
SHAPE DISTINCTION FOR 3D OBJECT

RETRIEVAL

PHILIP NATHAN SHILANE

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

APRIL, 2008

c© Copyright by Philip Nathan Shilane, 2008. All rights reserved.

Abstract

In recent years, there has been enormous growth in the number of 3D models and their

availability to a wide segment of the population. Examples include the National Design

Repository which stores 3D computer-aided design (CAD) models for tens of thousands

of mechanical parts, the Protein Data Bank (PDB) that has atomic positions for tens of

thousands of protein molecules, and the Princeton Shape Benchmark with thousands of

everyday objects represented as polygonal surface models. With the availability of free

interactive tools for creating 3D models and graphics cards for home computers, we can

expect 3D data to become ever more widely available.

Given the availability of 3D data, searching for a 3D object in a large database is a

core problem for numerous applications including object recognition and the reuse of

expertly created data. This raises two key research problems: 1) How can we improve

search techniques? and 2) How do we evaluate 3D search techniques?

The first contribution of this dissertation is an analysis technique to select the most

important or distinctive regions of an object. Our approach identifies regions of a surface

that have shape consistent with objects of the same type and different from objects

of other types. By focusing a retrieval method on the most important regions of an

object, we can improve retrieval performance in comparison to alternative feature point

selection techniques. We investigate properties of shape distinction including techniques

for calculating distinction, a method for visualizing differences in a database, and a

prediction algorithm based on likelihoods of local shapes. We also demonstrate that

shape distinction can be used in graphics applications such as mesh simplification and

icon generation.

The second contribution is a new methodology to analyze shape retrieval methods

with a common data set of classified 3D models and software tools called the Princeton

Shape Benchmark (PSB). Based on experiments with several different retrieval methods,

we find that no single method is best for all classifications of objects, and thus the main

contribution of the PSB is a framework to evaluate retrieval methods.

iii

Acknowledgments

Completing a dissertation is a multi-stage process involving taking classes, study-

ing previous research, and exploring new areas of science. Numerous people provided

guidance and encouragement along the way, from my earliest days through my time at

Princeton University.

I would like to thank my advisor, Dr. Thomas Funkhouser, for his mentorship. Besides

prodding my research onto productive paths, he contributed in numerous ways (small and

large) to the completion of this project. He set an ongoing example of the persistent sci-

entist. The other graphics professors, Drs. Adam Finkelstein and Szymon Rusinkiewicz,

provided feedback on my research throughout graduate school and reviewed this disser-

tation. I would also like to thank Drs. David Dobkin, Andrea LaPaugh, and Kai Li

for joining my dissertation committee and advising me at key moments during graduate

school.

Numerous collaborators at Princeton University played an important role either assist-

ing with this project or helping form my opinions about quality research. I would like to

thank: Dr. Daniel Aliaga, Benedict Brown, Michael Burns, Paul Calamia, Forrestor Cole,

Phillip Davidson, Dr. Doug DeCarlo, Christopher DeCoro, Nathaniel Dirkson, Aleksey

Golovinskiy, Dr. Matthew Hibbs, William Kiefer, Dr. Jason Lawrence, Melissa Lawson,

Dr. Diego Nehab, Joshua Podolak, Dr. Ayellat Tal, Corey Toler, and Dr. Tim Weyrich.

My research is built upon the foundation laid by Drs. Patrick Min and Michael Kazhdan,

previous members of the shape-matching research group.

Research is not completed with sweat and drive alone; I would like to thank several

groups that provided partial funding for this work: the Princeton University Depart-

mental Award; National Science Foundation Grants IIS-0612231, CCR-0093343, CNS-

0406415, and 11S-0121446; Air Force Research Laboratory Grant FA8650-04-1-1718;

and the Google Research Grant.

Outstanding educators and researchers encouraged my interests long before graduate

school. From Stanford University, I would like to thank Dr. Mark Musen for giving me

my first research opportunity in computer science and Julie Zelenski for explaining the

finer details of the teaching process. From my hometown of Carl Junction, Missouri,

educators Pamela Babbitt, Paul Foster, Linda Scruggs, and Dr. Paul Teverow motivated

my research interests, first in history and then in the sciences.

iv

I would like to thank several other friends for their support. They include roommates,

officemates, fellow travelers, classmates, and cooking collaborators: Bryson Bennett,

Dr. Christopher Callison-Burch, Melissa Carroll, Catherine Crump, Dr. Daniel Dantas,

James Eric DeGruson, Dr. Eujin Goh, Adam Goldman, David Huang, Dr. Brian Milch,

Ryan Pierce, Haakon Ringberg, and Eric Silverberg.

The support of my family has been invaluable. I am lucky that my parents, Dr. Lewis

and Roberta Shilane, have advanced training in mathematics, library science, education,

medicine, and Spanish, and they shared their love of learning and their work ethic with

me. Watching my two siblings, David and Amy, achieve their own goals has been a joy

as well. My grandparents, aunts, uncles, cousins, and in-laws have patiently supported

me. Finally, I would like to thank my wife, Dr. Julie Shilane, for being a part of my life.

v

Dedicated to my parents

Dr. Lewis and Roberta Shilane

vi

Contents

Abstract . iii

1 Introduction 1

2 Background and Related Work 9

2.1 Global Shape Descriptors . 11

2.2 Local Shape Descriptors . 14

2.3 Selection of Local Shape Descriptors . 17

2.4 Research Challenges . 19

3 Introducing Distinction 21

3.1 Examples . 23

4 Computing Distinction 27

4.1 System Overview . 28

4.1.1 Constructing Regions . 28

4.1.2 Describing Shapes . 30

4.1.3 Measuring Distinction . 32

4.1.4 Mapping to Vertices . 34

4.2 Results . 35

4.2.1 Effect of Database . 36

4.2.2 Effect of Scale . 37

4.2.3 Alternatives to Distinction . 37

4.3 Conclusion . 39

5 Matching with Distinction 40

5.1 System Execution . 42

vii

5.1.1 Computing Shape Descriptors 45

5.1.2 Selecting Distinctive Features 45

5.1.3 Creating Pairwise Feature Correspondences 46

5.1.4 Searching for the Optimal Multi-Feature Match 48

5.2 Results . 50

5.2.1 Comparison to Previous Methods 51

5.2.2 Evaluation of Algorithmic Contributions 54

5.2.3 Investigation of Parameter Settings 57

5.2.4 Alternative Selection Techniques 59

5.3 Conclusion . 64

6 Updating Distinction 65

6.1 Method . 66

6.1.1 Retrieval Measures for Defining Distinction 66

6.1.2 Nearest Neighbors with a Cover Tree Index 69

6.2 Results . 70

6.2.1 Alternative Retrieval Metrics . 70

6.2.2 Time for K-Nearest Neighbors 72

6.2.3 Approximate Distinction versus Calculation Time 72

6.2.4 Updating Distinction when Inserting Models 74

6.3 Conclusion . 77

7 Predicting Distinction 78

7.1 Overview of the Approach . 79

7.1.1 Mapping from Descriptors to Likelihood 81

7.1.2 Mapping from Likelihood to Distinction 84

7.1.3 Selecting Distinctive Descriptors 84

7.2 Results . 85

7.2.1 Shape Database . 85

7.2.2 Mapping Functions . 86

7.2.3 Retrieval Results . 88

7.3 Conclusion . 91

8 Applications of Distinction 93

8.1 Mesh Simplification . 93

viii

8.2 Icon Generation . 97

8.3 Conclusion . 98

9 Princeton Shape Benchmark 99

9.1 Related Work . 100

9.2 Overview . 103

9.3 Acquisition . 104

9.4 Classification . 106

9.4.1 Base Classification . 106

9.4.2 Training and Test Sets . 107

9.4.3 Alternative Classifications . 110

9.5 Annotation . 111

9.6 Evaluation . 112

9.7 Results . 115

9.7.1 Shape Descriptors . 116

9.7.2 Base Classification Results . 118

9.7.3 Multi-Classification Results . 119

9.7.4 Query List Results . 120

9.7.5 Comparison with Other Databases 123

9.8 Conclusion . 124

10 Conclusion and Future Work 125

Bibliography 130

ix

List of Figures

1.1 Text search results. 3

1.2 Shape search results. 4

1.3 Shape matching with descriptors. 5

3.1 Distinctive regions of a plane. 22

3.2 Examples of distinctive regions. 24

3.3 Visualizations of distinction for three helicopters. 25

3.4 Visualizations of distinction for five cars. 25

3.5 Visualizations of distinction for fifteen human models. 26

4.1 Computing distinction for surface regions. 28

4.2 Four region sizes. 29

4.3 Distinctive regions are dependent on the database. 36

4.4 Distinctive regions are dependent on the scale of the region. 37

5.1 A priority queue stores potential matches. 41

5.2 Pseudo-code for priority-driven search. 43

5.3 Selecting distinctive features on a mesh. 46

5.4 A 3-feature match for two airplanes. 49

5.5 Precision-recall plot of PDS. 53

5.6 Precision-recall plot showing different algorithmic features of PDS. . . . 56

5.7 Descriptors selected with alternative techniques. 60

5.8 Precision-recall plot for selection techniques on the PSB. 61

6.1 Distinction values are dependent on the retrieval evaluation metric. 68

6.2 Cover tree to find nearest neighbors quickly. 73

6.3 Updating distinction when inserting meshes. 76

x

7.1 Diagram of training and query phases. 79

7.2 Visualization of likelihood on meshes. 82

7.3 Quantile-Quantile plot of HSD likelihood versus a normal distribution. . . 83

7.4 Overview of selecting query descriptors for matching. 85

7.5 Distinction scores of an airplane model across scales. 86

7.6 Comparing distinction and likelihood. 87

7.7 Comparing distinctive descriptors to a global descriptor. 89

7.8 Decreasing the number of distinctive descriptors. 90

7.9 Predicted distinction versus other selection techniques. 92

8.1 Simplification results for a hammer model. 95

8.2 Simplification results for a horse model. 96

8.3 Icons showing the most distinctive surface region for each mesh. 98

9.1 Tier image example. 114

9.2 Precision-recall plot for fourteen descriptors on the PSB. 118

xi

List of Tables

5.1 Comparison of PDS to other methods. 53

5.2 Investigation of rank, multi-scale, and distinctive feature selection. 55

5.3 Results of several options affecting retrieval performance and time. 58

5.4 Retrieval with distinctive descriptors versus other techniques. 62

5.5 Oracle selection across region scale. 63

6.1 Alternative evaluation metrics. 71

6.2 Weighted DCG functions with R neighbors. 74

7.1 Retrieval and timing results. 89

9.1 Summary of previous 3D model databases. 101

9.2 Types of objects in previous 3D model databases. 101

9.3 The PSB base classification. 110

9.4 Fourteen shape descriptors on the PSB. 119

9.5 Results for different classification granularities. 121

9.6 Retrieval performance for specific query lists. 122

9.7 Performance on different databases. 123

xii

Chapter 1

Introduction

In recent years, there has been enormous growth in the number of 3-dimensional (3D)

models and their availability to a wide segment of the population. Examples include

the National Design Repository, which stores 3D computer-aided design (CAD) models

for tens of thousands of mechanical parts; the Protein Data Bank (PDB) with atomic

positions for tens of thousands of protein molecules; medical collections such as the

Visible Human; and the Princeton Shape Benchmark (PSB) with 36,000 everyday objects

represented as polygonal surface models. The number of constructed or measured 3D

models is experiencing enormous growth, and with the availability of free interactive

tools for creating 3D models, we can expect the number of 3D models to continue to

grow. As models have become more widespread, graphics cards for home computers

have become faster and inexpensive, making 3D data available to nearly everyone. A key

problem for everyday users who interact with 3D objects is how to search for 3D data

within large collections.

Those who are not computer experts interact with 3D objects in numerous ways, and

3D shape similarity queries are useful in several applications. In the mechanical CAD

community, computer models of individual pieces such as bolts and brackets are often

combined into complex mechanical parts, and shape similarity search can aid their work.

Manufacturing companies could create databases of these parts [57], so when designing

a new device, the question is how to reuse or modify an existing part instead of designing

one from scratch. Similarly, in the computer graphics community, databases of common,

household objects have been created [45]. When designing virtual worlds, novice users

1

Chapter 1. Introduction

can quickly create complex scenes using a database of objects instead of creating each

object individually [35]. For both the CAD and computer graphics communities, a user

may start with a rough model that approximates his or her goal and then improve the

model with detailed subparts that already exist.

In the fields of molecular biology and chemistry, the 3D structure of proteins can be de-

termined using X-ray crystallography [44] or nuclear magnetic resonance spectroscopy,

and approximately 45,000 structures are currently stored in the PDB [10]. Studying the

properties of a protein experimentally in a laboratory is time intensive, so any information

about similar proteins that can guide the experiments is of benefit. While a protein

sequence can be used as a search term into the PDB, the 3D structure of a protein can

also suggest distantly related proteins [38], which can guide laboratory studies.

For a computer vision system, 3D data scans of the environment can be the input to a

recognition system that matches the scene data to objects in a labeled database. Systems

that scan objects in the environment typically involve some combination of mounted

cameras or camera and laser system, which triangulate positions in the environment

to create a range image indicating the distance from the camera system to the surface

of the object. Scans of real-world objects often have noise in the measurements or

missing regions due to obscured points of view. Even when the camera system has an

unobstructed view of the object, portions of the object may self-occlude regions. A

retrieval system using scanned input needs to handle imperfect and incomplete data.

Because of the incomplete data problem, research in this area has moved toward local

shape matching. The idea is that since the entire query object is not available, small

features of the query object can be compared to corresponding features in a database.

Searching for textual information on the World Wide Web has become commonplace

using search engines such as Google or Yahoo, but we are still at the early stages of

performing 3D search. To make 3D data become truly useful, we need a search engine

for 3D objects that produces accurate retrieval results efficiently. An example is shown

in Figure 1.1, where search results for the key word “plane” are shown. The image

thumbnails on the right show pictures of 3D objects retrieved from the database. While

text search is typically able to retrieve at least one object of the desired type, Min et

al. [88] have shown that most 3D data lacks consistent textual labels, causing a mixture

of airplanes and mathematical planes to match the search term “plane” in this example.

These results are typical for search engines that use text as the query into a database of

2

Chapter 1. Introduction

Figure 1.1: An example of text search for a 3D database. Searching for the term “plane”

resulted in a variety of airplanes, as well as less-desired results.

non-textual objects. Designers who create original 3D objects often neglect to label each

object, or they use labels that are only relevant within a narrow context. For example,

an airplane could be labeled “airplane” indicating its function, or “Spirit of St. Louis,”

indicating it is the airplane that Charles Lindbergh flew across the Atlantic. Text-based

searches are often insufficient for these reasons and neglect important shape-based infor-

mation. Similar issues apply to image search, where a combination of text and image

similarity search is effective [100].

Given at least one good result from a database using a textual search or other method,

though, we can use the shape of the object itself as a query into the database. The example

search engine from the Princeton Shape Retrieval and Analysis Group [107] (Figure 1.1)

supports that functionality with the “Find similar shape” links under the images. Clicking

on the “Find similar shape” link under the first airplane image causes a shape similarity

search to be performed, using the airplane itself as the 3D query. The goal is to then

find objects in the database that have a similar 3D shape as the query object. As shown

in Min et al. [88] and Figure 1.2, shape search of a 3D query object, versus text search,

3

Chapter 1. Introduction

Figure 1.2: An example of shape search for a 3D database using the first airplane as a

shape-based query. Airplanes with similar shapes were found.

can greatly improve retrieval results. A shape similarity method considers the geometric

form of a shape and may either match a shape as a whole (global matching) or subparts

(local matching). Local matching is well motivated when subparts of an object are either

optional or can be located in multiple configurations such as for articulated machinery.

This dissertation builds upon the idea of local feature matching, but extends the previous

work by identifying important regions of shapes that distinguish objects of the correct

class from other types of objects.

Representing the 3D structure of a shape with a feature vector, called a shape descrip-

tor, is among the most effective search techniques. Using shape descriptors, shapes in a

database and the query shape are transformed into a representation that can be compared

directly such that a distance score can be calculated. Figure 1.3 shows a typical shape

search engine system, in which there is a shape descriptor for each object represented by

the “?” symbol. The distance between the query shape descriptor and every descriptor in

the database is calculated and the distances are sorted from least to greatest. The closest

results are then presented to the user.

4

Chapter 1. Introduction

3D Model

Model Database

with Shape Descriptors

Best Match
Shape

Descriptor

?

?

?

?

? ?

Figure 1.3: When a user presents a query model to a shape search engine, the query

is converted into a shape descriptor (the “?” symbol) and compared to the descriptors

representing all of the shapes in the database. The best matches are returned as results.

The multiple representations of 3D objects have led to some terminology ambiguity.

Shape is the most generic term and refers to the abstract notion of the form of an object

and corresponds to its semantic meaning. Model generally refers to the representation

of a 3D object without specifying details of the representational format, meaning the

shape of an object is represented by a model. Objects created by artists are also generally

referred to as models. The term mesh specifically refers to a representation of the surface

of a model as opposed to point samples or volumetric densities. A horse model has the

shape of creatures in the semantic group “horse” whether it is represented as a surface

mesh, points, or density values. In this dissertation, we focus mostly on surface models

because they are common within the graphics community, though many of the retrieval

techniques presented can be adapted to other representations (or other representations

can be converted to surfaces). We use the terms shape, model, and mesh interchangeably,

unless otherwise noted.

5

Chapter 1. Introduction

Contributions

This dissertation creates a technique to determine the distinctive regions of 3D meshes

and focuses shape matching on those regions. To measure the importance of mesh

surfaces, we create a methodology for evaluating shape retrieval methods. Specifically,

we make the following research contributions:

Distinctive Regions Selecting the most “important” regions of a surface is useful for

shape matching and a variety of applications in computer graphics and geometric

modeling. While previous research has analyzed geometric properties of meshes in

isolation, we select regions that distinguish a shape from objects of a different type.

Our approach to analyzing distinctive regions is based on performing a shape-based

search using each region as a query into a database. Distinctive regions of a surface

have shapes consistent with objects of the same type and different from objects of

other types. An important property of distinctive regions is that they correspond

to features that distinguish between classes as opposed to previous techniques that

determined important regions for each mesh in isolation.

Shape Retrieval with Distinction A shape matching method that focuses on the dis-

tinctive regions of a shape can improve retrieval success relative to considering

all regions of a shape equally. To achieve this goal, the system maintains a priority

queue of potential sets of feature correspondences (partial matches) sorted by a cost

function accounting for both feature dissimilarity and the geometric deformation.

Only partial matches that can possibly lead to the best full match are popped off

the queue, and thus the system is able to find a provably optimal match while

investigating only a small subset of potential matches in a few seconds per query.

By filtering the set of shape descriptors representing each shape in the database to

include only the most distinctive, the matching algorithm produces better retrieval

accuracy than previously tested methods.

Updating Distinction Distinction values for each mesh region are a measure of how well

each region corresponds to objects of the same class and distinguishes from objects

of different classes. As a database undergoes the addition and removal of objects,

distinction values must be updated to reflect changes in the database, which can

be computationally infeasible. By calculating an approximation to distinction that

6

Chapter 1. Introduction

only requires a small set of similar regions that can be found with a spatial index

structure, distinction scores can be updated efficiently.

Predicting Distinction The definition of distinction is based on analyzing a classified

database, which facilitates processing target models, but cannot be directly applied

to query shapes. Using a prediction model, distinction scores can also be found

for new query models, even though their classification is unknown. During a

preprocessing phase, a training set of models is analyzed with the following steps:

descriptor likelihood is measured with a multi-variate Gaussian distribution of real-

valued shape descriptors, the distinction score of each descriptor is calculated from

a training set, and these performance values are averaged for every likelihood value.

For a new shape presented to the system, distinction values are predicted across the

surface of the shape based on a function that maps from the likelihood for local

shape descriptors to predicted distinction values. Using predicted distinction values

provides favorable retrieval performance while reducing the query time.

PSB The Princeton Shape Benchmark is a publicly available database of polygonal mod-

els collected from the World Wide Web and a suite of tools for comparing shape

matching and classification algorithms. A key feature of the benchmark is that it

provides multiple semantic labels for each 3D model. For instance, it includes one

classification of the 3D models based on function, another that considers function

and form, and others based on how the object was constructed (e.g., man-made

versus natural objects), and these classifications can expose different properties

of shape-based retrieval algorithms. Experiments with a large number of shape

descriptors show that no single descriptor is best for all types of objects, and

thus, the main contribution of the PSB is to provide a framework to determine

the conditions under which each descriptor performs best.

