each possible point p′′ = (X ′′, Z ′′)⊤ = (x′
2Z

′′ + T, Z ′′)⊤ along the ray through x2, we can

calculate a normal direction that reflects s′2 towards x′
2. Once again, we use the angle bisector

theorem on the triangle formed by points p′′, c2, and s′2:

n′′
2 (x1, s1, x

′
2, Z

′′) =
T

√

(s2 − X ′′)2 + Z ′′2 + s2

√

(X ′′ − T )2 + Z ′′2

√

(s2 − X ′′)2 + Z ′′2 +
√

(X ′′ − T )2 + Z ′′2
. (5.15)

In summary, the rays through x1 and x′
2 observe independent surface points, and intersect at

a virtual point p′ (equation 5.12). Camera 1 expects p′ to have normal n′
1 (equation 5.13). For

each x′
2, we can compute a light source position s′2 that causes (x′

2, s
′
2) to be consistent with (x1, s1)

(equation 5.14). Then, for each point p′′ along the ray through x′
2, we can compute a normal

direction n′′
2 that reflects light from s′2 towards the ray through x′

2 (equation 5.15). Whenever

the surface goes through a point p′′ with the appropriate normal direction n′′
2 , we have a weak

ambiguity.

5.5.2 Strong ambiguities

Consider figure 5.4. A point p generates an observation (x1, s1) by camera 1. Take now an arbitrary

point p′ = (X ′, Y ′)⊤ being observed by camera 2 through pixel x′
2. The ray through x′

2 intersects

the ray through x1 at a point that we can obtain from equation 5.12. Following equations 5.14

and 5.15, we can obtain a normal direction at p′ that makes the observation at x′
2 consistent with

the observation at x1.

In other words, each observation by camera 1 imposes a normal field on the XZ-plane. Starting

from any point in the XZ-plane (i.e., an initial condition), any trajectory that respects this normal

field (i.e., solves the associated differential equation) will generate a strong ambiguity curve. The
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Figure 5.4: Strong ambiguity curves. An observation (x1, s1) by camera 1 imposes a normal field
on the XZ-plane. If a surface conforms to this normal field, every observation (x2, s2) by camera 2
will be consistent with (x1, s1). In other words, we have a strong ambiguity.

curves in figure 5.4 were generated by numerical integration. If the surface follows one of these

curves, every observation by camera 2 will be consistent with (x1, s1) by camera 1. These are the

strong ambiguity curves.

In theory, weak and strong ambiguities are extremely unlikely. In practice, finite precision

on the light source position estimation, as well as noise and discretization artifacts allow the

phenomenon to manifest itself as wrong matches. These can be particularly problematic if the

surface locally approximates a strong ambiguity curve.

5.6 Acquisition

Specular triangulation requires a camera pair and an apparatus to illuminate an object with a

dense set of light sources. To that end, the cameras acquire images of the object being lit by a

temporally encoded light pattern. In principle, any light pattern that allows for the derivation of

the identity of a single light source Li in a specular reflection observed by a camera at ci can be

used.

Efficient encoding schemes, such as gray-code patterns, exist; however, specular reflection is

subject to a convolution with a specular lobe. Accordingly, the chosen pattern has to be robust

under convolution. A very robust encoding would be to trigger one light source at a time. For each

surface point, the light source Li
max is determined that produces a maximum intensity response

under observation from camera i. The temporal location of the maximum response is comparatively

stable even under convolution with a specular lobe. For a dense set of many light sources, however,

this procedure is highly inefficient.