7

Chapter 1. Introduction

Dissertation Structure

The remainder of this dissertation describes the background, design decisions, and results

of this project. Chapter 2 discusses previous work on shape retrieval techniques. Chap-

ter 3 gives an overview of defining distinction, and Chapter 4 explains our method in

further detail as well as the effect of various parameter options. Chapter 5 demonstrates

how to incorporate distinctive regions into a priority-driven search engine to improve

efficiency and accuracy of retrieval. As new shapes are added to a database, distinction

scores are updated, and we present an efficient method in Chapter 6. Chapter 7 presents a

method for predicting distinction scores for new query models using a classified training

database. In Chapter 8, we demonstrate how distinction can be used in various graphics

applications. The Princeton Shape Benchmark is described in Chapter 9, and state-of-the

art shape descriptors are compared. Finally, we conclude in Chapter 10 with a summary

and a discussion of possible future work.

8

Chapter 2

Background and Related Work

To organize and analyze the large amount of 3D data that has become available, numerous

search techniques have been developed. The general approach is to measure the similarity

between a query object and every object in a database, which leads to the question,

“How is the similarity of 3D shapes measured?” Alternatively, how can we measure

the dissimilarity of 3D shapes such that objects of the same semantic class have a small

dissimilarity score and objects of different semantic classes have a large dissimilarity

score.

A common technique is to convert a model into a feature vector representation, called

a shape descriptor, and then the dissimilarity of 3D objects is measured by the distance

between their feature vector representations. A database of shapes can be compactly rep-

resented by their respective shape descriptors. Then, when a user presents a query shape

to the system, the query shape is converted into a shape descriptor and compared against

the database. One of the main advantages of using shape descriptors for matching is the

ability to support high-throughput search results because the compact representation can

be compared quickly and index structures can be used for further efficiency. There are

several properties to consider when discussing shape descriptors:

• represents important shape properties

• compact to store

• quick to compute

• quick to compare

9

Chapter 2. Background and Related Work

• insensitive to noise

• independent to 3D representation

• invariant to similarity transformations

To explain these properties in more detail, consider answering a query into a shape

database with millions of models. Besides representing important features for matching,

the shape descriptors must be small enough to fit within main memory for efficient

comparison, calculating the descriptor for the query should be quick, and comparing

the query descriptor against the entire database should rapidly return results. Also, the

shape descriptor should be robust to small errors common in meshes such as missing or

disconnected polygons and different polygon representations of similar surfaces.

Invariance to similarity transforms refers to a group of transformations that preserve

what humans generally think of as the appearance of a shape such as position, rotation,

and scale. A 3D model is typically defined with surface positions relative to a local coor-

dinate system without any guarantee that the coordinate system is consistent across mod-

els. Ideally, a shape descriptor representation for an object would be the same regardless

of its position, rotation, or scale so that if a model undergoes a similarity transformation,

its descriptor will be unaffected. An alternative to designing a shape descriptor that is

invariant to certain transformation is to normalize a model before calculating a descriptor.

The main normalization technique is to transform all models such that their descriptors

can be compared directly. Position differences can be handled by translating the center

of mass of the object to (0,0,0) of the coordinate system. Rotation can be handled either

by determining the important axis of the shape and rotating those to align with the x,y,z

planes, searching over all rotations when matching, or by designing a descriptor that

is invariant to rotation about one or more axes by construction [68, 69, 130]. Scale

information should be preserved for certain shape matching problems involving scans

of real world objects such as proteins [1] or archaeological artifacts [54]. For artistically

generated models, though, scale is often arbitrary and a common normalization technique

is to scale a model to fit within a unit sphere or according to other properties. Shape

normalization and invariance techniques are more thoroughly described by Kazhdan [65].

10

Chapter 2. Background and Related Work

2.1 Global Shape Descriptors

Creating shape descriptors for content-based retrieval has been an active area of research

for over a decade. In this section, we review the main types of shape descriptors. See

the survey papers by Tangelder et al. [121], Bustos et al. [16], and Iyer et al. [56] for a

thorough discussion and comparison of shape descriptors.

Simple Properties: Many simple properties of shapes have been considered as shape

descriptors. For manifold models of fixed scale, volume has been considered [141, 142]

as well as ratios of surface area to volume [24, 56]. The aspect ratio of bounding boxes

can be used for aligned models [101, 142]. These properties create a low dimensional

feature vector of limited descriptive power.

Surface Normals and Curvature: Representing surface normals (vectors perpen-

dicular to small surface patches) and curvature properties is useful for distinguishing

between boxy, man-made objects and natural, smooth surfaces. Horn developed a de-

scriptor called the Extended Gaussian Image (EGI) [52] that records the distribution of

surface normals binned to regularly positioned samples on a sphere, though rotation nor-

malization must be performed. A similar descriptor was developed by Shum et al. [134],

and when comparing two descriptors, the minimum distance was calculated across all

rotations. The EGI descriptor was extended by Kang et al. [64] to incorporate with the

distribution of normals the distance from the surface to the centroid in a complex-valued

spherical function. The distribution of local curvature was used as a descriptor by Zaharia

et al. [139]. First, local curvature was measured as a function of principal curvatures, and

a histogram of these values formed the descriptor.

Surface Distribution: The position of a shape’s surface is perhaps its most impor-

tant property and has been investigated with many descriptors. The distribution of the

distances between random points on the surface was defined by Osada et al. [99] as the

D2 descriptor. For CAD models, the D2 descriptor was modified by Ip et al. [55] to

incorporate whether the line segments fall completely within the volume of the model,

outside the volume, or extends through both regions. Ohbuchi et al. [96] also modified the

D2 descriptor to include the angle between the line segment and the normal of the surface.

The higher moments of surface area have also been used for retrieval after removing the

lower moments that incorporate translation and rotation information[28, 103, 131]. Saupe

et al. [109] measured the distance from the centroid to the surface, sampled at regular

11

Chapter 2. Background and Related Work

positions on a sphere. A more detailed version was developed by Vranic et al. [131],

which considered distances from the centroid to the most distant surface region within

a given shell. Ankerst et al. [1] established Shape Histograms as the distribution of the

model partitioned by bins defined by evenly spaced sectors and shells. A discrete version

of the Shape Histogram that measures the occupancy of voxel cells has also been used as

a descriptor [70, 73, 95].

Morphing Distance: Several shape descriptors have been developed that approximate

the amount of deformation needed to morph one mesh to another. Kazhdan et al. [65, 69]

developed several shape descriptors that improve upon a voxel descriptor along with

techniques for creating rotation-invariant descriptors. First, the Euclidean distance trans-

form is calculated on a binary voxel grid representing the surface of a shape. Then, the

values are composed with a Gaussian function and represented with spherical samples

for concentric shells, which is called the Gaussian Euclidean Distance Transform. The

distance between two descriptors of this form is an upper-bound on the deformation

between shapes. Using a spherical representation, a rotation-invariant descriptor called

the Harmonic Shape Descriptor was created by decomposing the function into spherical

harmonics and storing the norm of each harmonic frequency. This general technique

could be used to transform 3D functions that are rotation-dependent into a rotation-

invariant version, though there is a loss of information in the conversion. Funkhouser

et al. [37] presented the Fourier Shape Descriptor (FSD) based on a modification of this

technique that stores the amplitude of every spherical harmonic coefficient, making the

descriptor invariant to rotation about one axis.

Symmetry: Symmetry is an important feature of 3D shapes, and objects of the same

semantic class often have similar planes reflecting portions of the model onto itself. Early

research explored how to measure imperfect symmetries for 2D shapes by defining a

continuous symmetry measure [136, 137, 138]. This was extended to 3D shapes by

reflecting the surface about a plane and measuring the distance of the reflected surface to

the original surface [66, 67]. For all planes through the center of mass, these distance

values define a shape descriptor parameterized by the normal to the reflection plane.

Podolak et al. [106] considered all reflection planes, instead of just those through the

center of mass. Both symmetry descriptors were shown to improve retrieval when used

in combination with non-symmetry based descriptors.

12

Chapter 2. Background and Related Work

Image-based: Image-based methods are based on the property that similar shapes

have similar appearances from one or more camera positions. Multiple images of shapes

in a database are captured from several camera positions around each shape. The images

are often processed to either produce a binary representation [80] or to extract boundary

contours [36]. Then images of the query shape or sketch produced by a user are processed

in a similar manner and compared to the database. Min [86] formalized the match as an

optimization process for parameterized ovals approximating each image. Chen et al. [19]

represented binary images by their Zernike moments and Fourier coefficients and found

the minimum distance between corresponding images to produce high quality retrieval

results. An improvement to this technique is to capture depth buffer images (distances

from the camera) represented with their Fourier coefficients as described by Heczko et

al. [48] and implemented by Vranic [129]. Recording the distance to the surface of a

model is roughly similar to early stages of computer vision techniques for constructing

the surface of objects with a camera system.

Matching with Global Descriptors

When calculating the distance between two instances of a shape descriptor, several ap-

proaches have been considered. Often, there is a strict ordering for the dimensions of the

descriptor, meaning that the ith feature of descriptor X can be directly compared against

the ith feature of descriptor Y . Then, a Minkowski distance L can be calculated with the

following definition.

Lp(X ,Y) =

(

d−1

∑
i=0

|Xi−Yi|
p

)
1
p

X ,Y ∈ R
d, p≥ 1

For L2, this is the well known Euclidean distance function. Various other distance metrics

were investigated by Osada et. al [99]. Weights can also be applied to place importance

on particular dimensions in a straightforward manner. For most of the types of descriptors

considered in this dissertation, the L2 distance is used.

The Minkowski distance cannot be used directly when the order of dimensions changes

between descriptors. In the extreme case, there is no correspondence between the order

of X and Y . A more common case is when X and Y are related by a rotation, typi-

13

Chapter 2. Background and Related Work

cally because there was ambiguity about the coordinate system when calculating a shape

descriptor. The optimal rotation is found by considering all constant offsets between

dimensions of the descriptors.

min
∆

(

d−1

∑
i=0

|Xi−Y(i+∆)mod d|
p

)
1
p

X ,Y ∈ R
d, p≥ 1

Normalizing shapes for rotation or constructing rotation invariant descriptors are two

ways to address this issue so that searching for the correct ∆ is unnecessary, which makes

indexing descriptors possible.

2.2 Local Shape Descriptors

While the discussion of shape descriptors has mostly focused on global representations

of a shape by a single descriptor, an alternative approach is to represent a shape by many

local descriptors. Then, each shape has a collection of descriptors, each describing a

small region along with the position of the local descriptor either relative to a reference

frame (e.g. center of mass) or other local descriptors. Using local descriptors for feature

matching has numerous advantages when dealing with the following issues:

Missing Data: Many 3D models created from scanned objects are missing surfaces be-

cause of occlusion. In some cases, a model only consists of a single range image

from one camera position, so the entire backside of the object is missing. Local

descriptors handle these data sets naturally, because local matches can be found.

Articulation: A model may represent an underlying object that has articulated limbs,

and a matching algorithm should be able to handle articulation. Examples of such

models include animals that can have limbs in different positions and vehicles that

may have their hoods or doors open. Local descriptors can identify local matches

and allow an algorithm to consider topological similarities in the face of global

differences.

Feature Importance: Because a shape descriptor converts from a model to a different

representation, locality information often is lost, so it is difficult to assign impor-

tance values on specific regions. A classic example from identifying cars is that the

Mercedes hood ornament is highly correlated with Mercedes vehicles, while the

14

Chapter 2. Background and Related Work

rest of a sedan is fairly consistent across brands of cars. Using local descriptors,

importance values can be determined for each local region.

Several researchers have investigated shape descriptors to determine feature corre-

spondences (e.g., [7, 20, 40, 63, 94]). The general strategy is to compute multiple local

shape descriptors for every object, each representing the shape for a region centered at a

point on the surface of the object. Virtually any global descriptor could be used as a local

descriptor by limiting the scale of the descriptor to a local region, but in this section, we

present several of the more effective local descriptors.

Perhaps the most thoroughly investigated local shape descriptor is the Spin Image by

Johnson et al. [63]. A spin image is calculated relative to a basis point on the surface

of a model, and a cylindrical coordinate system is created relative to the surface normal.

The distribution of nearby points is measured based on two parameters: distance from the

basis point perpendicular to the normal and signed distance along the normal. Because of

the cylindrical coordinate system, all points along a circle centered on a line aligned with

the surface normal project to the same bin in the spin image, which provides invariance

to rotation about the normal.

Numerous other local descriptors have been investigated as well. Chua et al. [20]

created the Point Signatures by measuring the Euclidean distance from points along

the circumference of a circle to a model’s surface. Since the starting position of the

circumference is not specified, during matching, all possible rotations of the descriptor

must be considered. Shape Contexts [34, 72] is similar to the FSD but positions the shells

progressively farther apart so there is more information recorded near the center of the

descriptor before calculating the spherical harmonic coefficients.

Matching with Local Descriptors

When matching with local shape descriptors versus global descriptors, the matching

algorithm is more complex and involves optimizing the difference between numerous

local shape descriptors or uses descriptors to create an alignment between shapes before

a more expensive difference calculation.

Recently, several researchers have investigated approaches to partial shape matching

based on feature correspondences (e.g., [7, 20, 40, 63, 94]). The general strategy is

to compute multiple local shape descriptors (shape features) for every object. Then,

15

Chapter 2. Background and Related Work

the similarity of any pair of objects is determined by a cost function determined by

the optimal set of feature correspondences at the optimal relative transformation, where

the optimal match minimizes the differences between corresponding shape features and

the geometric distortion implied by the feature correspondences. This approach has

been used for recognizing objects in 2D images [7, 9], recognizing range scans [63],

registering medical images [5], aligning point sets [21], aligning 3D range scans [42, 79],

and matching 3D surfaces [94, 111].

The challenge is to find an optimal set of feature correspondences efficiently. One ap-

proach is to consider an association graph [6] containing a node for every possible feature

correspondence and an edge for every compatible pair of correspondences. If each node

is weighted by the dissimilarity of its associated features and each edge is weighted by

the cost of the geometric deformation implied by its associated pair of correspondences,

then finding the optimal set of k feature correspondences reduces to finding a minimum

weight k-clique in the association graph. Researchers have approached this problem with

algorithms based on branch-and-bound [42], integer quadratic programming [9], etc.

However, previous work in this area has been aimed at pairwise alignment of objects,

and current solution methods are generally too slow for a search of large databases.

“Bag of words” approaches can be used to discretize descriptor space, where descrip-

tors are binned into a discrete set of possible values. For example, Mori et al. [89]

clusters descriptors into “shapemes,” builds a histogram of shapemes for every object,

and then approximates the similarity of two objects by the similarity of their histograms.

Grauman et al. [46] extended this approach to consider pyramids of clusters. However,

these methods make little or no use of the geometric arrangements of features, which is

an important property when distinguishing among models.

Another approach using local shape descriptors is based on the RANSAC algorithm

[30, 111]. Sets of k feature correspondences are generated, where k is large enough to

determine an aligning transformation, and the remaining features are used to score how

well the objects match after the implied alignment. For example, Johnson et al. [63] finds

small sets of compatible feature correspondences, computes the alignment providing a

least-squared best fit of corresponding features, and then verifies the alignment with an

iterative closest point algorithm [11]. Shan et al.[111] proposed a “Batch RANSAC”

version of this algorithm that considers matches to all target objects in a database all

16

Chapter 2. Background and Related Work

at once, generating candidate matches preferentially for the target objects with features

compatible with ones in the query.

Graph matching algorithms represent a shape by a set of regions with connections

between adjacent regions. Then, a match score between two models is related to the

similarity of their graph representations, where each graph node may also have properties

such as a local shape descriptor. A model may be divided into parts using the Medial Axis

Transform [14], Reeb graph [49], thinning operator [39, 58, 119], or other technique.

Constructing a graph for a model in the context of noise leads to matching methods

that attempt to compensate for changes in topology [104, 110, 115, 116]. Besides the

difficulty of constructing consistent graphs, computing the matching subgraph (subgraph

isomorphism) is known to be computationally inefficient.

2.3 Selection of Local Shape Descriptors

Considering all possible feature correspondences for matching may be infeasible, because

the number of possible feature correspondence sets grows exponentially with the set size.

Naively checking all possible sets of k feature correspondences among n features on

two objects takes O(nk) operations. In practice, searching the space of potential feature

correspondences for a single pair of surfaces can take several seconds or minutes, and

using these methods to find the best matches in a large database is impractical. A common

technique is to subsample important shape descriptors to create a subset representative of

the original shape. There has been a long history of related work in cognitive psychology,

computer vision, computer graphics, geometric modeling, statistics, and pattern recogni-

tion.

Perceptual Criteria: There have been several attempts to select regions of 3D shapes

that humans find visually important in object recognition, perceptual psychology, and

computer vision. For example, Howlett et al. [53] used an eye-tracker to record which

surfaces of a 3D model people tend to focus on and then used that information to assign

importance to vertices in a mesh simplification algorithm. While this method captures

a useful notion of surface importance, it is viewpoint-dependent and requires human

analysis of every 3D mesh, which is impractical for the large databases of 3D meshes

targeted by our system.

17

Chapter 2. Background and Related Work

Several psychophysical experiments have found that the human visual system quickly

processes regions of high curvature (e.g., [50]), and these findings have been applied

extensively for object recognition in computer vision [82, 83]. For example, combina-

tions of filters measuring edges and local maxima of curvature in 2D images have been

used to focus scene recognition algorithms [33]. More recently, curvature filters have

also been applied to define measures of saliency for mesh processing applications. For

example, Lee et al. [77] use a center-surround filter of curvature across multiple scales to

select salient regions for mesh simplification and viewpoint selection. Similarly, Gal et

al. [40] compute the saliency of a region based on its size relative to the whole object, its

curvature, the variance of the curvature, and the number of curvature changes within the

region. They use this measure to guide partial shape matching, self-similarity detection,

and shape alignment. Li et al. [79] compute surface signatures describing the curvature

and other properties for local regions and only keep the ones with significantly non-zero

magnitude. Novotni et al. [94] select points found as local extrema of the differences of

Gaussian filters applied to the characteristic function of the surface.

While these approaches are able to select regions that may be visually noticable, they

focus on curvature and other measures appropriate for manifold surfaces. Thus, they

cannot be used effectively for the majority of 3D computer graphics models which often

contain disjoint and intersecting polygons. More importantly, they measure how much a

region sticks out from the rest of the object rather than how important the region is for

defining the object type.

Statistical Criteria: Numerous techniques have been developed for selecting important

features in the realm of statistical analysis and pattern recognition, which are covered in

several classical books [27, 47, 84]. The problem is that given a set of feature vectors and

labeled training data to select a subset of features that is most useful for classification.

Many techniques from this field can also produce real-valued importance scores for each

feature. Discriminant analysis [74] or analysis of variance (ANOVA) [85] selects feature

vectors that are consistent within a class and have a large separation from other classes

of objects. Using regression analysis [23, 32], a subset of features can be selected with

stepwise selection that either grows or shrinks a subset of features to optimize a function.

Stepwise methods [59] add or remove features using a variety of error metrics including a

measure of group differences or the Mahalanobis distance between groups and stop when

altering the subset of features would create an insignificant change to the accuracy. Linear

18

Chapter 2. Background and Related Work

regression was used to remove outlier points for 2D matching by Dryden et al. [26] The

problem we address differs from classical statistical analysis because these approaches

assume a correspondence between features, and they select dimensions of a feature vector

rather than positions on a surface.

In the shape matching literature, the relative rarity of local surface patches has been

used as a measure of importance to guide several shape matching systems without requir-

ing correspondences between patches. Typically, representations of local shape (shape

descriptors) are computed for many regions of a surface, and then they are weighted

according to a measure of uniqueness when point sets are aligned and/or matched. For

example, Chua at al. [20] found “selective points” on a surface by comparing their de-

scriptors to others in a local neighborhood and used the descriptor that was most unique

for shape matching. Johnson [62] computed the likelihood of each shape descriptor based

on a Gaussian distribution of the descriptors for each mesh and then selected only the least

likely, i.e. rarest, descriptors to speed up surface matching. However, these methods only

find descriptors that are rare – they do not specifically find ones that are distinctive of an

object class.

Shan et al. [111] used shape descriptor matching to define the importance of points

on a mesh after calculating correspondences in a database. This method selects points

based on how well they match multiple points on one object (e.g., a spherical region will

be selected if there is an object with many spherical regions in the database), and thus it

provides a measure of stability for shape matching, rather than a measure of importance

for object classification, as is provided by our method.

2.4 Research Challenges

There are several research challenges to improve all phases of a retrieval system. These

challenges include increasing the accuracy of search results, improving the speed of

finding results, and answering the underlying question of how to even evaluate success.

First, certain features of a shape are often more important for defining its class than

others. For a chair, the back, seat, and legs define the class regardless of the level of

ornamentation, color, or the aspect ratio of the object. The exact position of certain

features is also irrelevant for some objects - e.g. whether a chimney is on the side or rear

19

Chapter 2. Background and Related Work

of a roof. A shape matching algorithm should be able to place more weight on important

regions.

Second, while local matching can handle certain issues more effectively than global

descriptors, it requires a large increase in the number of descriptors and slows matching

time. Handling articulation and occluded data naturally is one of the advantages of using

local descriptors. There is also an opportunity to focus matching on local regions that are

judged to be more important. Using local descriptors may involve dozens to hundreds of

descriptors, so the question remains how to realize the advantages of local matching in

an efficient search algorithm.

Third, indexing structures are needed to speed up the search for neighbors in the high

dimensional space of shape descriptors. Typically, a user is satisfied with a few pages of

search results, so it is unnecessary to calculate the distance between the query and every

other shape if the nearest neighbors can be found directly. A nearest neighbor search

is usually accelerated with indexing data structures, but indexing generally degrades to

linear search time when the dimensionality is beyond fifty.

Fourth, given the large number of shape retrieval methods investigated in the literature,

users are often left wondering, “Which technique works best?” It is not a straightforward

question because most papers in the field evaluate a shape retrieval technique on a cus-

tomized data set without comparing to previous techniques, and they have used their own

measurement of retrieval performance.

We address several of these research challenges in this dissertation. Based on an-

alyzing shapes in a database, we improve upon standard shape retrieval techniques by

identifying the most distinctive regions of each shape (Chapters 3 and 4). We focus a

local shape matching method on those regions using a priority-driven search algorithm

that efficiently searches for the best matches before calculating the distance to more

distant matches based on monotonically increasing partial distances (Chapter 5). As a

database changes, distinction scores for hundreds of thousands of descriptors must be

updated, and we explore several techniques involving a standard index structure (Chapter

6). Besides analyzing distinctive regions of models in a database, we predict important

regions for query models to improve matching (Chapter 7). Finally, with the Princeton

Shape Benchmark, we create a methodology to evaluate shape retrieval performance

(Chapter 9). This allows us to directly compare shape retrieval algorithms on the same

data set and report standardized performance metrics.

20

Chapter 3

Introducing Distinction

Introduction

Many problems in computer graphics, computer vision, and geometric modeling require

reasoning about which regions of a surface are most “important.” For example, in an

object classification system, a query might be compared only against the most important

regions of a target object to provide more discriminating matches. For mesh simpli-

fication algorithms, the importance of vertices may guide the order in which they are

decimated, and in an icon generation system, the most important regions of an object

should be visible. Our approach is to compute local shape descriptors, analyze which

descriptors best represent each class of objects, and integrate that analysis information

into a shape matching algorithm (Shilane and Funkhouser [113]).

Although there has been significant progress in algorithms for determining important

regions of polygonal meshes, most prior work has focused on geometric properties of

every mesh in isolation. For example, Lee et al. [77] defined a measure of mesh saliency

using a center-surround operator on Gaussian-weighted mean curvatures. Related mea-

sures of mesh importance have been defined by Gal et al. [40], Li et al. [79], Novotni

et al [94], Gelfand et al. [42], and others. However, almost all of these methods simply

select regions where the curvature of a surface patch is different than in its immediate

neighborhood.

21

Chapter 3. Introducing Distinction

Intuitively, the important regions of an object for recognition are not the ones with

specific curvature profiles, but rather the ones that distinguish it from objects of other

types, i.e., the distinctive regions. For example, consider the biplane shown in Figure 3.1.

Most people will tell you that the important features of the biplane are the wings and tail.

Those features are unique to biplanes and thus distinguish the biplane from other types

of vehicles. Generalizing this idea, we define the distinction of a surface region as how

useful it is for distinguishing the object from others of different types.

Mesh Mesh Distinction

Figure 3.1: Distinctive regions of a plane correspond to the important regions that define

the object type and distinguish the plane from other types of objects. Regions shown in

red are the most distinctive, blue are least distinctive, and green are in the middle. This

result corresponds to our intuition that the wings and tail are important features of a plane.

Intuitively, regions that are common among many object classes are not distinctive

(e.g., planar regions, spherical regions, etc.), while others that are found in only one

object class are very distinctive (e.g., the head of a wrench). In our system, each region

of a shape is considered as a query into a classified database, the best matching region on

each shape is determined with a distance metric, and the matches are sorted from closest

match to furthest match. This list is the retrieval result for each region. The retrieval

list is evaluated, and we assign a continuous value of distinction to every surface region,

with “0” indicating that the region is not distinctive at all (i.e., that region could be found

equally well in any object class), “1” indicating that the region is perfectly distinctive

(i.e., that region is found in only one object class), and values in between representing the

degree to which the region distinguishes the object class.

This definition of distinction has an important implication: in order to determine how

distinctive a surface region is, we must not only consider its properties, but we must

also consider how consistent those properties are within other instances of the same

22

Chapter 3. Introducing Distinction

object type and how unique those properties are with respect to other object types under

consideration. For example, if we consider the biplane among other types of airplanes,

we find that the wings are the most distinctive features. However, if we consider it as

a biplane among other types of objects (tables, animals, cars, etc.) many of which have

large flat regions, we find that the tail is most distinctive (Figure 3.1). In general, the

distinctive regions of a surface will be different depending on the granularity and range

of object types under consideration.

3.1 Examples

To help the reader understand which regions are found distinctive by the proposed method,

we show a sampling of images depicting which regions are found to be distinctive for a

variety of object classes in a variety of databases. Implementation details are provided in

Chapter 4. In all images, regions shown in red are the most distinctive, blue regions are

least distinctive, and green regions are in the middle. When computing distinction, local

shape descriptors were generated to include a small region of each object (0.25 times the

mesh radius). For example, in Figure 3.2, the ears of the Stanford Bunny are unique to

rabbits (red) and thus distinguish the bunny from other classes of animals, while the shape

of the body is not very distinctive (blue). Similarly, the head of the wrench, wheels of the

vehicles, pot of the plant, and struts of the guitar are important parts for distinguishing

each class of objects within the Princeton Shape Benchmark [114].

Our next example shows distinctive regions found for three helicopters (all except the

right-most image of Figure 3.3). In this case, distinction was measured with respect

to a database of flying vehicles dominated by airplanes. The propellers are red (the

most distinctive region) in every case, which matches our intuition that the part that

distinguishes a helicopter from other flying vehicles is its propeller. For comparison sake,

we show the mesh saliency values computed by Lee et al. [77] for the third helicopter.

The areas predicted to be salient by their approach highlight portions of the cockpit and

tail due to variations of curvature there, and do not detect the importance of the propellers.

A second example shows regions that distinguish cars from other classes of vehicles

(Figure 3.4). In this case, distinction was measured with respect to a database containing

cars, planes, and jeeps selected from the PSB. The wheels are most distinctive (red) in

23

Chapter 3. Introducing Distinction

Figure 3.2: Distinctive regions of meshes correspond to the important regions that define

their class of objects. In all images, regions shown in red are the most distinctive, blue

are least distinctive, and green are in the middle. Models are from the Princeton Shape

Benchmark, and regions were sized to be 0.25 times the mesh radius.

all cases, although for the top-left car, the front and rear of the car are equally distinctive

probably because of the different aspect ratio of this car relative to other cars. Again,

for comparison sake, we show the mesh saliency values computed by Lee et al. for the

top-right car – the regions predicted to be salient by their approach do not correspond as

well to distinguishing parts.

A third example shows the regions found to be distinctive for a set of humans standing

in a spread-eagle pose in Figure 3.5. In this case, distinction was measured with respect

to all classes in the test database of the PSB. For thirteen of the fifteen examples, the

arms are found to be the most distinctive region. For the other two, the top of the head

is most distinctive (those two people have wider arms and a slightly different pose than

24

Chapter 3. Introducing Distinction

Mesh Saliency

Figure 3.3: Visualizations of distinctive regions (red) on three helicopters with respect

to a database of flying vehicles selected from the PSB. The two right-most images show

a comparison of distinction to mesh saliency as computed by Lee et al. for the same

helicopter model. Regions were calculated at 0.25 times the mesh radius.

Mesh Saliency

Figure 3.4: Visualizations of mesh distinction for five cars as computed with our method.

The right-most column shows a comparison between distinction and saliency for the same

car model. Note that the tires are consistently distinctive, but not particularly salient.

Regions were calculated at 0.25 times the mesh radius.

the others). This result is interesting because the region found to be most distinctive is

not obviously what a human might choose as the distinguishing feature of this class at

first glance. However, the PSB test database has 92 different classes, including “humans

in a standing pose,” “humans in a walking pose,” “faces,” “heads,” “skulls,” “hands,”

etc., and thus it is indeed the pose of the arms that best differentiates this class from the

others. This example points out both an advantage and disadvantage of our approach:

our method can automatically determine the differences between classes in a database,

but the distinctive regions may not correspond to semantic parts.

25

Chapter 3. Introducing Distinction

Figure 3.5: Visualizations of mesh distinction for fifteen humans. Note that the distinctive

regions for humans in this pose are typically around the elbow area. This region best

differentiates this class of objects from other classes of human models in the Princeton

Shape Benchmark with regions calculated at 0.25 times the mesh radius.

26

Chapter 4

Computing Distinction

Introduction

Our definition of shape distinction requires evaluating every surface region to determine

how well it matches shapes of the correct class. In this chapter, we describe a method

for computing distinction that is motivated by shape retrieval applications (Shilane and

Funkhouser [113]). A shape retrieval method may match subregions of shapes using local

shape descriptors to represent each region, where the similarity of two shapes is related to

the similarity of their subparts. This may involve computing numerous shape descriptors,

possibly at multiple scales. Our technique for computing shape distinction fits into this

pipeline by analyzing local shape descriptors in the database during a preprocessing

phase. We assign a distinction score that relates the value of matching each region relative

to the current database, which can be used to focus a shape matching algorithm. In the

remainder of this chapter, we explain our specific technique and explore properties of

distinction scores.

The organization of this chapter is as follows: In Section 4.1, we explain our technique

for processing meshes to compute distinction scores. The subsections that follow explain

each step of our technique in more detail. Then, in Section 4.2, we demonstrate how

various parameters affect distinction scores. Finally, Section 4.3 provides a discussion of

conclusions and limitations of our approach.

27

Chapter 4. Computing Distinction

4.1 System Overview

Computation of surface distinction proceeds in our system as shown in Figure 4.1. Given

a database of meshes partitioned into object classes, we first generate for each mesh

a set of random points that are the centers of spherical regions covering its surface at

multiple scales. Then, for every region, we compute a shape descriptor representing the

distribution of surface area within that region. Next, we compare the difference between

all pairs of shape descriptors to produce a ranked list of matches for each descriptor

ordered from best to worst. The ranked lists are then analyzed to produce measures of

how distinctive different local regions are – i.e., how many descriptors from the same

class of objects appear near the front of their ranked lists. These measures can be directly

used to improve shape matching applications, and can also be mapped from the regions

back onto the vertices of the mesh and used to guide mesh visualization, processing, and

analysis. The following subsections describe each of these steps in detail.

Shape

Descriptors

Random

Points Regions

Vertex

DistinctionMesh

Distinct

Regions

Figure 4.1: Overview of our technique for computing distinction on the surface of a mesh.

4.1.1 Constructing Regions

The first step of our process is to define a set of local regions covering the surface of

the object. In theory, the regions could be volumetric or surface patches; they could be

disjoint or overlap; and they could be defined at any scale.

In our system, we construct overlapping regions defined by spherical volumes centered

on points sampled from the surface of an object (Figure 4.2). This choice supports robust

processing of arbitrary surface meshes with degenerate topology, and it naturally supports

overlapping regions at multiple scales. Formally, the database consists of a set of meshes

{M1, ...,Mm}, each mesh M j has a set of points {p1, j, ..., pn, j} where p ∈ R3, and each

point has a set of scales {s1, ...,sh}, where a spherical region ri, j,k has center pi, j and

radius sk. We have experimented with two different point sampling methods, one that

28

Chapter 4. Computing Distinction

0.25 0.5 2.01.0

Figure 4.2: Four regions are shown with the same center point but different scales. At

the 0.25 scale, the tail is included, and at larger scales, progressively more of the plane is

included. At the 2.0 scale, the entire plane is included, even when the region is centered

on the end of the plane.

selects points randomly with uniform distribution with respect to surface area and another

that selects points at vertices of the mesh with probability equal to the surface area of

the vertices’ adjacent faces. Of course, other sampling methods that sample according

to curvature, saliency, other surface properties, or based on volumetric properties [91]

are possible as well. However, we found that they do not give significantly different

performance, and so we consider only random sampling with respect to surface area in

the remainder of this dissertation. In most of our experiments, we consider four different

scales for every point, where the smallest scale has radius 0.25 times the radius of the

entire object and the other scales are 0.5, 1.0, and 2.0 times, respectively. Note that the

biggest scale is just large enough to cover the entire object for the most extreme position

on the surface, and the smallest scale is large enough to contain easily recognizable shape

features.

Our implementation for selecting random points on a surface as centers for these

spherical regions follows the approach of Osada et al. [99]. We have modified their

algorithm slightly to make sampling more efficient and to stratify samples in meshes

with large triangles. Specifically, in the first stage, we allocate a number of points to

every triangle in proportion to its surface area. Then, in the second stage, we sample the

allocated number of points from every triangle uniformly with respect to its surface area.

This method is faster than Osada’s method, taking O(n) rather than O(nlogn) for a mesh

with n triangles.

29

Chapter 4. Computing Distinction

4.1.2 Describing Shapes

In the second step of our process, for each spherical region ri, j,k, we generate and store a

shape descriptor xi, j,k which has dimension d. There will be many such regions for every

surface, so the shape descriptors must be quick to compute and concise to store. Since we

will be matching all pairs of the shape representations, they must be indexable and quick

to compare. Also, our methods should work for any input object representation; they

must be independent of shape description, insensitive to topology, and robust to common

input file degeneracies. Finally, since we aim to model how distinctive the shape of each

surface region is, they must be discriminating of similar versus dissimilar shapes.

There are many shape descriptors that meet some or all of these goals (see surveys

in [16, 56, 121]). For example, Belongie et al. [8] have used shape contexts for describ-

ing local regions of 2D images, and Kortgen et al. [72] have extended their method to

3D. However, shape contexts are dependent on a particular orientation and thus require

alignment within a global coordinate system or searching possible rotations as they are

matched [34]. Johnson et al. [63] have used spin images to represent the shapes of

local regions with orientation dependence on just the normal to the surface at a sample

point, and Vranic et al. [130] have described Fourier descriptors that could be used to

provide invariance to all rotations except those around the surface normal. However, those

methods are sensitive to normal orientation, which is highly variable in sparsely sampled

point sets considered in this dissertation. Kazhdan et al. [69] described a Harmonic Shape

Descriptor (HSD) that is invariant to all rotations. The main idea is to decompose a

spherical region into concentric spherical shells of different radii, compute the spherical

harmonic decomposition for a function describing the shape in each of those shells, and

then store the amplitudes of the harmonic coefficients within every frequency (order) to

form a feature vector for indexing and matching (see [36] for details).

In our system, we have experimented with three different shape descriptors based on

spherical harmonics. All three decompose a sphere into concentric shells of different

radii and then describe the distributions of shape within those shells using properties

of spherical harmonics. The first (SD) simply stores the amplitude of all shape within

each shell (the zero-th order component of spherical harmonics) – it is a one-dimensional

descriptor equivalent to the Shells shape histogram of [2]. The second (HSD) stores the

amplitude of spherical harmonic coefficients within each frequency – it is equivalent to

the Harmonic Shape Descriptor of [36, 69]. The last (FSD) descriptor stores the ampli-

30

Chapter 4. Computing Distinction

tude of every spherical harmonic coefficient separately – it is similar to the Harmonic

Shape Contexts of [34]. In all of our experiments, we utilize 32 spherical shells and 16

harmonic frequencies for each descriptor.

We chose these shape representations for several reasons. First, they are well-known

descriptors that have been shown to provide good performance in previous studies [34,

114]. Second, they are reasonably robust, concise, and fast to search. Finally, they

provide a nested continuum with which to investigate the trade-offs between verbosity

and discrimination – SD is very concise (32 values), but not that discriminating; HSD is

more verbose (512 values) and more discriminating; and FSD is the most verbose (4352

values) and the most discriminating. The three descriptors are related in that each of the

more concise descriptors is simply a subset or aggregation of terms in the more verbose

ones (e.g., the SD descriptor stores the amplitude of only the zero-th order spherical

harmonic frequencies). Thus, the L2 difference of each descriptor provides a lower

bound on the L2 difference between the more verbose ones, which enables progressive

refinement of descriptor differences, which could be exploited in future work.

Our method for computing the HSD for all regions of a single surface starts by com-

puting a 3D grid containing a Gaussian function of the surface’s Euclidean Distance

Transform (GEDT) [65]. This function, which is one at the surface and falls off grad-

ually with Euclidean distance, provides a soft penalty function for matching surfaces by

comparison of volumes. The GEDT grid resolution is chosen to match the finest sampling

rate required by the HSD for regions at the smallest scale; the triangles of the surface are

rasterized into the grid; and the squared distance transform is computed and stored. Then,

for every spherical region centered on a point sampled from the surface, a spherical grid

is constructed by sampling the GEDT at regular intervals of radius and polar angles; the

Spharmonickit software [118] is used to compute the spherical harmonic decomposition

for each radius; and the amplitudes of the harmonic coefficients within each frequency are

stored as a shape descriptor. The amplitudes of the harmonic coefficients (or frequencies,

depending on the type of shape descriptor) are computed; the shape descriptors are

compressed using principal component analysis (PCA); and the dimensions associated

with the top C eigenvalues (C ∼ 10%) are stored as a shape descriptor.

For each 3D object, computing the three types of shape descriptors centered at 128

points for 4 scales (0.25, 0.5, 1.0, and 2.0) takes approximately four minutes overall

and generates around 1 MB of data per object. One minute is spent rasterizing the

31

Chapter 4. Computing Distinction

triangles and computing the squared distance transform at resolution sufficient for the

smallest scale descriptors, almost two minutes are spent computing the spherical grids,

and a few seconds are spent decomposing the grids into spherical harmonics for each

object. Compression amortizes to approximately one minute per object for FSDs and

approximately 1 second per object for HSDs.

4.1.3 Measuring Distinction

In the third step of our process, we compute how distinctive every shape descriptor is

with respect to a database containing multiple classes of objects. Our goal is to compute

a continuous measure that reflects how well the shape descriptor for a local region of a

surface matches others within the same class of objects relative to how well it matches

descriptors in other classes. Descriptors whose best matches are all from its own class are

distinctive, while ones that match descriptors in a wide variety of classes equally well are

not. While we would ideally like to calculate the distinction value for all combinations

of local descriptors and at all scales, this is computationally infeasible. Instead, we make

an independence assumption and calculate distinction for each descriptor independently,

modeling distinction with an information retrieval metric.

Given the distance from the ith descriptor of mesh M j (i.e. descriptor xi, j,k) to the

closest descriptor of every other mesh in the database, where the distance to mesh Mt is:

dist(xi, j,k,Mt) = min
b

||xi, j,k− xb,t,k||

We sort the distances from smallest to largest to create the retrieval list for xi, j,k. This

retrieval list represents the order of matching results in the database if we had used a

single descriptor fromM j as a query. We then compute the distinction of the descriptor by

evaluating a retrieval performance metric that measures how well meshes in the query’s

class appear near the front of the list. Retrieval metrics typically evaluate a retrieval list

into a score between 0 and 1, where scores closer to 1 indicate a better retrieval list.

There are numerous evaluation metrics that could be used to convert a retrieval list into

a numeric score. While none of these statistics are new, we include detailed descriptions

for completeness.

32

Chapter 4. Computing Distinction

Nearest Neighbor is the percentage of the closest matches that belong to the same class

as the query. This statistic provides an indication of how well a nearest neighbor

classifier would perform. Obviously, an ideal score is 100%, and higher scores

represent better results.

First-Tier and Second-Tier refer to the percentage of models in the query’s class that

appear within the top K matches, where K depends on the size of the query’s class.

Specifically, for a class with |C| members, K = |C| − 1 for the first tier, and K =

2 ∗ (|C| − 1) for the second tier. The first tier statistic indicates the recall for the

smallest K that could possibly include 100% of the models in the query class, while

the second tier is a little less stringent (i.e., K is twice as big). These statistics are

similar to the “Bulls Eye Percentage Score” (K = 2∗ |C|), which has been adopted

by the MPEG-7 visual SDs [139]. In all cases, an ideal matching result gives a

score of 100%, and higher values indicate better matches.