In order to reduce acquisition times, we propose to use multiple linear light sources instead of a

dense set of single point light sources. During acquisition, the linear light sources are swept through

space [51]. For each surface point, the maximum response during each sweep is determined. In a

good approximation, these maxima occur when the linear light source covers Li
max. Accordingly,

we intersect the locations of the corresponding illuminating lines to obtain the position si of Li
max.
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5.6.1 Acquisition Procedure

As a practical setup, we realize the linear light source sweeps using an LCD monitor displaying

white stripes at different positions and orientations. In this paper, we present simulated and mea-

sured results for a 24” monitor that implements two line sweeps by displaying shifting horizontal

and vertical stripes, respectively. The stripes are 0.5 cm wide and are subsequently shifted by one

stripe width. Scanning times can be improved by multiplexing the stripes according to a Hadamard

pattern [113], but we gave preference to quality over speed in the acquisition system, in order to

avoid additional sources of error. Figure 5.5 shows our experimental setup. Both the camera pair

and the monitor’s location with respect to the cameras are calibrated. Knowing the light source

locations si, specular triangulation can be performed as described in section 5.3.

In practice, the crucial part is a reliable estimation of Li
max from the intensity variation of each

observed point over time. Camera noise and the discretization of the line sweep prevent us from

directly picking the stripe location with the maximum intensity response. Instead, we produced

good results by fitting a Gaussian mixture model

I(t) =

n
∑

i

aie
−

(t−µi)2

σ2
i (5.16)

to the data, and deriving the maximum intensity point in time as µi of the narrowest Gaussian

lobe, that is, for i with minimum σi. The intention is to allow the fit to approximate diffuse

and ambient reflectance contributions by wider lobes, and to model the specular peak by a single,

narrow lobe.

A common choice for fits of Gaussian mixture models is the Expectation Maximization algo-

rithm. In our case, however, it is not applicable, as the support of the measurements is truncated.

Instead, we use a general non-linear curve fitter to fit equation 5.16. In experiments with real data,

we found that for most specular materials the peak can reliably be detected with even a single

lobe. See figure 5.6 for sample temporal reflectance profiles of measurements of a coin.

In the proposed setup, the two maximum-response peaks µh and µv of the horizontal and

vertical sweep, respectively, directly correspond to a monitor location (x, y) ∝ (µh, µv), which in

turn allows us to determine si.

5.6.2 Properties

In general, the approach requires free lines of sight between the surface point and the two cameras,

as well as from the point to the two light sources in the reflection direction. This imposes constraints

to the object geometry. Similar constraints are also present with other photometric reconstruction

techniques, such as photometric stereo. Unlike photometric stereo, which suffers from normal

bias in the case of (partial) self-shadowing, specularity consistency only requires a fairly narrow

free cone of sight to the lighting environment and is hence more robust against normal bias by

self-shadowing.
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Figure 5.5: Photograph of our experimental setup. The object is placed in front of the monitor,
facing the camera pair. The cameras capture image pairs while the monitor displays sweeping
linear light sources. The small projector visible above the cameras is used for comparison with
structured-light reconstructions.

Figure 5.6: (Top) Temporal response measurements at different points of a coin. (Bottom) Cor-
responding measured intensity profiles. Measurements are shown in blue, and the fit of a single
Gaussian is shown in green.
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A practical limitation of the proposed setup, however, is the relatively small solid angle covered

by the monitor. In order for a point to be reconstructed, the virtual image of (potentially different)

areas of the monitor must be visible by both cameras observing the point. Only points with normals

falling within a narrow cone satisfy this requirement. Normals falling outside of this cone result in

gaps in the reconstruction. We are currently investigating alternative layouts that will attenuate

this problem by covering a larger solid angle.

5.7 Results

Using the setup described in the previous section, we captured two real datasets: a quarter and a

mirrored sphere. In order to evaluate our method in ideal conditions, we also generated synthetic

data for a Greek panel and for an analytic sphere, using the same calibration geometry as the real

scanner. The simulated datasets use the same pipeline as for the real data, starting with simulated

camera images instead of real images.

In order to demonstrate the versatility of the proposed cost function, we use two different stereo

reconstruction algorithms. Figure 5.7 shows a reconstruction of the simulated sphere dataset using

Markov Random Fields stereo reconstruction [25]. All other reconstructions were obtained using

dynamic programming. Results are shown in figure 5.8.