E-Measure is a composite measure of the precision and recall for a fixed number of

retrieved results [125]. The intuition is that a user of a search engine is more

interested in the first page of query results than in later pages. So, this measure

considers only the first 32 retrieved models for every query and calculates the

precision and recall over those results. The E-Measure is defined as [125, 78]:

E = 2
1
P+

1
R

The E-measure is equivalent to subtracting van Rijsbergen’s definition of the E-

measure from 1. The maximum score is 1.0, and higher values indicate better

results.

Discounted Cumulative Gain (DCG) is a statistic that weights correct results near the

front of the list more than correct results later in the ranked list under the as-

sumption that a user is less likely to consider elements near the end of the list.

Specifically, the ranked list R is converted to a list G, where element Gi has value 1

if element Ri is in the correct class and value 0 otherwise. Discounted cumulative

gain is then defined as follows [60]:

DCGi =

{

G1, i= 1

DCGi−1 + Gi
lg2(i)

, otherwise

}

33

Chapter 4. Computing Distinction

This result is then divided by the maximum possible DCG (i.e., that would be

achieved if the first C elements were in the correct class, where C is the size of the

class) to give the final score:

DCG=
DCGk

1+∑
|C|
j=2

1
lg2(j)

where k is the number of models in the database.

Each of these measures has trade-offs in terms of how much of the retrieval list is

included in the calculation (nearest neighbor uses the first retrieval result, while DCG

requires the full list) versus the time necessary to calculate the results (nearest neighbor

could be quickest using an indexing structure to find the closest result and DCG the

slowest). We have selected the DCG [60] retrieval measure for most of our experiments

because it has been shown to provide the most stable retrieval measure in previous studies

[78, 114]. The choice of retrieval metric is considered in greater detail in Chapter 6. The

distinction score for a descriptor xi, j,k associated with position pi, j and scale sk is the

DCG score calculated for the retrieval list when using xi, j,k as a query.

D(xi, j,k) = D(pi, j,sk) ≡ DCG

In our system, we compute and store a measure of retrieval performance for every

shape descriptor of every object during an off-line processing phase. Comparing two

HSD descriptors takes 2.5E-6 seconds on a 2.2 GHz computer running Linux, and in

general takes O(sn2m2) time to make all pairs of comparisons, where s is the number of

scales, n is the number of descriptors per mesh, and m is the number of meshes in the

database. This process takes 37 hours for 128 points at four scales for 907 meshes in the

Princeton Shape Benchmark. However, it must be done only once per database during a

batch processing phase – we computed the distinction for each descriptor once and then

stored it in a file for use multiple times in various applications.

4.1.4 Mapping to Vertices

The final step of the process is to map the computed measure of class distinction back

onto the vertices of the mesh. While this step is not required of all applications (e.g.,

34

Chapter 4. Computing Distinction

shape matching), it is useful for several mesh processing tasks (e.g., mesh simplification)

that need to have a measure of importance associated directly with every vertex. An

alternative to mapping distinction scores from samples on the surface is to calculate shape

descriptors at each vertex and calculate distinction directly, but we have typically been

working with a vastly smaller number of descriptors than the number of vertices per mesh.

Our approach to this problem is quite straightforward. We simply model distinction

as a mixture of Gaussians. For every vertex, we estimate how distinctive it is by com-

puting a weighted average of the DCG values that have been computed for nearby shape

descriptors for a given scale where the weights are determined by the value of a Gaussian

function of the distance between the vertex and the middle of the surface region, pi, j.

Consider mesh M consisting of a set of shape descriptors each with a center position

p ∈ R3 and distinction score D defined for each scale s, where D(p,s) is calculated as

described in Section 4.1.3. For every vertex v on the mesh of M, distinction is defined as

follows:

D(v,s) =
∑p∈MD(p,s)e

−‖p−v‖2

2σ2

∑p∈M e
−‖p−v‖2

2σ2

While using the Euclidean distance instead of geodesic distance ignores connectivity

information, it is robust to disconnected meshes. Also, since the regions selected on each

shape are generally overlapping and nearby descriptors tend to be similar, it is reasonable

to assume, and we observe in practice, that distinction scores change smoothly across a

mesh. In all of the following results, we set σ=0.1 times the mesh radius.

4.2 Results

The methods described in the previous section have been tested on several databases of

3D meshes. In this section, we present images depicting mesh distinction for several

examples and investigate: 1) how sensitive our results are to different parameter settings,

and 2) how mesh distinction compares to previous measures of importance (i.e., saliency).

35

Chapter 4. Computing Distinction

4.2.1 Effect of Database

A key feature of our formulation for mesh distinction is that the results depend on the

database under consideration and how it is partitioned into object classes. In this section,

we investigate how the distinctive regions of a surface might be affected by changes in

the database.

Figure 4.3 shows four images of the same biplane, the first three of which are colored

by mesh distinction as computed with our method at 1024 positions at the 0.25 scale,

while the fourth image from the left shows the mesh colored by mesh saliency. The

difference between the first three images is only that different databases were used to

evaluate the DCG measure during the computation of mesh distinction. The left-most

image shows that the wings and tail are most distinctive with respect to the other 91

classes in the Princeton Shape Benchmark. The second image shows that the tail is most

distinctive with respect to a smaller database containing other classes of vehicles (cars,

jeeps). The third image shows that the struts between the wings and cockpit are most

distinctive with respect to a database containing different classes of planes (commercial

jets, fighter planes, etc.). In contrast, the fourth image shows that mesh saliency is

unaffected by database changes.

In short, the distinctive area of the biplane changes depending on the database under

consideration. This is a very useful feature of our method, as it allows the measure to

adapt to finer differences in databases with more similar object classes.

Plane DBPrinceton Shape

Benchmark

Vehicle DB Mesh Saliency

Figure 4.3: The distinctive surfaces of the biplane depends on the database under

consideration.

36

Chapter 4. Computing Distinction

4.2.2 Effect of Scale

Another factor affecting the distinction of surfaces is the scale (size of the region) covered

by each spherical shape descriptor. Figure 4.4 compares mesh distinction computed for

a model of a dog with respect to other quadrupeds with shape descriptors covering 0.25,

0.5, 1.0, and 2.0 of the mesh radius. As the scale of the shape descriptors vary, the dis-

tinctive regions vary. At the smallest scale, the head is the most distinctive region, while

at the largest scale, the most distinctive region is centered on the front feet. Compared

to other quadrupeds in this database, at a small scale, the head is the most distinguishing

local feature. At larger scales, the aspect ratio of dogs versus taller animals such as

horses causes an extremity to be the center of the most distinguishing region. This result

is typical, smaller scales usually choose a region with a small part having a distinctive

shape, while larger scales usually choose an extremity that provides a distinctive center

point for describing the global shape of the mesh.

Figure 4.4: As the scale of the shape descriptor increases, different surfaces become

distinctive.

These images highlight that distinction is dependent on the scale selected, and we

have specifically preserved these differences as compared to combining distinction in a

multiscale method as was calculated for saliency [77]. For shape matching purposes,

descriptors can be calculated at multiple scales, so it is natural to focus a matching

technique on distinctive regions at the appropriate scale, which we explore in Chapter 5.

4.2.3 Alternatives to Distinction

We next investigate how well distinction scores correspond to alternative importance

measures across an entire database of shapes. Instead of using shape distinction, there

are possibly other techniques for selecting important regions on a shape by focusing on

properties that are intrinsic to the shape.

37

Chapter 4. Computing Distinction

Distance: Surfaces of a shape near the center of mass or near an extremity may represent

important regions. We have noticed examples such as the biplane in Figure 3.1

where positions on the extremity have high distinction, which motivates this inves-

tigation.

Surface Area: The amount of surface area enclosed within each region varies across the

shape depending on the curvature of the shape and scale of the descriptor. We might

expect that regions that include a large amount of surface area are more distinctive,

while regions that mostly enclose empty space are less distinctive.

Likelihood: Previous projects [20, 62] have treated shape descriptors as high dimen-

sional feature vectors and selected the least likely descriptors for matching, so

shape descriptor likelihood is possibly a good indicator of distinction. We assumed

a multivariate Gaussian distribution with mean and covariance measured from the

descriptors to calculate likelihood.

Saliency: Shape saliency finds the regions of shapes that stick out and are important

for visual representation [77], so we considered saliency as a property similar to

distinction. Saliency scores were calculated by the saliency.exe program (provided

by Chang Lee [77]) on the vertices of a mesh, and saliency scores were interpolated

to the centers of the regions.

We compared each of these techniques to distinction for the 907 test models of the

Princeton Shape Benchmark across all descriptor scales. We created 256 regions on each

shape, created shape descriptors at multiple scales, and calculated distinction for each

descriptor. We also calculated for each position the distance from the center of mass of

the shape, the amount of surface area (for regions of each scale), the likelihood based

on a Gaussian distribution, and the saliency score1. We then calculated the correlation

score r [105] comparing distinction values to each alternative technique at each scale

independently:

r =
1

(n−1)σxσD(M j,sk)

n

∑
i=1

(xi− x)(D(pi, jsk)−D(M j,sk))

1The saliency.exe program was not able to process one model, likely because it was a highly broken

mesh with many disconnected polygons.

38

Chapter 4. Computing Distinction

The term xi is one of the alternative techniques calculated at position pi, j of meshM j,

and D(M j,sk) is the average distinction score over the n regions of M j at scale sk. We

found that, in all cases, the correlation score was between −0.04 and 0.07, where scores

closer to either −1 or 1 indicate a linear relationship (negative or positive respectively),

and values close to zero indicate little or no association. These correlation scores for the

1.0 scale indicate that neither Distance (r = −0.04), Surface Area (r = 0.07), Likelihood

(r = 0.04), nor Saliency (r = 0.03) correlates well to distinction.

While this study only considers a linear relationship between distinction and other

properties, it is clear that each property is unable to consistently predict which shape

surfaces match within a class and to distinguish shapes from different classes.

4.3 Conclusion

In summary, we have defined distinctive regions of a 3D surface to be those whose shapes

provide the best retrieval performance when matched against other shapes in a database

of objects partitioned into classes. This definition produces measures of distinction that

adjust to the types of classes in the database and provides shape information at multiple

scales. For a number of examples, we have shown that the most distinctive parts are

consistent within a class and sometimes correspond to identifiable parts of a surface.

There are several limitations of our approach. First, the retrieval measure (DCG) used

in our implementation is slow to compute. Even with approximation techniques and index

structures, analyzing a database with thousands of meshes may take hours, while calcu-

lating saliency takes 4.3 seconds per model and less than a second is required to calculate

likelihood or select descriptors randomly. Since distinction can be calculated during the

preprocessing of the database, we believe it is a worthwhile step to dramatically improve

retrieval performance.

Second, our implementation has focused on distinction in 3D surface shape. While

this is well-motivated for some applications such as shape matching, perhaps other ap-

proaches based on distinction in 2D images of 3D shapes would be better for others (e.g.

visualization applications). We believe that the principles outlined in this dissertation can

help guide further work in determining and utilizing the important regions of objects.

39

Chapter 5

Matching with Distinction

Introduction

One of the main advantages of shape distinction is to guide the process of matching

shapes represented by local descriptors. Before a query shape is even presented to a

retrieval system, descriptors for target shapes in a database can be filtered by selecting

the most distinctive. Even with an importance function based on shape distinction, there

will be numerous possible feature correspondences that must be investigated. Checking

all possible sets of correspondences will take time exponential in the size of the set, which

is too slow for many retrieval applications.

In this chapter, we introduce a priority-driven algorithm for searching all objects in a

database at once by focusing on distinctive regions (Funkhouser and Shilane [37]). The

algorithm is given a query object and a database of target objects, all represented by sets of

local shape features, and its goal is to produce a ranked list of the best target objects sorted

by how well any subset of k features on the query match features on the target object.

To achieve this goal, the system maintains a priority queue of potential sets of feature

correspondences (partial matches) sorted by a cost function accounting for both feature

dissimilarity and geometric deformation. Initially, all pairwise correspondences between

the features of the query and features of target objects are loaded onto the priority queue.

Then, at every step, the best partial match m is popped off the priority queue, new partial

matches are created by extending m to include compatible feature correspondences, and

those new partial matches are added to the priority queue. This process is iterated until

40

Chapter 5. Matching with Distinction

the desired number of full matches with k feature correspondences have been popped off

the priority queue.

The advantage of this approach is that the algorithm provably finds the optimal set of

matches over the entire database while investigating only a small subset of the potential

matches. Like any priority-driven backtracking search (e.g., Dijkstra’s shortest path

algorithm), the algorithm considers only the partial matches that can possibly lead to

the lowest cost match (Figure 5.1). Although some poor partial matches are generated,

they never rise to the top of the priority queue, and thus they incur little computational

overhead. By using a single priority queue to store partial matches for all objects in the

database at once, we achieve great speedups when retrieving only the top matches – if

a small set of target objects match the query well, their feature correspondences will be

discovered quickly, and the details of other potential matches will be left unexplored.

This approach largely avoids the combinatorial explosion of searching for multi-feature

matches in dissimilar objects.

C1

C2

C3

C4

A1 A2

A3
B1

B2 B3

(A1,B2)

(A2,B1)

(A3,B3)

0.18

(A1,B3)

(A2,B2)

0.12

(A1,B2)

(A2,B3)

(A3,B1)

0.03

(A2,C3)

161.5

(A4,B1)

120.6

(A3,C1)

95.3

Priority Queue

Query Targets

Low Cost High Cost

Feature

Matches

Cost of Match

A4

Figure 5.1: Priority driven search: a priority queue (bottom) stores potential matches

of features (labeled dots) on a query to features of all target objects at once. Matches

are extended only when they reach the top of the priority queue (the leftmost entry),

and thus high cost feature correspondences sit deep in the priority queue and incur little

computational expense.

41

Chapter 5. Matching with Distinction

This chapter makes several research contributions. In addition to the idea of priority-

driven search, we explore ways of improving computational efficiency and retrieval per-

formance of multi-feature matching algorithms: 1) we use ranks rather than L2 differ-

ences to measure feature similarity; 2) we use surface distinction to select features; and, 3)

we match features at multiple scales. Finally, we provide a working shape-based retrieval

system and analyze its performance over a wide range of options and parameter settings.

We find that our system provides significantly better retrieval performance than previous

shape matching approaches on the Princeton Shape Benchmark while using increased,

but reasonable, processing and storage costs.

The organization of this chapter is as follows. Section 5.1 contains an overview of the

priority-driven search algorithm followed by a detailed description for every algorithmic

step. Section 5.2 compares the performance of the priority-driven search approach to

other state-of-the-art shape matching methods and investigates how modifying several

aspects of the algorithm impacts its performance. Finally, Section 5.3 provides a brief

discussion of conclusions and limitations.

5.1 System Execution

Execution of our system proceeds in two phases: a preprocessing phase and a query

phase. We provide an overview of both phases before explaining each in greater detail.

During the preprocessing phase, we build a multi-feature representation of every ob-

ject in the database. First, we generate for each object a set of spherical regions covering

its surface at different scales and compute a descriptor of the shape within that region.

Second, we compute differences between all pairs of descriptors at the same scale and

associate with every descriptor a mapping from rank to difference. Finally, we select

a subset of features to represent each object based on how distinctive they are of their

object class. The result of this preprocessing is a set of “shape features” (or “features,”

for short) for every object, each with an associated position (p), normal (~n), radius (r),

and shape descriptor (a feature vector of numbers representing a local region of shape),

and a description of how discriminating its shape descriptor is with respect to others in

the database.

42

Chapter 5. Matching with Distinction

For every query, our matching procedure proceeds as shown in Figure 5.2. The inputs

are: 1) a query object, query, 2) a database of target objects, db, each represented by a set

of shape features, 3) a cost function, cost, measuring the quality of a proposed set of fea-

ture correspondences, 4) a constant, k, indicating the number of feature correspondences

that should be found for a complete match, and 5) a constant, c, indicating the number of

objects for which to retrieve optimal matches. The output is a list of the best matching

target objects, M, along with a description of the feature correspondences and cost for

each one.

PriorityDrivenSearch(Object query, Database db,

Function cost, int k, int c)

Create correspondences

foreach Object target in db

foreach Feature q in query

foreach Feature t in target

p = CreatePairwiseCorrespondence(q, t, cost)

if (IsPlausible(p))

AddToPriorityQueue(Q, p)

AddToList(C[target], p)

if (cost(p) < cost(M[target]))

M[target] = p

Expand matches until find complete ones

complete match count = 0

while (complete match count < c)

Pop match off priority queue

m = PopBestMatch(Q)

target = GetTargetObject(m)

Check for complete match

if (IsMatchComplete(m, k))

RemoveMatchesFromPriorityQueue(Q, target)

complete match count++

continue;

Extend match

foreach PairwiseCorrespondence p in C[target]

m’ = ExtendMatch(m, p, cost)

if (IsPlausible(m’))

AddToPriorityQueue(Q, m’)

if (cost(m’) < cost(M[target]))

M[target] = m’

Return result

return M

Figure 5.2: Pseudo-code for priority-driven search.

43

Chapter 5. Matching with Distinction

Initially, a priority queue, Q, is created to store partial matches, and an array, M, is

created to store the best match to every target object. Then, all pairwise correspondences

between the features of the query and features of the target objects are created, stored in

lists associated with the target objects, and loaded onto the priority queue. The priority

queue then holds all possible matches of size 1. Then, until c complete matches have

been found, the best partial match, m, is popped off the priority queue. If it is a complete

match (i.e., the number of feature correspondences satisfies k), then the search of that

target object is complete, and the priority queue is cleared of partial matches to that

object. Otherwise, for every feature correspondence between the query and the target of

m, the match is extended by one feature correspondence to form a new match, m′. The

best match for every target object is retained in an array,M, when it is added to the priority

queue. This process is iterated until at least c full matches with k feature correspondences

have been popped off the priority queue for c distinct target objects, and the array of the

best matches to every target object, M, is returned as the result.

The computational savings of this procedure come from two sources. First, matches

are considered from best to worst, and thus, poor pairwise correspondences are never

considered for extension and add little to the execution time of the algorithm. Second,

after complete matches for at least c target objects have been added to the priority queue,

it is possible to determine an upper-bound on the cost of matches that can plausibly lead

to one of the best matches. If the score computed for an extended match, m′, is higher

than that upper bound, then there is no reason to add it to the queue, and it can be ignored.

Similarly, if a match, m, is popped off the queue, then it is provably the best remaining

match – i.e., no future match can be considered with a lower cost. Thus, the algorithm

can terminate early (immediately after c best matches have been popped off the priority

queue) while still guaranteeing an optimal solution.

Of course, there are many design decisions that impact the efficacy of this search

procedure, including how shape descriptors are computed (Section 5.1.1), selecting dis-

tinctive descriptors from target shapes (Section 5.1.2), what cost function is used (Sec-

tion 5.1.3), how implausible matches are culled (Section 5.1.4), and so on. The following

subsections describe our design decisions in detail, and Section 5.2 provides the results

of experiments aimed at evaluating the impact of each one on search speed and retrieval

performance.

44

Chapter 5. Matching with Distinction

5.1.1 Computing Shape Descriptors

The first step of our system is to generate local regions for a shape and construct shape

descriptors, which is identical to the procedure described in Section 4.1.2. We randomly

select point samples on the surface of each mesh and consider spherical regions centered

at those positions across multiple scales. In our matching experiments, we consider

four scales (0.25,0.5,1.0,and2.0 times the shape’s radius). Each region is represented

by a shape descriptor that provides a compact feature vector representation that can be

efficiently calculated and compared. Most of our experiments compare three related

descriptors: the Shells Descriptor (SD), Harmonic Shape Descriptor (HSD), and Fourier

Shape Descriptor (FSD).

5.1.2 Selecting Distinctive Features

The next step of our system for preprocessing target models has two phases. In the first

phase, we calculate for each descriptor a measure of how well it matches shapes of the

same class versus shapes of other classes, which we call a rank-to-difference mapping.

In the second phase, we filter the set of descriptors to a small set that are most distinctive.

Selecting a subset of local shape descriptors is a well known technique for speeding

up retrieval, and several researchers have proposed different methods for this task. The

simplest technique is to select features randomly [34, 63, 89]. Other methods have

considered selecting features based on surface curvature [132], saliency [40], likelihood

within the same shape [42, 63], persistence across scales [42], and number of matches to

another shape [111].

In the first phase, for every feature, we compute the L2 difference of its shape de-

scriptor to the best match of every other object in the database, sort the differences from

best to worst, and save them in a rank-to-difference mapping (RTD). To save space, we

store an approximation to the RTD containing log(N) values by sampling distances at

exponentially larger ranks. We then use the RTD to estimate the distinction (DCG) of

every shape feature.

In the second phase, we employ a greedy algorithm to select a small set of features

to represent every target object (Figure 5.3). The selection algorithm iteratively chooses

the feature with highest DCG whose position is not closer than a Euclidean distance

45

Chapter 5. Matching with Distinction

threshold, minlength, to the position of any previously selected feature. This process

avoids selecting features nearby each other on the mesh and provides an easy way to vary

the subset size by adjusting the distance threshold.

(a) All Features (b) Feature Distinction (c) Selected Features

Figure 5.3: Feature selection: (a) positions sampled randomly on surface, (b) computed

DCG values used to represent feature distinction (red is highest, blue is lowest), and (c)

features selected to represent the object during matching.

The net result of this process is a small set of features for every target object, each

with an associated position (p), normal (~n), radius (r), a set of shape descriptors (SD,

HSD, and FSD), a rank-to-difference-mapping (RTD), and a retrieval performance score

(DCG). The storage for the resulting data required at query time is approximately 100

KB per object.

5.1.3 Creating Pairwise Feature Correspondences

When given a query object to match to a database of target objects, the first step is to

compute the cost of pairwise correspondences between features of the query to features of

the target. The key to this step is to develop a cost function that provides low values only

when two features are compatible and gradually penalizes pairs that are less similar. The

simplest and most common approach is to use the L2 difference between their associated

shape descriptors. This approach forms the basis for our implementation, but we augment

it in three ways.

46

Chapter 5. Matching with Distinction

First, given features F1 and F2, we compute the L2 difference, D, between their shape

descriptors. Then, we use the rank-to-difference mappings (RTD) of each feature to

convert D into a rank (i.e., where that distance falls in the ranked list associated with each

feature). The new difference measure (Crank) is the sum of the ranks computed for F1

with respect to the RTD of F2, and vice versa:

Crank = Rank(RTD1,D)+Rank(RTD2,D)

This feature rank cost (which we believe is novel) avoids the problem that very common

features (e.g., flat planar regions) can provide false positive matches when L2 differences

are small. Our approach considers not the absolute difference between two features,

but rather their difference relative to the best matching features of other objects in the

database. Thus, a pair of features will only be considered similar if both rank highly in

the retrieval list of the other.

Second, we augment the cost function with geometric terms. For part-in-whole object

matching, we can take advantage of the fact that features are more likely to be in corre-

spondence if they appear at the same relative position and orientation with respect to the

rest of their objects. Thus, for each feature, we compute the distance between its position

and the center of mass of its object (R), scaled by the average of R for all features in the

object (RAVG), and we add a distance termCradius to the cost function accounting for the

difference between these distances:

Cradius = |
R1

RAVG1
−
R2

RAVG2
|

We also compute a normalized vector~r from the object’s center of mass to the position

of each feature and store the dot product of that vector with the surface normal (~n)

associated with the feature. The absolute value of the dot product is taken to account for

the possibility of backfacing surface normals. Then, the difference between dot products

for any pair of features is used to form a normal consistency term to the cost function:

Cnormal = ||~r1 · ~n1|− |~r2 · ~n2||

47

Chapter 5. Matching with Distinction

Overall, the cost of a feature correspondence is a simple function of these three terms:

Ccorrespondence = αrankC
γrank
rank +αradiusC

γradius
radius+αnormalC

γnormal
normal

The α coefficients and γ exponents are used to normalize and weight the terms with

respect to each other.

Of course, computing all potential pairwise feature correspondences between a query

object and a database of targets is very costly. If the query has MQ features and each of

N targets has MT selected features, then the total number of potential feature correspon-

dences is N ×MQ×MT . To accelerate this process, we utilize conservative thresholds

on each of the three terms (maxrank, maxradius, maxnormal) to throw away obviously

poor feature correspondences. The terms are computed and the thresholds are checked

progressively in order of how expensive they are to compute (e.g., Crank is last), and thus

there is great opportunity for trivial rejection of poor matches with little computation.

Indexing and progressive refinement could further reduce the compute time as described

in Chapter 10.

5.1.4 Searching for the Optimal Multi-Feature Match

The third step of the query process is to search for the best multi-feature matches between

the query object and the target objects. This is the main step of priority-driven search.

A priority queue is used to store incomplete sets of feature matches during a back-

tracking search. Initially, all pairwise correspondences (computed as described in the

previous subsection) are loaded onto the priority queue. Then, the best partial match,

m, is repeatedly popped off the priority queue, and then extended matches are created

for every compatible feature correspondence and loaded onto the priority queue. This

process is iterated until at least c full matches with k feature correspondences have been

popped off the priority queue for distinct target objects.

As a partial match is extended to include one more feature correspondence, two extra

terms are added to the cost function to account for geometric deformations implied by

multiple pairwise feature correspondences (Figure 5.4). First, a chord length termClength

is added to penalize matches with inconsistent inter-feature lengths. Specifically, for

every pair of feature correspondences in m, we compute the length of the chord between

48

Chapter 5. Matching with Distinction

feature positions in the same object (L), scaled by the average of L over all features in the

object (L). Then, we compute the difference between these distances and normalize by

the greater of the two to produce the length term of the cost function:

Clength =
|L1

L1
− L2

L2
|

max(L1

L1
, L2

L2
)

Shape
Descriptor

Region

C
o
rr

e
s
p
o
n
d
e
n
c
e

Point

Sample

Chord

Figure 5.4: A 3-feature match for two airplanes. Red points represent feature positions

on the surface. For three features, red circles represent regions, gray histograms

represent shape descriptors, orange lines represent feature correspondences, and black

lines represent lengths between features of same object. Consistency of all shape

descriptors, lengths, and angles is required for a good match.

Second, a surface orientation term is added to penalize matches with pairs of feature

correspondences whose surface normals are inconsistent. This term penalizes both mis-

matches in the relative orientations of the two pairs of normals with respect to one another

and mismatches in the orientations of the normals with respect to the chord between the

features. If ~v1 is the normalized vector between features 1a and 1b with normals ~n1a and

49

Chapter 5. Matching with Distinction

~n1b in object 1, and similar variables describe the relative orientations of features in object

2, then the orientation term of the cost function can be computed as follows:

Corient = || ~n1a · ~n1b|− | ~n2a · ~n2b||+

||~v1 · ~n1a|− |~v2 · ~n2a||+

||~v1 · ~n1b|− |~v2 · ~n2b||

These terms are also weighted and raised to exponents to provide normalization when

added to the overall scoring function computed for a match with k feature correspon-

dences:

Cchord = αlengthC
γlength
length+αorientC

γorient
orient

As in the previous section, we utilize conservative thresholds on Clength and Corient

(maxlength and maxorientation) to throw away obviously poor feature correspondences.

We also utilize a threshold on the minimum distance between features within the same

object (minlength) in order to avoid matches comprised of features in close proximity to

one another.

The overall cost of a match is the sum of the terms representing differences in the

k feature correspondences and the geometric differences between the k(k-1)/2 chords

spanning pairs of features:

Cmatch = ∑
i<k

Ccorrespondence(i)+ ∑
i< j<k

Cchord(i, j)

5.2 Results

In this section, we present results of experiments with priority-driven search. We inves-

tigate the performance of the method in relation to the state of the art in shape-based

retrieval and investigate the impact of several design choices on the speed and quality

of retrieval results. Using our priority-driven search algorithm, we compare focusing

a search algorithm on distinctive regions of shapes versus regions selected with other

techniques.

In a representative preprocessing phase, we generate features at 128 surface points

with 4 different scales for every object. For every feature, we compute its shape descrip-

50

Chapter 5. Matching with Distinction

tors, RTDs, and DCGs, and then we select the most distinctive set of descriptors. The total

preprocessing time for all 907 objects is 70 hours and the total size of all data generated

is 1GB, of which 64MB represents the selected features that are stored in memory for

target objects during the query phase.

During the query phase, we perform a series of “leave-one-out” classification tests

with the Princeton Shape Benchmark. In each test, every object of the database is used as

a query object to search databases containing the remaining N−1 target objects. Standard

information retrieval metrics, such as precision, recall, nearest neighbor classification

rate (1-NN), first-tier percentage (1-tier), second-tier percentage (2-tier), and discounted

cumulative gain (DCG), are computed to measure how many objects in the query’s class

appear near the top of its ranked retrieval list, and those metrics are averaged for all

queries.

Unless otherwise stated, experiments were run on Linux server with a x86 64 proces-

sor running at 2.2 GHz and with 12 GB of memory. Parameters for the “base configu-

ration” of the system were set as follows: c = 1, k = 3, number of features per object =

128, number of feature scales = 4 (0.25, 0.5, 1.0, and 2.0), shape descriptor type = HSD,

compression ratio = 10X,maxradius =maxnormal =maxlength =maxorientation = 0.25,

minlength = 0.3 ·RAVG, αrank = 0.01, αradius = αnormal = αlength = αorient = 1, and γrank

= 4, γradius = γnormal = γlength = γorient = 2. These parameters were determined empirically

and used for all experiments without adjustment, except in Section 5.2.1 where the FSD

shape descriptor was used, and in Section 5.2.3 where the impact of specific parameter

settings was studied.

5.2.1 Comparison to Previous Methods

The goal of the first experiment is to evaluate the retrieval performance of the proposed

priority-driven search (PDS) approach with respect to previous state-of-the-art shape-

based retrieval methods:

Depth Buffer Descriptor (DSR740B) This shape descriptor achieved the highest re-

trieval performance in the study of Bustos et al. [17] and our own study with the

PSB. It describes an object by six depth buffer images captured from orthogonal

parallel projections [48]. Images are stored as Fourier coefficients of the lowest

frequencies, and differences between Fourier coefficients provide a measure of

51

Chapter 5. Matching with Distinction

object dissimilarity. We use Dejan Vranic’s implementation of this method [129]

without modification and ran it on a 2 GHz Pentium 4 running Windows XP.

Light Field Descriptor (LFD) It represents an object as a collection of images rendered

from uniformly sampled positions on a view sphere [19]. The dissimilarity of two

objects is defined as the minimum L1-difference between aligned images of the

light field, taken over all rotations and all pairings of vertices on two dodecahedra.

We use the original implementation provided by Chen et al. without modification

and ran it on a 2 GHz Pentium 4 running Windows XP. This shape descriptor

achieved among the highest retrieval performance on the Princeton Shape Bench-

mark.

Global Harmonic Shape Descriptor (GHSD) The GHSD is the shape descriptor cur-

rently used in the Princeton 3D Search Engine [36]. It describes an object by a

single HSD feature positioned at the center of mass and scaled to include the entire

mesh. We include it in this study to provide an apples-to-apples comparison to a

method that matches a single global shape descriptor of the same type used in our

study.

Random A random retrieval list is created for every query as a baseline for retrieval

performance.

Figure 5.5 shows a precision-recall plot comparing the average retrieval performance

for all queries for each of these shape matching methods. Briefly, precision and recall are

metrics used to evaluate ranked retrieval lists. If one considers the topM matches for any

query, recall measures the fraction of the query’s class found, and precisionmeasures the

fraction of objects found from the query’s class – higher curves represent better retrieval

performance. The Random line provides a baseline for comparison, and the increase

around Recall = 0.1 relates to averaging the results of different class sizes together.

Timing statistics and standard retrieval performance measures are shown in Table 5.1.

The leftmost column indicates the shape matching method (PDS is the one described in

this chapter). The remaining columns list the average time required for one query into

the database (in seconds) and various retrieval measures.

From these statistics, we see that the priority-driven search algorithm provides the best

retrieval performance of the tested methods on this data set. The improvement in nearest

52

Chapter 5. Matching with Distinction

Figure 5.5: Precision-recall plot comparing priority-driven search (PDS) to other state-

of-the-art shape matching methods using the Princeton Shape Benchmark.

Method Time 1-NN 1-Tier 2-Tier E-Meas. DCG

PDS 2.4 69.2 43.5 55.7 31.3 68.7

DSR740B 0.005 66.5 40.3 51.2 29.5 66.3

LFD - 65.0 37.2 47.4 27.1 63.6

GHSD 0.003 55.6 30.9 41.1 24.0 58.4

Random 0 1.7 1.6 3.4 2.2 26.1

Table 5.1: Comparison of retrieval statistics between priority-driven search (PDS) and

other methods on the Princeton Shape Benchmark. (Timing results are in seconds.)

neighbor classification rate over the Depth Buffer Descriptor is 4% (69.2% vs. 66.5%)

and the improvement over the Light Field Descriptor is 6.4% (69.2% vs. 65.0%).

However, the PDS algorithm takes considerably more compute time to preprocess

the database (4-5 minutes per object), more memory per object (100 KB per target

object), and more time to find matches (2.4 seconds per query) than the other tested

shape descriptors. Almost all of the query processing time is spent establishing the

53

Chapter 5. Matching with Distinction

cost of feature correspondences, and less than a tenth of a second is spent finding the

optimal multi-feature match with priority driven search. Thus, we believe that simple

improvements to the basic algorithm (e.g., compression, indexing, etc.) will significantly

improve the processing speed and that query processing times less than a second are

possible in this framework (Section 5.3).

In any case, it seems that priority-driven search is well-suited for batch applications

where retrieval accuracy is premium. Often, query results can be computed off-line and

cached for later interactive analysis – e.g., for discovery of relationships in mechanical

CAD, molecular biology, etc. Even interactive search engines can benefit from off-line

preprocessing with high-accuracy matching methods, for example, to preprocess queries

that find a shape similar to another in the database (over 90% of the 3D queries to the

Princeton 3D Search Engine are of this type [87]).

5.2.2 Evaluation of Algorithmic Contributions

The goal of the second experiment is to understand which algorithmic features of the

priority-driven search algorithm contribute most to its timing and retrieval performance.

To study this question, we started with the “base configuration” and ran the system

multiple times on the Princeton Shape Benchmark with different aspects of the system

enabled and disabled.

Distinction (D) If enabled, a small subset of features (∼ 7) was selected for matching

within every target object, as described in Section 5.1.2. Otherwise, all features

were included within the target objects.

Rank (R) If enabled, the cost of two corresponding shape descriptors (Crank) was the

sum of the two ranks in their respective retrieval lists, as described in Section 5.1.3.

Otherwise, it was the direct L2 distance between shape descriptors (the most com-

mon measure of descriptor difference in other systems).

Multi-Scale (S) If enabled, the costs of the best matches found at all four scales were

summed. Otherwise, the cost of the best match found among features at scale 1.0

was used (the scale that gave the best retrieval performance on its own).

Results of this experiment are shown in Table 5.2 and Figure 5.6. The first three

columns of Table 5.2 indicate whether each of the three algorithmic features (R, M,

54

Chapter 5. Matching with Distinction

and D) are enabled (Y) or disabled (N), and the remaining columns provide retrieval

performance statistics (note that the top row shows the performance statistics for PDS

with all its algorithmic features enabled: Y Y Y).

D R S 1-NN 1-Tier 2-Tier E-Meas. DCG

Y Y Y 62.8 40.2 51.7 29.7 65.6

N Y Y 66.6 37.2 48.7 28.0 64.4

Y N Y 60.3 33.2 43.5 25.8 60.5

Y Y N 57.0 33.3 44.3 25.8 59.1

N N Y 63.4 32.7 42.6 25.0 60.6

N Y N 60.7 31.6 42.6 24.8 59.0

Y N N 51.0 28.7 39.7 23.0 55.7

N N N 57.1 28.5 38.7 22.8 56.4

Table 5.2: Results of experiments to investigate the individual and combined value of

three algorithmic features of priority-driven search (PDS). The top row represents the

base PDS algorithm (Y Y Y). Other rows represent variants of the algorithms with three

algorithmic features (D = distinctive, R = rank, and S = multi-scale feature selection)

enabled (Y) or disabled (N). Differences in the results achieved with these variants

provide insights into which aspects of the PDS algorithm contribute most to its results.

From these results, we see that the retrieval performance of our system comes from

several sources. That is, all three algorithmic features tested contribute a modest but

significant improvement to the overall result. Specifically, if we consider the incremental

improvements in nearest neighbor classification rates (1-NN) of the combinations shown

in Figure 5.6, we find that using descriptor ranks rather than L2 differences provides

a 6% improvement (60.7% vs. 57.1%) and using multi-scale features further boosts

performance by another 16% (66.6% vs 57.0%). Selecting distinctive features of target

objects degrades performance slightly when used alone, especially for the NN metric,

but has an overall positive benefit when used in combination with the other algorithmic

features. This is most noticeable with the DCG score increasing 16% (65.6% vs. 56.4%),

though the NN score when using distinction features decreases in several examples. This

is likely because the NN metric is sensitive to the first retrieval result, and our measure of

distinction (DCG) is based on evaluating the entire retrieval list.

With respect to timing, the main expense of the priority driven search implementation

is establishing the initial set of pairwise feature correspondences (∼0.3 seconds per query

per scale). By comparison, the time required to search for the best multi-feature match is

negligible (<0.1 seconds). So, the timing results are currently dominated by the number

55

Chapter 5. Matching with Distinction

Figure 5.6: Precision-recall plot showing the relative contributions of different

algorithmic features of priority-driven search. The top curve (red) shows the retrieval

performance of the best performing set of options for the PDS algorithm (it is the same

as the red curve in Figure 5.5). The second curve (green) shows the result of using HSDs

rather than FSDs as shape descriptors (it represents the “base configuration” for the study

in Section 5.2.3). The third curve (blue) shows the results without selecting a subset

of distinctive features on target objects; the fourth curve (magenta) shows the same,

but using L2 differences instead of ranks to measure feature correspondence costs; the

next-to-bottom curve (cyan) also disables multi-scale feature matching (all features are

matched only at scale 1.0); and the bottom curve (brown) shows the results when finding

only one point per match rather than 3. Note how the retrieval performance degrades

significantly when each of these algorithmic features is disabled.

of features considered for each target object and the number of scales considered for each

feature.

Overall, we find that choosing distinctive features (D) improves both precision and

speed significantly; using ranks rather than L2 differences (R) improves precision with

56

Chapter 5. Matching with Distinction

negligible extra compute time; and using features at four scales (S) improves precision,

but incurs four times the computational expense.

5.2.3 Investigation of Parameter Settings

The goal of the third experiment is to investigate in detail how various options of the

priority-driven search system affect the timing and retrieval performance. Of course,

there is a large space of possible options, and thus we are forced to focus our discussion

on small “slices” through this space. Our approach is to center our investigation on the

“base configuration” set of options described in the beginning of this section and to study

how timing and retrieval statistics are affected independently as one option is varied at a

time.

The results of this study are shown in Table 5.3(a-d) – each table studies the impact of

a different option, and different rows represent a different setting for that option. Please

note that rows marked with an ‘*’ represent the same data – they provide results for the

base configuration through which slices of option space are being studied.

Impact of shape descriptor type (Table 5.3(a)) More verbose descriptors generally

provide better retrieval performance, albeit at higher storage and compute costs. For

example, the Fourier Shape Descriptor (FSD) provides better nearest neighbor classifica-

tion rates (69.2%) than the Harmonic shape descriptor (HSD) (62.8%). However, it is also

eight times bigger, and thus eight times more expensive to compare. There is a further

decrease in retrieval performance and improvement in comparison time when using the

SD shape descriptor. Further study is required to determine which descriptors provide

the best “bang for the buck” for specific applications and how multiple descriptors can be

combined to provide the accuracy of the most verbose ones while incurring query times

of the smaller ones (Section 5.3).

Impact of feature scale (Table 5.3(b)) Medium scale features (radius = 0.5-1.0) provide

better retrieval performance than small and large scales in this test, and multi-scale fea-

tures perform the best of all (nearest neighbor classification rates are 62.8% with multi-

scale versus 57.2% with the best single scale (0.5)). Interestingly, summing the cost

functions computed for matches at all four scales separately (“Multi-scale”) provides

better retrieval performance than matching features at all scales simultaneously (“All”).