In general, we have found that our technique consistently produces high-quality normals, but

can generate incorrect depth estimates (compare the first and second columns of figure 5.8). Due

to the geometry of the capturing setup, an incorrect match can result in a large error in the

reconstructed depth, whereas the normal estimate computation tends to be more robust to such

errors.

Nevertheless, normal and depth are not independent, and we can use the measured normals

to improve the quality of the depth estimates. To this end, we use the optimization method

described in chapter 4. Recall the idea is to formulate an energy minimization problem whose

solution attempts to reconcile both measurements. Since the method expects to correct relatively

small depth variations, we iterate the process to produce larger corrections. The third column of

figure 5.8 shows the result of such optimization. Comparing with the original depth estimates, the

improvements are clear.

The mirrored sphere shows the entire range of orientations that can be reconstructed by our

system. As discussed in section 5.6.2, reconstruction is only possible for points within the over-

lapping images of the monitor as seen by both cameras. For further illustration, figure 5.8h shows

the reflection of the monitor in the sphere as seen from one of the cameras.

For the quarter dataset, we also attempted to obtain geometry with a structured light scanner.

The projector is used exclusively for this experiment and is visible in figure 5.5. Figure 5.8d shows

the resulting reconstruction. Stripe artifacts show the difficulties arising from scanning specular

objects with active triangulation. Attempts to obtain the shape of the mirrored sphere using

structure light projection consequently failed completely.
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Figure 5.7: Rendering from the discrete matches produced by the Markov Random Fields stereo
reconstruction [25], evaluated on a simulated dataset of a sphere using our specularity constraint.

Real Quarter Dataset

(a) Captured normals (b) Captured positions (c) Refined positions (d) Traditional scanner

Real Mirrored Sphere Dataset

(e) Captured normals (f) Captured positions (g) Refined positions (h) Photograph

Simulated Greek Panel Dataset

(i) Captured normals (j) Captured positions (k) Refined positions (l) Ground truth

Figure 5.8: Reconstruction results. Images show the captured normal field, the depth recovered
by the stereo matching, and the results of geometry refinement.
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5.8 Conclusions

In this chapter, we proposed a novel consistency criterion for dense stereo matching. In contrast

to intensity-based stereo matching, it is based on normal estimates from specular reflections. The

fact that normals are closely related to the geometry being reconstructed allows us to aggregate

matching costs in a meaningful manner, biasing the stereo reconstruction toward the measured

surface orientation. In addition, we demonstrate how the normal information can be used to refine

the output of the stereo algorithm. We demonstrated the practicability of the proposed criterion

using a simple acquisition setup based on two cameras and a monitor. We presented dense stereo

reconstructions using specular consistency for both simulated and measured datasets.

65



Chapter 6

Final remarks

Since the publication of the original conference papers that originated this dissertation’s chapters,

it has been very gratifying to track the ramifications of our research. For example, Zhu et al. [133]

developed an omnidirectional 3D scanner based on the unstructured temporal stereo triangulation

method we present in section 2.4. Their system captures the geometry of large environments, such

as entire rooms.

The geodesic face scanner dome created by Weyrich et al. [124] originally produced geometry

that was unsuitable for their purposes. By using the technique we presented in section 4.4.4,

along with a normal map captured by their dome, they were able to greatly improve the acquired

geometry. The face models were later used as the basis for the creation of a statistical model for

the synthesis of detailed facial geometry [53].

The range-image formulation of section 4.4.3 has also been used in follow-up work. Jones et al.

[66] created another geodesic dome, this one capable of scanning dynamic scenes with high-speed

cameras. Due to motion, the quality of the geometry returned by their triangulation system was

poor. The captured normal fields, on the other hand, were excellent. Using our technique, they

were able to produce clean geometry from human actors in motion. Later, Ma et al. [82] introduced

a new strategy for capturing normal maps. Using a structured light 3D scanner, their normal field,

and our optimization method, they were able to produce extremely high-resolution, high-quality

3D facial surface geometry.