The difference is that the same set of features must match at all 4 scales in “All,” while

57

Chapter 5. Matching with Distinction

Descriptor Time 1-NN 1-Tier 2-Tier E-Meas. DCG

SD 1.1 54.2 30.5 40.5 23.8 57.9

HSD * 1.2 62.8 40.2 51.7 29.7 65.6

FSD 2.4 69.2 43.5 55.7 31.3 68.7

(a) Shape descriptor type

Radius Time 1-NN 1-Tier 2-Tier E-Meas. DCG

0.25 0.3 48.1 24.2 33.8 20.0 51.5

0.5 0.3 57.2 30.8 41.5 23.8 57.4

1.0 0.3 57.0 33.3 44.3 25.8 59.1

2.0 0.3 51.3 29.2 39.6 23.0 55.5

Multi-scale * 1.2 62.8 40.2 51.7 29.7 65.6

All 0.6 60.9 33.0 46.2 26.1 61.2

(b) Scales used for matching shape features

Points Time 1-NN 1-Tier 2-Tier E-Meas. DCG

64 0.6 64.5 38.0 50.0 28.8 64.3

128 * 1.2 62.8 40.2 51.7 29.7 65.6

256 4.0 64.2 40.9 53.2 30.4 66.2

512 17.6 65.5 42.1 54.1 31.0 66.9

(c) Number of sample points per object

k Time 1-NN 1-Tier 2-Tier E-Meas. DCG

1 1.2 61.7 38.7 50.5 29.5 64.3

2 1.2 63.4 39.3 50.9 29.6 64.7

3 * 1.2 62.8 40.2 51.7 29.7 65.6

4 1.2 63.0 40.0 51.8 29.8 65.2

5 1.2 61.4 40.1 51.6 30.0 65.2

(d) Number of feature correspondences per match (k)

Table 5.3: Results of experiments to investigate the impact of several options on the query

time (in seconds) and retrieval performance of priority-driven search.

different features can be selected independently for each scale in “Multi-scale.” This

result seems to suggest that features persistent across multiple scales are not necessarily

as useful for classification as ones that are very distinctive at a particular scale.

Impact of the number of sample points per object (Table 5.3(c)) Including more

sample points for each object improves retrieval performance in this test, at least up to 512

points. The DCG classification rate is 66.9% for 512 points per object, while it is 66.2%

for 256 points, 65.6% for 128 points, and 64.3% for 64 points. Although a small set

of distinctive features are ultimately selected for every target object during a preprocess,

features centered at all sample points of the query object are candidates for a match, and

thus the compute time for each query should be proportional to the number of points (the

quadratic growth observed in this experiment is an artifact of our implementation).

58

Chapter 5. Matching with Distinction

Impact of number of feature correspondences (Table 5.3(d)) Matching large numbers

of features does not improve retrieval performance in this study. In fact, matching more

than 3 features seems to degrade performance. This result may be because features are

quite large scale and spread apart, and thus 3 features may describe the shape as well as

is possible with the HSD feature representation. Interestingly, matching larger numbers

of features also does not increase query times – this is because the priority-driven search

algorithm is able to find good matches in time that is largely independent of the number

of possible matches – it investigates only the good matches and ignores the rest.

5.2.4 Alternative Selection Techniques

Using the framework of priority-driven search, we can compare filtering local descriptors

using distinction relative to other techniques for selecting a small subset of descriptors,

such as methods that select regions of a shape in isolation, i.e., without considering the

context of a database. We consider three common techniques for filtering descriptors

from individual models. Several previous projects [34, 89] randomly selected descriptors

on the mesh surface, which is a simple technique. The least likely shape descriptors have

been used for matching by [20, 62] under the assumption that rare descriptors correspond

to important shape features. “Salient” regions [40, 77, 94], surfaces where the shape

sticks out or has variable curvature, have been studied as well. Likelihood was calculated

by considering shape descriptors as feature vectors and assuming a multivariate Gaussian

distribution calculated from the database, and saliency was calculated using an executable

provided by Lee at al. [77].

We compare our technique of using the most distinctive descriptors against the alter-

natives of selecting descriptors randomly or based on likelihood or saliency. Figure 5.7

shows regions selected on the same helicopter model using the four techniques. The color

of the sphere centered on each region indicates the distinction score associated with the

region, where red spheres indicate higher distinction scores. Selecting regions based on

the likelihood, saliency, or random selection leads to representing meshes with regions

that perform poorly in retrieval tasks. A similar number of regions were selected for the

helicopter in all cases, but some selected regions are not visible in Figure 5.7 because

they appear on the backside of the mesh.

59

Chapter 5. Matching with Distinction

Distinction Likelihood

Saliency Random

Figure 5.7: Descriptors are selected based on distinction, likelihood, saliency, or are

selected randomly. The coloring of the sphere is based on distinction scores, indicating

that descriptors with poor distinction scores are selected with the other techniques. A

similar number of descriptors are selected for all four techniques, although some appear

on the backside of the mesh.

In this study, 128 shape descriptors were used for the query mesh and matched against

a subset of the descriptors from every other mesh based on a selection technique. In

our experiments, we explored a range of parameter settings for the priority-driven search

algorithm and found that the relative performance of the three techniques was consistent

across all settings. In the following discussion, we selected parameters that optimized

the retrieval performance independently for descriptors selected based on likelihood,

saliency, or distinction scores as well as descriptors selected randomly.

Figure 5.8 shows precision-recall plots of retrieval results achieved with the proposed

method during a leave-one-out study with the training and test sets of the PSB. Retrieval

statistics are also shown in Table 5.4. Column 1 lists the method used for selecting

descriptors for retrieval and Column 2 lists the number of descriptors K selected during

matching. Columns 3-7 and 8-12 show several measures of retrieval performance, and in

all cases, higher scores indicate better retrieval performance.

Looking at both the plots and tables, the first result to notice is that selecting features

based on distinction provides better retrieval performance than selecting them based on

saliency, likelihood, or at random. When considering multipoint matching (K=3) with all

four scales on the PSB Test set, the DCG score for Distinction is 65.6% as compared to

60

Chapter 5. Matching with Distinction

a.) Training set of the PSB

b.) Test set of the PSB

Figure 5.8: Selecting distinctive features to focus matching leads to better retrieval

performance than selecting features that are least likely, most salient, or randomly

selected.

61

Chapter 5. Matching with Distinction

PSB Training Set PSB Test Set

Descriptor K NN 1-Tier 2-Tier E DCG NN 1-Tier 2-Tier E DCG

Selection (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Distinction 3 68.3 42.1 54.2 29.3 67.6 62.8 40.2 51.7 29.7 65.6

Likelihood 3 64.9 37.4 49.2 27.3 64.4 66.5 37.0 49.0 27.9 64.2

Random 3 68.2 39.0 50.0 27.3 65.8 66.5 36.0 47.7 27.5 63.4

Saliency 3 61.7 35.1 46.6 25.6 62.7 61.6 33.5 44.5 25.9 60.9

Distinction 1 54.7 34.9 48.5 26.0 61.5 51.9 33.3 46.7 26.5 59.7

Likelihood 1 55.8 31.3 43.6 24.0 59.5 55.5 29.7 40.9 23.8 57.8

Random 1 56.3 31.8 43.6 24.1 59.9 55.6 30.0 41.4 24.0 57.8

Saliency 1 54.6 30.6 42.8 23.5 59.1 53.4 29.2 40.6 23.3 57.4

Centroid 1 54.1 28.6 38.1 21.7 57.0 53.3 26.3 35.1 21.1 54.4

Oracle 1 92.6 54.6 63.4 33.1 81.1 89.5 53.5 63.3 34.2 79.7

Table 5.4: Selecting the most distinctive descriptors from the target set improves retrieval

relative to selecting based on likelihood, saliency, or at random. Retrieval improves when

using several local descriptors on the query (K=3 in this result) as compared to using

a single descriptor. Using the most distinctive descriptors improves over using a single

global descriptor (Centroid), while there is still room to improve upon these results since a

single descriptor selected by an oracle outperforms any other technique. All experiments

are with meshes from the Training and Test sets of the Princeton Shape Benchmark.

64.2% for Likelihood, 63.4% for Random, and 60.9% for Saliency, and across most met-

rics, Distinction outperforms Likelihood, Random, and Saliency. For single descriptor

matching, K=1 at the 1.0 scale, Distinction (DCG=59.7%) also beats Likelihood, Ran-

dom, and Saliency with DCG scores of 57.8%, 57.8%, and 57.4%, respectively. While

the numbers change somewhat for the PSB Training set, the qualitative results are the

same. Nearest Neighbor scores are possibly lower for Distinction in some cases because

of the instability of only considering the first retrieval result. Of course, the improved

retrieval performance using distinction comes at the cost of increased computation time

and the requirement that the database is classified.

Besides investigating feature selection methods, we also compared retrieval with dis-

tinct descriptors to two other retrieval methods that provide an informative comparison

for retrieval performance. The most common shape matching technique [16, 121] is to

use a single shape descriptor centered at the centroid of each shape with a region size

large enough to include the entire shape (Centroid). Matching a single descriptor at the

1.0 scale on the surface of a shape has better retrieval performance than using the Centroid

with DCG scores of 54.4% for Centroid as compared to 59.7%, 57.8%, 57.8%, and

57.4% for Distinction, Likelihood, Random, and Saliency, respectively, on the Test set.

The DCG score for Distinction increases to 65.6% when matching with three descriptors

62

Chapter 5. Matching with Distinction

combined at each of four scales. Of course, this improved retrieval performance comes

at some cost (retrieval time of 1.2 seconds versus 3 milliseconds), but we believe that

surface descriptors are preferable when retrieval performance is critical.

We next compared our technique of selecting distinctive descriptors versus a best-

case method where an oracle selects a single descriptor from the surface of the query

shape across all scales. For each query shape, the single descriptor with the highest

distinction score (calculated during preprocessing) was selected to use as the query, and

the closest match to each target in the database was found. Although this process is not

usually possible in a real application (since the class of the query is generally unknown), it

provides an upper bound on the retrieval performance possible with surface descriptors.

The Oracle technique has a DCG score of 79.7% on the Test set, which dramatically

outperforms all other selection techniques we have considered. This result suggests that

future work should focus on improving the selection of descriptors from the query shape

and that using surface descriptors for shape matching has the potential to achieve accurate

retrieval results.

We also investigated how often the most distinctive region exists at a particular scale.

Table 5.5 shows the percentage of time a descriptor from each scale was selected by the

Oracle technique. On both the PSB Training and Test sets, descriptors from every scale

were selected as the most distinctive, though the 1.0 scale was selected most often.

Scale

Database 0.25 0.5 1.0 2.0

PSB Training 18.3% 23.4% 38.5% 19.8%

PSB Test 20.9% 27.0% 34.4% 17.6%

Table 5.5: With the Oracle selection method, the most distinctive feature was selected to

represent each query shape across all scales. Every scale was used for matching, though

the 1.0 scale was selected most often for both the PSB Training and Test databases.

63

Chapter 5. Matching with Distinction

5.3 Conclusion

This chapter describes an algorithm for multi-feature matching of 3D shapes with priority-

driven search that focuses on distinctive regions of target meshes. The two main contribu-

tions are an algorithm for searching a database for the best multi-feature matches and an

exploration of the benefit of focusing the algorithm on distinctive regions. Perhaps just as

valuable is the investigation of factors that contribute to speed and retrieval performance

improvements in a multi-feature matching system. We find that: 1) using ranks to

measure the cost of a feature correspondence is more effective that using L2 differences

directly; 2) matching features at different scales independently and then adding the re-

sulting costs is an effective way to combine shape information from multiple scales; and

3) selecting target features based on how distinctive they are of their object’s class can

improve both search speed and retrieval performance significantly beyond other selection

techniques.

Perhaps the most interesting question for further study is to investigate how best to

recognize 3D objects from their parts. Of course, this is an active topic in computer

vision, but the issues for 3D shapes are different than they are for 2D images. Our study

seems to suggest that just a few shape features are sufficient to recognize most 3D objects.

It will be interesting to see whether other object types follow this pattern and whether

effective algorithms can be developed using even fewer features.

64

Chapter 6

Updating Distinction

Introduction

Calculating shape distinction can be a time consuming process, since our main method of

using the Discounted Cumulative Gain metric requires comparing every shape descriptor

against every other descriptor in a database (an O(n2) operation for n descriptors in a

database). Also, as new models and classes of models are added to a database, distinctive

features may change because of the relationship between distinction scores and feature

similarity/dissimilarity. With a naive implementation, distinction scores for the entire

database would have to be entirely recalculated as new models are inserted. While

this may be a reasonable preprocessing step for moderate sized databases, as databases

continue to grow, calculating distinction could become impractical.

There are numerous fields where databases of 3D meshes are updated on a regular

basis. The Google Earth tool has been downloaded by over 200 million users, and there

is a community of designers submitting new models regularly. The Protein Data Bank

has grown at an increasing rate since the 1970’s, and during 2007 alone, there were over

7,200 new structures submitted. With the increasing number of 3D models available on

the Internet, 3D search engines [107, 90] need to be periodically updated so users can

find new content, and shape distinction scores need to be calculated for new models.

Importantly, current models need to be be updated as well, since distinctive regions are

those that match meshes of the correct class, and newly added meshes may cause a ripple-

effect, changing distinction scores throughout the database.

65

Chapter 6. Updating Distinction

Our goal is to design an efficient distinction algorithm that handles both static and

growing databases. We pursue two methods for achieving this goal. First, besides the

DCG evaluation metric, which requires a full retrieval list, we investigate alternative

metrics that only require a fixed length retrieval list to approximate distinction. Second,

we use an index structure to quickly find a fixed number of nearest neighbors for each

descriptor without searching the entire database. For these approaches, there is a trade-off

between calculation time and resulting retrieval performance.

The remainder of this chapter is organized as follows: The next section describes our

methods for approximating shape distinction. Section 6.1.1 considers evaluation metrics

besides DCG, and Section 6.1.2 describes a spatial indexing structure that is effective with

shape descriptors. In Section 6.2, we present results comparing the retrieval performance

of approximate distinction in relation to calculation time. Finally, we summarize the

conclusions and limitations of our approach in Section 6.3.

6.1 Method

Our method to create an efficient shape distinction algorithm is to approximate distinction

with an evaluation metric that only requires a fixed number of nearest-neighbor retrieval

results for each descriptor. We consider several metrics common in the field, and also

introduce a modification to Discounted Cumulative Gain. To take advantage of metrics

that only require a short retrieval list, we present an index for shape descriptors that

supports nearest neighbor search efficiently for databases undergoing dynamic changes.

6.1.1 Retrieval Measures for Defining Distinction

When calculating distinction values, the choice of retrieval metric can impact the quality

of results. Metrics vary by whether they use a fixed portion of a retrieval list or the

entire retrieval list and how the position of correct results are weighted when calculating

a score. While retrieval metrics may have different ranges of possible scores, generally,

all metrics can be converted to fit within the range of zero to one and are compatible with

our definition of distinction.

66

Chapter 6. Updating Distinction

Besides the standard retrieval metrics described in Section 4.1.3 (NN, First Tier, Sec-

ond Tier, E Measure, and DCG), we considered several other metrics. NN 3 is similar to

NN but considers the nearest three neighbors weighted by proximity. Top Ten is similar

to First and Second Tier but uses only the first ten retrieval results. A limitation of many

of these approaches (except NN 3 and DCG) is that any retrieval result within the portion

of the list considered has equal weight in calculating a distinction score. As an example,

for Top Ten, the distinction score is the same if the retrieval result consists of either one

correct match followed by nine incorrect matches or nine incorrect matches followed by

one correct match.

Intuitively, correct results near the front of the retrieval list should have a larger value

when calculating a distinction score. The DCG metric matches this intuition with a

correct retrieval result at position x having weight 1
lgx

in the final score. Logarithmic

functions decrease rather slowly, so to increase the weight of correct results near the front

of the list, we adjust the DCG metric to be weighted by 1
x
, 1
x2

, 1
x4

, 1
x8

, or 1
x16 , which places

increasing emphasis towards the front of the retrieval list. We refer to these function

as DCG lg(x), DCG x, DCG x2, ... , and DCG x16. The normalization terms for the

augmented DCG functions are updated accordingly to divide by the maximum possible

scores.

A key observation about the various versions of the DCG metric is that DCG is a

summation over a fixed range R divided by a normalization term,

∑Rx=1
Q(x)
f (x)

∑Cx=1
1
f (x)

where Q(x) has value one if the mesh at retrieval position x is of the same class as the

query and zero otherwise. The bottom summation from 1 to class size C normalizes the

result to be within the range zero to one. Ignoring the normalization term, when f (x) is

of the form xk, then the summation is of the same form as the Riemann zeta function or

p-series, though over a limited range. The Riemann zeta function is known to converge

when k> 1, so we can approximate the true value with arbitrary accuracy, setting R based

on the value of k. The modified DCG metrics can be approximated by the same property.

We show that using an index structure that finds R nearest neighbors efficiently will allow

us to approximate distinction and maintain high quality retrieval results.

67

Chapter 6. Updating Distinction

Figure 6.1 shows a visualization of distinction scores using twelve different evaluation

metrics on a dolphin model from the test set of the PSB. The distinction scores were

calculated using 128 descriptors per mesh at the 0.5 scale, and the scores were normalized

in the visualization to fall evenly between zero and one for each mesh. Distinction scores

close to one are visualized with larger, reddish spheres, and distinction scores close to

zero are visualized with smaller, bluish spheres. The first two rows of results (NN

through E Measure) tend to show a lack of continuity in the distinction function with

high distinction regions (red spheres) near low distinction regions (blue spheres), such

as in the bottom-front flipper region. Since our shape descriptors tend to change in a

gradual manner, distinction scores might be expected to change gradually as well, which

is generally true in the bottom two rows of examples (DCG lg(x) through DCG x16). The

distinction scores also appear to change between examples in the first two rows (tip of the

dorsal fin varies between red and yellow) and have fewer changes between examples in

the bottom two rows, likely because of the similarity of the augmented DCG functions.

NN

First Tier Second Tier E Measure

DCG lg(x) DCG x DCG x2

DCG x4 DCG x8

NN 3

1.0

0

Top Ten

DCG x16

Figure 6.1: Twelve different evaluation metrics are shown for a single model with high

distinction values colored red. Techniques that consider longer retrieval results (unlike

NN) and weight results by position (such as DCG), tend to have smoothly changing scores

that are more consistent. We also consider modified weighting functions for DCG besides

the default lg(x) function.

While this is only an anecdotal example of different retrieval metrics, it provides

intuition about important properties needed when calculating distinction. A retrieval

68

Chapter 6. Updating Distinction

metric should place more weight on correct results near the front of the retrieval list than

on correct results near the end of the retrieval list, and the resulting scores should change

smoothly across the surface of a mesh in the same way that region-based descriptors

change smoothly. We provide a more quantitative analysis of various retrieval metrics in

Section 6.2.

6.1.2 Nearest Neighbors with a Cover Tree Index

Calculating approximate distinction can be performed quickly using an index structure

that finds a small set of nearest neighbors without resorting to considering all descriptors

in the database. The definition of DCG and many alternative distinction metrics can be

augmented to only consider a partial list (e.g., DCGR) consisting of calculating a retrieval

metric for the best R matches to the query descriptors. The definition of NN, NN 3, Top

Ten, First Tier, Second Tier, and E Measure all use a fixed retrieval list by definition.

Then, when calculating approximate distinction, instead of searching the entire database

for matches, only the subset of the database that closely matches the query needs to be

considered. Depending on the time to find R nearest neighbors, this approximation can

be an efficient technique for calculating distinction. A spatial index that supports a quick

nearest neighbor search can also be effective when updating distinction in a dynamic

database.

There are numerous techniques for finding nearest neighbors using spatial index struc-

tures that allow neighbor search to focus on the best matches. Designing indexing tech-

niques is an active area of research that is improving our ability to perform similarity

queries in high dimensional spaces. For an overview of the field, see [4, 18, 135].

Selecting the best technique for shape descriptors is beyond the scope of this dissertation,

but we investigat the cover tree index and demonstrate a favorable trade-off between

distinction accuracy and processing time.

We provide a brief overview of the cover tree index structure–for more details, see

Beygelzimer et al. [12]. The cover tree builds an index based on the intrinsic dimension-

ality c of the data, where high dimensional data sets often effectively reside in a lower

dimensional subspace. Consider a bounding sphere S0 surrounding a high dimensional

point and a small set of its nearby neighbors in the data set. Enclosing bounding spheres

S1, ...Sm each have a radius a constant size larger than that of the smaller sphere such

69

Chapter 6. Updating Distinction

that the radius of sphere S j is larger than the radius of sphere S j−1. If the intrinsic

dimensionality of the data set is low, then the number of points within a sphere will be less

than twice that of the next smaller sphere. A cover tree is constructed with a hierarchy

of spheres of increasing radius, and similarity queries can be handled by moving through

the hierarchy to the data closest to the query. Many data sets in practice expand at a

slow rate (where the expansion constant of the spheres grows faster than the number of

neighbors), so a cover tree is effective at spatial indexing. When a data set with n points

has expansion constant c, a cover tree can be constructed in O(c6n logn) time, support

insertions and removals in O(c6 logn) time, queried in O(c12 logn) time, and stored in

O(n) space. These properties allow approximate distinction to be updated efficiently for

a rapidly changing database.