6.1 Future work

In the short term, our work can be improved in many ways. In chapter 2, for example, we suggested

the use of a projector to illuminate a scene with random stripe patterns in order to generate the

disambiguating information required for triangulation. If a projector pixel covers the area of many

camera pixels, there will be ambiguities. It is therefore important for the projector and camera

resolutions to be compatible. Unfortunately, off-the-shelf projectors have a much lower resolution

than off-the-shelf cameras. The generation of appropriate high resolution projected patterns is an
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interesting engineering challenge. Since the patterns do not have to be calibrated, one alternative

is to randomly perturb the projector’s lens (or even the entire projector assembly) while capturing

image pairs. This would shift the projected patterns away from pixel boundaries, thereby effectively

increasing their resolution.

Chapter 3 also invites future work. Most sub-pixel estimation methods requires us to recon-

struct the sampled matching cost function around a neighborhood of the best integer match. At

the same time we published our original work, Psarakis and Evangelidis [100] proposed an alter-

native approach. Instead of reconstructing the matching cost function, they reconstruct the input

images. Operating on continuous images, the matching cost function is also continuous. They

report improved sub-pixel matches by cutting this continuous matching cost function in the tra-

ditional axis aligned direction. It would be trivial to use their reconstruction strategy with our

symmetric sub-pixel refinement algorithm. One wonders if further improvements would result from

the combination.

Still in the realm of chapter 3, equation 3.6 suggests another venue for future work. It relates the

orientation of the matching ridge with the normal to the surface. Normals are usually computed

by combining information from adjacent reconstructed 3D samples. The matching ridge slope,

on the other hand, can be inferred from the information needed to produce a single sample. By

using three cameras arranged in a triangle, we can in theory compute a normal direction by simply

looking at the pairwise matching ridge orientations. It is hard to predict the quality of such a

normal field. However, given that the ridge-based normal estimates would be more localized than

those computed from reconstructed 3D samples, it is possible the normal field would have a wider

frequency content.

Woodham [127] shows how to obtain curvature measurements with the photometric stereo

method. Curvatures are derivatives of normals, and are therefore related to second order deriva-

tives of positions. It would be interesting to formulate an optimization problem, similar to what we

presented in chapter 4, but that takes into account curvature measurements in addition to orienta-

tion measurements. An open question is whether the noise sensitivity of second order derivatives

would offset the potential gains introduced by the additional source of information.

It would also be interesting to see commercial scanner manufacturers include normal measure-

ment hardware and software into their products. As we have shown in chapter 4, this hybrid

scanner design has the potential to capture high quality geometry, possibly reducing hardware

cost.

The specularity triangulation algorithm discussed in chapter 5 could also be extended in a

variety of ways. One alternative could be to combine the specularity consistency criterion with

a wider variety of consistency metrics, such as passive stereo or spacetime stereo. Another line

of research involves the design of scanner layouts that could better explore the specularity con-

straint. We could, for example, increase the number of monitors to cover a wider cone of normals.

Alternatively, we could include more cameras in order to reduce the chances of ambiguities.

Although the acquisition of 3D geometry has become a well established science, there are

still many challenges ahead. Certain material categories present significant problems to current
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systems. Examples include shiny, extremely dark, transparent, or translucent materials. Objects

with high depth complexity are also hard to scan, due to occlusions. In this dissertation, we

presented techniques that were robust to individual adversities. However, there are still no practical

scanning systems capable of handling any object. The design of such a general scanner would be

key to digitizing large collections, such as those found in museums. The diversity of materials and

shapes comprised in large collections make their capture tedious or even impractical with current

technology. The contributions in this dissertation represent small steps towards this goal.
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