6.2 Results

In this section, we present results of our technique for updating distinction. We investigate

several retrieval metrics to calculate distinction and show the effect on overall retrieval

performance. Using a cover tree index, we compare retrieval performance with metrics

that require R neighbors in relation to the time to find R neighbors.

6.2.1 Alternative Retrieval Metrics

In Section 6.1.1, we provided a qualitative analysis of shape retrieval metrics suggesting

that more weight should be placed on correct results near the front of the retrieval list, and

using more retrieval results leads to greater accuracy (NN only uses one match, which is

probably too sensitive). Using the priority-driven search algorithm, we can perform a

quantitative analysis of each retrieval metric.

Our experimental method is largely similar to previous examples for the preprocessing

phase. We calculate descriptors at multiple scales and create a retrieval list for each

descriptor. We then evaluate the distinction of each descriptor using a variety of retrieval

metrics that convert from a retrieval list into a score between zero and one and select a

subset of descriptors with high distinction scores that are well spread-out across a mesh.

Then, the PDS algorithm is performed with each type of distinction score.

70

Chapter 6. Updating Distinction

PSB Training Set PSB Test Set

Descriptor K NN 1-Tier 2-Tier E DCG NN 1-Tier 2-Tier E DCG

Selection (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Random 3 68.2 39.0 50.0 27.3 65.8 66.5 36.0 47.7 27.5 63.4

NN-1 3 66.0 38.2 49.8 27.0 65.1 66.0 36.1 47.1 27.1 63.3

NN-3 3 65.6 38.0 49.8 27.0 65.1 66.3 36.3 47.2 27.1 63.4

Top Ten 3 66.2 39.4 51.1 27.6 65.9 66.0 37.6 49.0 28.2 64.2

First Tier 3 66.6 41.2 52.8 28.5 67.0 64.9 37.2 48.7 27.7 63.8

Second Tier 3 67.0 39.5 51.8 27.4 66.0 65.8 37.9 49.7 28.2 64.3

E Measure 3 66.8 41.3 53.4 28.9 67.2 65.3 37.8 49.9 28.4 64.2

DCG lg(x) 3 68.3 42.1 54.2 29.3 67.6 62.8 40.2 51.7 29.7 65.6

DCG x 3 68.2 41.6 54.0 29.3 67.4 65.4 39.9 51.4 29.5 65.4

DCG x2 3 67.0 41.7 53.5 29.0 67.4 64.9 39.5 51.1 29.3 64.9

DCG x4 3 65.8 41.9 53.5 29.0 67.5 64.5 39.7 50.8 29.2 65.2

DCG x8 3 67.5 41.8 53.5 29.0 67.5 65.7 39.4 50.9 29.4 65.2

DCG x16 3 68.0 41.6 52.8 29.0 67.5 64.6 39.1 50.1 29.0 64.8

Table 6.1: Twelve retrieval metrics are investigated as well as a baseline Random metric.

Generally, using a larger portion of the retrieval list improves accuracy as well as placing

weight on the first results. Increasing the weight function to extreme values x8 and x16

tends to cause little change.

Table 6.1 shows the retrieval results on the PSB Training and Test sets using twelve

retrieval metrics as well as a Random metric that provides a baseline for comparison. For

the Random metric, scores were assigned to each descriptor randomly, without consid-

ering a retrieval list. The first column shows the metric used for calculating distinction

scores during preprocessing, the second column shows the optimal number of feature

matches (k), and the retrieval results of running our PDS algorithm for a given distinction

metric are shown in the remaining columns. Note that the last five versions of DCG

increase the weight of results near the front of the retrieval list. There are a number

of parameters to the PDS algorithm, so we optimized the algorithm for each evaluation

metric independently, and these results represent the best retrieval scores for each metric.

We generally see that increasing the number of retrieval results considered by the

metric during the preprocessing phase improves retrieval using PDS. DCG scores in-

creased from 63.4 for NN-1 to 65.6 when using the full retrieval list with the DCG lg(x)

metric. The metrics NN-1, Top Ten, First Tier, Second Tier, and E Measure use only a

fixed portion of the retrieval list and weight any result within that region equally, which

likely explains their performance. In all examples, a version of DCG that weights results

based on position leads to better results. Among the versions of DCG considered in this

study, the results are fairly similar, though scores decrease with extremely high weighting

71

Chapter 6. Updating Distinction

values. These results are generally higher than the base line Random metric, though they

are slower to calculate.

6.2.2 Time for K-Nearest Neighbors

We slightly modified code provided by the authors of the cover tree [75] to support shape

descriptors. In our experiments, we built a cover tree for each scale of the descriptors

independently, so we could separate the timing analysis from the number of scales. We

used the PSB with 128 descriptors per model, considered each model as a query into the

cover tree, and averaged the query times.

Figure 6.2 shows the timing results for the 1.0 scale as the number of neighbors

increases. First, we notice that to perform a full search of the 907 Training set models

in the database takes 35 seconds without any index structure, and the cover tree can only

find 512 models with closest descriptors in that time because of overhead associated with

the structure. 32 neighbors can be found in less than five seconds, and 128 neighbors can

be found in less than ten seconds. We also merged the Training and Test sets of the PSB

to perform a larger experiment with 1,814 models. 32 neighbors can be found in under

20 seconds and 128 neighbors in approximately 60 seconds. Without an index structure,

finding neighbors by scanning 1,814 models would take approximately 70 seconds, and

when searching for more than 128 neighbors, scanning provides faster results. If calcu-

lating distinction with up to 128 neighbors gives a reasonably good approximation to the

true distinction values, then approximate distinction can be calculated for the 907 meshes

in the Training set in approximately 2.5 hours per scale and ten hours for four scales as

compared to 37 hours without the index.

6.2.3 Approximate Distinction versus Calculation Time

An efficient approximate version of distinction is useful for improving the preprocessing

time of calculating distinction. To evaluate our approximation technique, we found a

small set of neighbors using a cover tree index, calculated the approximated version of

distinction, selected a small set of descriptors for each target model based on distinction

scores, and performed a retrieval experiment. Table 6.2 shows several retrieval statistics

with a fixed size retrieval list for both the PSB Training and Test sets using 128 descriptors

72

Chapter 6. Updating Distinction

 0

 20

 40

 60

 80

 100

 64 128 192 256 320 384 448 512

S
e
c
o
n
d
s
 p

e
r

Q
u
e
ry

 M
o
d
e
l
(1

2
8
 D

e
s
c
ri
p
to

rs
)

Neighbors

K Nearest Neighbor Search with Cover Tree Index

1814 Models
907 Models

Figure 6.2: Calculating distinction for a new model can be performed efficiently using

a cover tree indexing structure on the descriptors in the database. Times are shown for

the 1.0 scale and 128 descriptors per model in the training set (907 models) and full PSB

(1,1814 models), though timing results are consistent at all scales. Up to 128 neighbors

can be found per model within 10 seconds when searching the PSB training set, and 64

neighbors can be found in approximately 32 seconds when searching the full PSB.

per model at four scales. Both the standard DCG lg(x) and augmented DCG x2 distinction

metrics are shown with the number of neighbors R (second column) varying from two

through the full retrieval list of 906. The third column shows the time to find R neighbors

using the cover tree. For comparison, using a Random distinction function (randomly

assigning distinction scores between zero and one) and using only the first retrieval result

(NN) for distinction are also shown.

There are several important results shown in this experiment. First, retrieval perfor-

mance only improves slightly as R increases from zero to 906. The DCG score increases

slowly as R increases and is fairly flat, which suggests that there is little advantage to

using more than 64 or 128 neighbors when calculating distinction. While calculating

distinction with DCG x2 has slightly worse performance than DCG, using x2 can provably

73

Chapter 6. Updating Distinction

PSB Training Set PSB Test Set

Descriptor R Time NN 1-Tier 2-Tier E DCG NN 1-Tier 2-Tier E DCG

Selection sec. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Random 0 0 68.2 39.0 50.0 27.3 65.8 66.5 36.0 47.7 27.5 63.4

NN-1 1 3.4 66.0 38.2 49.8 27.0 65.1 66.0 36.1 47.1 27.1 63.3

DCG lg(x) 2 3.6 68.5 40.3 51.8 28.0 66.8 65.8 37.4 48.9 28.4 64.3

DCG lg(x) 4 3.7 64.3 40.8 52.4 28.4 66.5 65.0 36.2 47.8 27.5 63.2

DCG lg(x) 8 3.8 65.3 40.9 52.8 28.5 66.5 63.7 36.9 48.1 27.4 63.4

DCG lg(x) 16 4.0 64.5 41.1 53.0 28.7 66.7 63.8 38.6 50.7 28.9 64.7

DCG lg(x) 32 4.5 64.8 41.4 53.6 28.9 67.1 63.7 37.9 49.5 28.6 64.2

DCG lg(x) 64 5.8 67.0 42.1 54.4 29.3 67.6 63.6 38.2 50.0 28.8 64.4

DCG lg(x) 128 9.3 65.7 42.2 54.3 29.3 67.4 64.1 39.8 51.5 29.7 65.2

DCG lg(x) 256 24.0 66.2 42.3 54.4 29.4 67.9 63.7 40.0 51.8 29.7 65.3

DCG lg(x) 906 35.0 68.3 42.1 54.2 29.3 67.6 62.8 40.2 51.7 29.7 65.6

DCG x2 2 3.6 68.5 40.3 51.8 28.0 66.8 65.8 37.4 48.9 28.4 64.3

DCG x2 4 3.7 65.0 40.6 52.3 28.4 66.4 64.5 37.7 49.6 28.6 64.2

DCG x2 8 3.8 64.7 40.6 52.5 28.4 66.2 63.9 38.1 49.8 28.6 64.3

DCG x2 16 4.0 64.8 40.7 52.9 28.4 66.4 64.8 38.1 50.3 28.7 64.5

DCG x2 32 4.5 65.7 41.0 53.1 28.6 66.7 64.5 38.8 50.7 28.8 64.6

DCG x2 64 5.8 66.4 41.4 53.3 28.8 67.1 64.6 38.9 50.5 29.0 64.6

DCG x2 128 9.3 67.1 41.7 53.4 28.9 67.3 64.9 39.2 50.8 29.1 64.7

DCG x2 256 24.0 66.8 41.7 53.5 29.0 67.3 64.1 39.3 50.9 29.2 64.8

DCG x2 906 35.0 67.0 41.7 53.5 29.0 67.4 64.9 39.5 51.1 29.3 64.9

Table 6.2: Up to 128 nearest neighbors can be found in under 10 seconds using a

cover tree index, which provides a good approximation to distinction and retrieval results

similar to using the full retrieval list.

be approximated with a shorter retrieval list, which provides a theoretical justification for

this approximation technique as the database size grows. Using a cover tree index, 128

neighbors can be found in under ten seconds per model with retrieval performance that is

similar to the baseline technique of calculating distinction with a full search through the

database, which requires 35 seconds. Using a descriptor index, an approximated version

of distinction can be calculated for new meshes in a few seconds, while maintaining

retrieval performance.

6.2.4 Updating Distinction when Inserting Models

Besides calculating distinction for newly inserted meshes, meshes in the database need to

be updated as well. If a distinction score requires a full retrieval list such as the original

version of DCG, then the entire database would need to be updated when inserting

mesh M. Using an R approximation to distinction, the only meshes in the database

that need to be updated are those with descriptors that would have mesh M within their

first R neighbors. We present a simple technique for updating the necessary meshes and

descriptors of the database after an insertion.

74

Chapter 6. Updating Distinction

Our method is to record in an index structure all of the descriptors based on the

distance to the Rth neighbor needed for approximate distinction, find the nearest N (N ≥

R) neighbors for a new mesh M, and then update those meshes in the index that have

R-distance greater than the distance to N. When finding the N neighbors using an index

structure, distinction can be calculated for M, and distinction could be updated for those

N neighbors as well.

The main observation of our technique is that models in the database that need to be

updated are those that have M within their respective list of R neighbors, which we refer

to as the reverse neighbor distance. Any descriptor with distance to their respective R

neighbors greater than the distance from descriptors of mesh M to their Nth neighbors

potentially need to be updated. Otherwise, if their distances were less, they would be

within the the N neighbors of M’s descriptors. This holds because the L2 distance metric

on descriptors is symmetric, ‖x1 −x2‖ = ‖x2 −x1‖. As an example, consider a sorted list

of R distances (0.1,0.2,0.25, ...,0.4,0.41) and the N distance for a new descriptor added

to the database is 0.39. Distinction needs to be updated for the descriptors that constitute

the N distance as well as the descriptors in the R distance list that correspond to the values

0.4 and 0.41.

We performed an experiment to evaluate how many descriptors need to be updated

when inserting meshes. We used the PSB training set with 128 descriptors, considered

each model as a new query, and present timing results averaged over the four scales.

For each new mesh inserted, N neighbors were found using a cover tree index. The

distance to the Nth neighbor was then used to index into a Red-Black tree that has

every descriptor entered by its distance to its R neighbor (creating an R approximation

for distinction). Figure 6.3 shows the results of the experiment. The horizontal axis

shows the results for various values of R when N is either 128 or 256, and the vertical

axis shows the percent of the database that has to be considered for update. If there is

sufficient time to find 256 neighbors for a new mesh, then an R approximation of up

to 32 can be achieved while updating less than 10% of the database. If 32 neighbors

provides sufficently accurate distinction, then the database can be updated reasonably

quickly. When finding 128 neighbors for newly inserted meshes, an R accuracy of 16 can

be achieved while updating less than 20% of the database. In the worst case, nearly every

descriptor in the database may need to be updated, but we find that in practice it is only

a reasonably small percentage of the database. Of course, this is only one technique for

75

Chapter 6. Updating Distinction

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
e
rc

e
n
t
o
f
D

B

R Approximation for Distinction

Updating the DB on Insertions

128 Search
256 Search

Figure 6.3: When inserting new meshes into a database, distinction scores for other

models need to be updated. Using an index structure, 128 neighbors are found for each

inserted mesh, and based on the distance to the last neighbor, the number of descriptors

that need updating (to be R approximations) is plotted.

updating a dynamic database, and there are likely other efficient methods such as batch

updating and improved indexing structures that may provide further speedup.

We have shown that there is a trade-off between the time to calculate distinction and

the resulting retrieval accuracy. High retrieval accuracy can be achieved in a dynamic

database while limiting the update overhead using a combination of techniques. For new

meshes added to the database, distinction can be approximated with a small set of nearest

neighbors found using a cover tree index. Distinction scores can then be updated for the

rest of the database by considering the reverse nearest neighbor distance.

76

Chapter 6. Updating Distinction

6.3 Conclusion

While we have not implemented an end-to-end system to update distinction scores while

performing retrievals in a dynamic database, we have presented a plan for such a sys-

tem and trade-offs between time to approximate distinction and the resulting retrieval

accuracy. Good retrieval accuracy can be achieved in a dynamic database while limiting

the update overhead using a combination of techniques. For new meshes added to the

database, distinction can be approximated with a small set of nearest neighbors found

using a cover tree index. The approximation has a provable error bound with a modified

version of the DCG function. Distinction scores can also be updated for the rest of the

database by considering the reverse nearest neighbor distance.

Our technique of approximating distinction and using a cover tree index to find near-

est neighbors is a first approach to this problem. There are several limitations of our

technique that deserve further research. While the cover tree has an update time that is

logarithmic in the number of entries, shape descriptors for very large databases may not

meet the intrinsic dimensionality requirement. Also, our approach for updating models

in a database using the reverse nearest neighbor distance requires updates to 10-20% of

the database.

77

Chapter 7

Predicting Distinction

Introduction

Performing shape-similarity retrieval with local descriptors can be quite slow when com-

paring every descriptor from the query against every descriptor of every shape in a data-

base. Previously, we demonstrated a technique for reducing the number of comparisons

by preprocessing a database to select distinctive descriptors for each target shape. An

alternative technique is to filter the query shape to a small set of distinctive descriptors,

but calculating distinction for query models is not possible, since the classification is

generally unknown.

Our goal is to predict which query shape features are distinctive and focus similarity

retrieval on those features. Our approach is to compute shape descriptors for several

regions of each shape, map them into a space parameterized by their likelihood, predict

their distinction based on a training set of labeled descriptors, and then select only the

most distinctive descriptors to be used during retrieval (Shilane and Funkhouser [112]).

In this chapter, we address the research problem of predicting shape distinction. Specif-

ically, we make the following contributions: 1) the definition of a mapping function for

shape descriptor likelihood that separates descriptors with good retrieval performance and

2) an algorithm for learning the retrieval performance of descriptors from a training set.

The remainder of this chapter is organized as follows: The next section gives an

overview of how shape distinction can be used to improve local matching for retrieval. In

78

Chapter 7. Predicting Distinction

Section 7.1.1, we define a mapping function based on the likelihood of shape descriptors.

In Section 7.1.2, we show how to predict the retrieval performance of each descriptor

from a training set. We review how to select a subset of descriptors from a query

in Section 7.1.3. In Section 7.2, we provide empirical results demonstrating that our

definition of predicted shape distinction is useful for retrieval, and we summarize our

results in Section 7.3.

7.1 Overview of the Approach

The organization of our system is shown in Figure 7.1. During a training phase, a

distinction function is learned. First, a shape descriptors are created for numerous regions

of a shape. Then, the likelihood of each descriptor is evaluated along with its retrieval

performance in the classified training database. A histogram of retrieval performance

scores is built for different descriptor likelihood values.

Likelihood

Retrieval

Evaluation

Training

Query

Shape

DB

Local
Descriptors

Descriptor

DB

Likelihood
Evaluate

Distinction

Local

Descriptors

Classification

Shape

Distinction

Function

Match

Retrieval
List

Select

Descriptors

Figure 7.1: Diagram of training and query phases.

When a user presents a query shape to the system, distinction values are predicted

for local descriptors on the query shape. First, local descriptors are generated across

the surface in a manner similar to the training phase. The likelihood of each descriptor

79

Chapter 7. Predicting Distinction

relative to the training database is calculated. Then, based on the likelihood of each

descriptor and the distinction function, a distinction value is predicted. A small set of the

k most distinctive descriptors is then selected for the query. Each selected descriptor is

matched against all descriptors in the database, and then the objects with the best sum of

match scores for all k selected query descriptors are returned as the retrieval result.

The key step in this process is the method to predict distinction for every shape descrip-

tor based on the average retrieval performance of descriptors with the same likelihood in

a training set. More formally, predicted distinction function D maps descriptor d with

likelihood function map into a bin representing descriptors from a training database with

the same likelihood value as d. We represent these training descriptors with the same

likelihood as the set F . The predicted distinction value for d is the average retrieval

performance of the descriptors f ∈ F .

D(map(d)) =
1

|F| ∑
f∈F

RetrievalPer f (f)

There are several advantages to this approach. The main advantage is that our pre-

dicted distinction function D is based on the retrieval performance of descriptors from the

training database. Another advantage is that D is independent of the type of descriptor, so

it can be applied to many real-valued descriptors. Also, by defining a predicted distinction

function in terms of descriptors mapped by likelihood, we have created a one-dimensional

parameterization. This allows for a compact representation of predicted distinction as a

table of average retrieval scores computed from a training set. The query descriptor with

likelihood mapping to the highest predicted distinction can be used as the query into the

database. If multiple descriptors for the query shape will be used for retrieval, D provides

an ordering of the descriptors. Alternatively, while descriptors are being calculated for the

query shape, predicted distinction can be determined for each descriptor, and the process

can end when a descriptor with a sufficiently high distinction value is found. As such, we

have a quick way to select the most distinctive descriptors for a query.

In the following sections, we investigate several research problems for creating the

distinction function. We first define a likelihood model for shape descriptors and show

how to use a training set to evaluate retrieval performance. We then select a subset of

the most distinctive descriptors for a query shape and use the subset during retrieval. For

comparison, we evaluate prediction function D against other common alternatives.

80

Chapter 7. Predicting Distinction

7.1.1 Mapping from Descriptors to Likelihood

The first issue in implementing our approach is to define a mapping function that clusters

shape descriptors based on their retrieval performance. The challenge is to define a

mapping such that descriptors near each other in the mapped space will have similar

retrieval scores and be well separated from descriptors with different scores. There are

many options for a mapping function. One approach is to use the full dimensionality of

descriptors directly, though this could be a slow prediction function. Other mapping func-

tions could use the local curvature or the descriptors’ positions relative to a coordinate

system such as the shape’s center of mass.

We define a mapping function of shape descriptors using likelihood based on the work

of [20, 62]. A rationale for this approach is that rare features (such as the wing-tips

and tail of the plane in Figure 7.2) may be discriminating for retrieval, while common

areas (such as the flat portions of the wings) may match numerous categories of shapes.

Likelihood mapping has the advantage of being independent of the underlying real-valued

feature vector used as a shape descriptor. Also, after descriptor statistics are estimated

from the training set, the likelihood function can be evaluated quickly for queries.

A key question is then how to map descriptors to likelihoods. In previous work, John-

son et al. [62] used a mixture of Gaussian distributions to estimate descriptor likelihoods.

However, if the distribution of our descriptors is normal, then perhaps we can use a

single Gaussian distribution to achieve the same performance at less cost. Based on

the assumption of a normal distribution of shape descriptors, the probability density of

descriptor x can be modeled by a multivariate normal distribution [27]:

density(x) =
1

(2π)
d
2 |Σ|

1
2

e−
1
2 (x−µ)tΣ−1(x−µ)

with mean µ and covariance Σ estimated from a training set and d equal to the dimension-

ality of the shape descriptor. Descriptor x is treated as a vector for this calculation.

Under floating point arithmetic, the exponential function rounds to zero for descriptors

far from µ, so we work with the natural log of the density function. We also drop the nor-

malization term since we are interested in the relative density of descriptors as opposed

to their exact values. We refer to this function, p, as the likelihood of a descriptor:

81

Chapter 7. Predicting Distinction

L
ik

e
lih

o
o

d

0.25 0.5

1.0 2.0

0

-inf

Figure 7.2: The likelihood of the descriptors is color coded with red indicating the most

likely descriptors. Notice that the likelihood of the descriptors changes with the scale of

the descriptor.

p(x) ∝ ln(density(x))

p(x) = −
1

2
(x−µ)tΣ−1(x−µ)

In practice, we calculate distinction function D from the training set with p as the

mapping function, therefore map ≡ p. Bins partitioning the likelihood space hold the

average retrieval performance of the training set descriptors. Since the distribution has a

long tail of low likelihood, a threshold is selected and a bin represents all descriptors with

likelihood below the threshold.

To evaluate this normality hypothesis, we generated 200,000 local descriptors on 100

shapes from the Princeton Shape Benchmark (PSB). For this experiment we used a ver-

sion of the Harmonic Shape Descriptor representing a local region of each shape with 512

values. We compared the distribution of these descriptors against 200,000 feature vectors

82

Chapter 7. Predicting Distinction

randomly generated with distribution N(0, 1) and 512 dimensions. Since our definition

of likelihood incorporates a covariance matrix that accounts for correlated features, we

evaluated the shape descriptors with a diagonal covariance matrix for this experiment.

Figure 7.3 shows a quantile-quantile plot [51] comparing the shape descriptor distribution

against the randomly generated feature vectors. A quantile-quantile plot is a visualization

of the relationship between two distributions of data. For each + marker, the horizontal

position indicates the likelihood value for a quantile of the randomly generated data, and

the vertical position for the maker indicates the likelihood for an equal quantile of the

measured shape descriptor data. The straight line indicates the line of best fit between

the distributions, which corresponds to a normal distribution with different mean and

variance. While the shape descriptor distribution varies from the line of best fit, a normal

distribution is a reasonable model for the majority of shape descriptors.

−290 −280 −270 −260 −250 −240 −230 −220
−700

−600

−500

−400

−300

−200

−100

0

100

200

300

Theoretical Data

M
e
a
s
u
re

d
 D

a
ta

Figure 7.3: Quantile-Quantile plot of the likelihood of HSD descriptors against a

randomly generatedN(0, 1) distribution. The + markers indicate the relationship between

the measured and randomly generated data. A normal distribution (dashed line) provides

a good model of the shape descriptor distribution.

83

Chapter 7. Predicting Distinction

7.1.2 Mapping from Likelihood to Distinction

The second issue is to define a distinction function that maps descriptor likelihood to an

expected retrieval score. For this step, we evaluate the retrieval performance of every local

shape descriptor in a training set and build a histogram of average retrieval performance

as a function of likelihood.

During a training phase, each query shape is presented to a retrieval system, and local

descriptors are calculated over the shape. As in our previous work, a retrieval list is

generated for each descriptor. Then, the quality of the retrieval list can be evaluated with

any standard retrieval metric (Chapter 4.1.3). In our experiments, we use the Discounted

Cumulative Gain (DCG).

For every query descriptor in the training set, we evaluate both its likelihood and its

DCG retrieval performance. Then, we cluster descriptors into regular bins by likelihood

and average the DCG scores for all descriptors in the same likelihood bin. The result is a

histogram of average DCG scores indexed by likelihood that can be used as a map from

likelihood to distinction.

7.1.3 Selecting Distinctive Descriptors

The next issue is to select the k most distinctive descriptors from each query shape to

use during retrieval. Given a query shape, we compute the likelihood of every local

descriptor and map likelihood scores to distinction, creating a predicted distinction score

for each descriptor. We can then select a subset of descriptors using the same algorithm

described in Section 5.1.2, that maintains a minimum distance constraint while selecting

the k descriptors with the hightest predicted distincton. An example of our selection

technique for a biplane query model is shown in Figure 7.4.

84

Chapter 7. Predicting Distinction

Mesh Descriptors Distinction

Scores

3 Selected

Descriptors

Figure 7.4: When a new query mesh is presented, shape descriptors are created at random

positions, the predicted distinction scores are calculated based on the likelihood of each

descriptor, and a subset of distinctive descriptors is selected to be used during retrieval.

7.2 Results

In this section, we evaluate the utility of selecting descriptors with predicted distinc-

tion based on likelihood and learned retrieval performance. We first describe the shape

database and set of shape descriptors used for our experiments, and then we address the

following research questions with empirical results.

• How well does a likelihood mapping predict distinction?

• Is predicted distinction useful for retrieval?

• Is our method of predicting distinction for a query shape better than other alterna-

tive approaches?

7.2.1 Shape Database

In this experiment, we evaluated 100 models1 from the Princeton Shape Benchmark. We

focused on this small subset of the PSB so that we could calculate a large number of

local descriptors and thoroughly evaluate a likelihood function. The 100 shapes, evenly

divided into ten classes, represent classes that are in different branches of the hierarchical

classification, so a diverse set of classes was included.

During the preprocessing phase, 2,000 shape descriptors were computed over the sur-

face of the mesh across four scales (0.25, 0.5, 1.0, and 2.0) as shown in Figure 7.5. Unless

1The shape classes include: biplane, spider, human with arms out, dome church, dining chair,

rectangular table, ice cream, potted plant, sedan, and tank.

85

Chapter 7. Predicting Distinction

otherwise noted, all of the reported experiments are for a scale of 1.0, which generally

includes about 30% of the surface area when positioned on an extremity. Though our

technique is independent of the type of shape descriptor, we experimented with the Har-

monic Shape Descriptor (HSD) and Shells Descriptor (SD) because these descriptors are

simple to compute, invariant to rotations (which simplifies matching), quick to compare,

and showed good performance in our previous studies.

D
C

G

0.25 0.5

1.0 2.0

1.0

0

Figure 7.5: The distinction scores for local descriptors over the surface is shown with red

indicating the best performance. Across multiple descriptor scales, the tail region of the

plane has distinctive descriptors.

7.2.2 Mapping Functions

We first evaluated whether mapping descriptors based on their likelihood effectively

groups descriptors with similar retrieval performance. For every shape descriptor, we

performed a query into the database of descriptors for the 100 shapes and evaluated the

likelihood of the descriptor and its retrieval performance. Figure 7.6 shows the resulting

average retrieval performance as vertical bars for each likelihood value. The horizontal

axis shows the likelihood. The left vertical axis is retrieval performance as measured by

86

Chapter 7. Predicting Distinction

−700 −600 −500 −400 −300 −200 −100 0
0

0.5

1

likelihood

D
C

G

−700 −600 −500 −400 −300 −200 −100 0

10

20

30

40

%
 D

e
s
c
ri
p

to
rs

Figure 7.6: Using a likelihood mapping of HSD descriptors, the majority of descriptors

fall within a poor retrieval group to the right. An area between the least likely and most

likely descriptors tends to be better for retrieval.

DCG, with 1 standard deviation error bars shown in cyan. The magenta line indicates the

percentage of descriptors that falls within each likelihood bin. Note that the axis for the

magenta line is on the right side of the plot.

The most likely bin of the histogram (with 40% of the descriptors) contained descrip-

tors with nearly the worst retrieval performance. We also found that grouping shape

descriptors based on their likelihood effectively clusters descriptors with similar retrieval

performances. Using a t-test, there is 99% confidence that the bin with the best perfor-

mance varies significantly from the most common bin.

For comparison, we considered alternative mappings, such as the amount of surface

area within the descriptor’s radius, as well as the position of the descriptor relative to the

shape’s center of mass, in studies explained in Section 4.2.3. However, both alternatives

failed to group descriptors with similar retrieval scores as well as likelihood.

87

Chapter 7. Predicting Distinction

7.2.3 Retrieval Results

We next evaluated whether using distinctive local descriptors can improve retrieval per-

formance over competing methods. We performed a leave-one-out experiment where

we held out one model as a query and trained the distinction function over the remaining

models (this maximizes the size of our training and test sets, since each of the 100 models

serves as a query once and the training set has the remaining 99 models). For each query,

we matched its k most distinctive descriptors to all the descriptors of the other 99 models,

and then we returned the models in a ranked retrieval list.

We adjust our shape matching algorithm to focus on shape descriptor similarity and

neglect deformation since we are interested in investigating the value of predicting dis-

tinction. We take a simple approach in this study: we measure the sum of distances

between all k descriptors from query X (represented as Xk) and the closest descriptors of

model Y :

|Xk−Y | =
k

∑
i

C(Xki ,Y)

where C(Xki ,Y) is the minimal L2 difference between Xki and all descriptors of Y .

Although this distance function does not consider the amount of deformation neces-

sary to bring the corresponding regions of the shape into alignment, it is fast to compute,

and it can be considered a lower-bound on more complex geometric distance functions

such as the cost function used in the priority-driven search study.

Comparison to Global Shape Descriptors: Figure 7.7 shows a precision recall plot

comparing retrieval with a single global descriptor versus using 10 descriptors with high

distinction values. Higher lines indicate better retrieval performance. Also consider

Table 7.1 that shows timing results and DCG scores for various configurations. For

this experiment, ten descriptors were used from the query. Using these ten distinctive

descriptors improves retrieval performance beyond a single global descriptor. To be

fair, shape matching with a global descriptor is faster than with local descriptors, but

the improved retrieval accuracy may be worth the extra time for certain applications.

Effect of selecting fewer descriptors: We also considered how retrieval performance

varies with k, the number of descriptors selected for each query model. Figure 7.8 shows

88

Chapter 7. Predicting Distinction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

10 Distinctive
Global

Figure 7.7: Using ten distinctive HSD descriptors improves retrieval compared to using

a single global descriptor.

Timing Results

Generate Calculate Compare Retrieval

Descriptors Descriptors Likelihood Descriptors DCG

Global HSD 0.35s NA 0.000009s 0.762

3 HSD 81.5s 3.7s 0.0057s 0.785

10 HSD 81.5s 3.7s 0.018s 0.794

2,000 HSD 81.5s NA 2.18s 0.796

Global SD 0.35s NA 0.000001s 0.638

3 SD 68.7s 0.1s 0.0007s 0.679

10 SD 68.7s 0.1s 0.0016s 0.718

2,000 SD 68.7s NA 0.56s 0.735

Table 7.1: Using a few distinctive features provides better matching results than a global

descriptor and is faster than using the full set of local descriptors, with a modest decrease

in retrieval accuracy. All timing results are for experiments on a computer running the

Windows XP operating system on an Intel Pentium 4 processor running at 3 GHz with 1

GB of RAM.

89

Chapter 7. Predicting Distinction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

2000
10
3
Global

Figure 7.8: Performance decreases gradually as the number of distinctive HSD

descriptors is reduced.

the retrieval performance when using different numbers of query descriptors. For most

values of k > 3, retrieval performance remains almost as high as when using all 2,000

descriptors. This result shows that using a small number of distinctive descriptors can

approximate the retrieval result of using the full set. Meanwhile, Table 7.1 shows that

comparing a query shape against a shape in the database using the three most distinctive

descriptors takes only 1
350

of the time for using all 2,000. This combination provides a

significant time savings with minimal loss of retrieval precision.

Comparison to other selection methods: We next evaluated how well our predicted

distinction function compared to previous techniques for selecting local descriptors. We

compared against three alternative approaches:

Least Likely DB For each model, the descriptors are sorted based on their likelihood as

calculated from the distribution for the entire database.

Least Likely Model For each model, the descriptors are sorted based on their likelihood

as calculated based on the distribution of descriptors for the model.

90

Chapter 7. Predicting Distinction

Random The descriptors are randomly sorted, providing a baseline for comparison.

Figure 7.9 shows the retrieval performance when combining descriptors with k = 3.

In this plot, the vertical axis shows the percentage improvement over Random. Results

for both SD and HSD descriptors are shown. Selecting the k descriptors with highest

predicted distinction scores outperforms Global as well as Random, Least Likely DB,

and Least Likely Model for most recall values. It should be noted that as k increases,

the difference between all of the techniques decreases, since each shape becomes fully

represented with the local descriptors.

This result demonstrates that distinctive features are generally better for retrieval than

other approaches that focus on likelihood without consideration of how likelihood relates

to retrieval performance. While this is the only retrieval result shown for the SD descrip-

tor, our results on other experiments are consistent for both the SD and HSD descriptors.

7.3 Conclusion

The main contribution of our work is a method for selecting a subset of local shape de-

scriptors for each query shape to use during matching. We map descriptors based on their

likelihood and calculate the average distinction for each descriptor within a likelihood

bin. From training data, we can efficiently predict distinction scores for descriptors from

a query through a likelihood mapping.

During our experiments, we have demonstrated several important properties of distinc-

tive descriptors. Descriptors with similar likelihoods have similar retrieval performance.

However, the least likely descriptors do not have the best retrieval performance – although

they are rarest, they are not the most distinctive. Rather, descriptors with intermediate

likelihoods provide the best retrieval performance, and thus it is valuable to store a

mapping from likelihood to retrieval performance and to use that mapping for selecting

query descriptors during shape matching. We find that distinctive descriptors from the

query can be combined to improve retrieval over using a single global descriptor, and a

small subset of distinctive descriptors can approximate the retrieval performance of the

full set while decreasing retrieval times. We also find that distinctive descriptors are better

for retrieval than alternative approaches such as either selecting descriptors randomly or

selecting those that are least likely.

91

Chapter 7. Predicting Distinction

a.) Shells Descriptor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

Recall

P
re

c
is

io
n

 %
 I

m
p

ro
v
e

m
e

n
t

Distinctive
LL Model
LL DB
Global

b.) Harmonic Shape Descriptor

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

Recall

P
re

c
is

io
n
 %

 I
m

p
ro

v
e
m

e
n
t

Distinctive
LL Model
LL DB
Global

Figure 7.9: Distinctive descriptors have better retrieval performance than using randomly

selected descriptors, least likely (LL) descriptors, or a global descriptor. Precision values

are shown as improvement over randomly selected descriptors.

92

Chapter 8

Applications of Distinction

Finding distinctive regions on a mesh is potentially useful for numerous graphics ap-

plications beyond shape matching. With mesh processing algorithms, an importance

score over the surface of a mesh can often provide useful information to guide which

regions should be processed/retained most fully. For example, a remeshing process may

allocate more polygons for important regions, and an alignment algorithm may use a cost

function that places more weight on aligning distinctive regions of similar meshes. In this

chapter, we consider two applications: mesh simplification and icon generation (Shilane

and Funkhouser [113]).

8.1 Mesh Simplification

Creating a simplified version of a complex mesh is important for many applications. For

example, consider an online parts catalog where images of many tools are shown on-

screen at the same time. To improve rendering times, the mesh representing each tool

might be simplified, since rendering time is related to the number of polygons represent-

ing a shape. However, to preserve object recognition and emphasize differences within a

large collection of meshes, the distinctive features of each tool should be simplified less

than the rest of the mesh.

Most techniques for mesh simplification have focused on minimizing the geometric

error in a simplified mesh (e.g., [41]), while others have attempted to minimize errors

93

Chapter 8. Applications of Distinction

in the rendered images. In particular, Lee et al. [77] used their estimation of mesh

saliency to weight vertices in a quadrics-based simplification scheme. We follow this

work by weighting vertices instead with mesh distinction scores. Since surface distinction

identifies parts that are consistent within a class and distinguish from other classes, we

expect the simplification algorithm to preserve distinctive features better than other ap-

proaches. While features that are salient to the human visual system may not necessarily

be preserved with our shape-matching approach, distinguishing features will be preserved

while common features are simplified, which, under extreme simplification, will produce

a mesh caricature.

To review, quadric error simplification works by contracting an edge of a mesh with

the least quadric error. The quadric error for each vertex is a measure of how far that

vertex has moved during simplification. Consider all planes incident to vertex v, where

each plane p is represented by normal vector (a,b,c) and offset d as augmented vector

(a,b,c,d). The quadric error for v is the squared distance to the set of all such incident

planes p ∈ P, Ev = v
t(∑p∈P pp

t)v, and the error for an edge is the sum of the error for the

two vertices on the edge. When an edge is selected for contraction, the optimal position

for the new vertex v′ is selected that minimizes the error. Then, the error for v′ is the sum

of the errors for the two removed vertices.

We augment this basic algorithm by adjusting the error for each edge based on how

distinctive its two vertices are. IfDv is the distinction of mesh regions mapped onto vertex

v as described in Section 4.1.4, then the new error for every edge e is Ee = Dv1Qv1 +

Dv2Qv2 . To accentuate the difference between distinctive and non-distinctive regions,

however, the distinction scores for the lower 65% of vertices was set to the minimal

distinction value. After each edge is collapsed, the new vertex is assigned an error that

is the maximum of the two vertices collapsed so that distinctive regions preserve their

scores without being averaged with nearby areas.

Simplification results achieved with this method are shown in Figures 8.1 and 8.2. For

the hammer example shown in Figure 8.1, descriptors were computed for 1024 regions

at scale 0.25, and distinction was computed within the context of a database containing

four hammers among nineteen meshes representing other classes of tools (screwdrivers,

wrenches, and shovels). For a database of tools, the distinguishing features are generally

at the functional end of the object away from the handle. The mesh for this hammer was

then simplified from 1,700 triangles to 300 triangles (Figure 8.1) using the distinction-

94

Chapter 8. Applications of Distinction

Figure 8.1: Simplification results using Garland’s method, mesh saliency, and distinctive

regions. Notice that more detail is preserved in the head of the hammer by focusing on

distinctive regions.

weighted error metric. Note that the head of the hammer is the most distinctive region

of the mesh and remains well-preserved. For comparison sake, we show simplifications

to the same triangle count achieved using Garland’s standard quadric error in the first

column and using Lee’s method of weighting the quadric error by mesh saliency in the

third column. Note that our method preserves the head of the hammer, the most distinctive

part, better than these other methods.

Figure 8.2 shows similar results achieved when simplifying the mesh of a horse. In this

case, the head was found to be most distinctive in the context of a database containing

four horses among five other classes of quadrupeds (rabbit, dog, feline, and pig). So,

when the mesh was simplified from 97K triangles to 2K triangles, the fine details in and

around the horse’s head are well-preserved, while the body is greatly simplified. Since

the competing methods do not identify these important regions of the horse as strongly,

they provide more simplification to the head, while preserving detail in the creases of the

body.

95

Chapter 8. Applications of Distinction

97K tri 2K tri 2K tri zoom

Traditional Simplification Garland et al. 1997

Mesh Saliency Simplification Lee et al. 2005

Distinct Region Simplification

Figure 8.2: Simplification results using Garland’s method, mesh saliency, and distinctive

regions. Notice that details of the eyes and nose are better preserved using our method,

while using mesh saliency, areas are preserved throughout the horse’s body.

96

Chapter 8. Applications of Distinction

8.2 Icon Generation

With the increasing size of 3D model collections, quickly presenting models to a user is

an ongoing problem. Whether the application is viewing a catalog of objects or presenting

retrieval results in a search engine, the important features of shapes must be shown clearly

to the user, perhaps with icons. Focusing an icon on the features that distinguish different

classes of shapes could help increase comprehension.

Most previous work on icon generation has focused on the problem of viewpoint

selection, that is, positioning a camera oriented towards the center of the object. Vázquez

et al. [126] selected the position that maximized the entropy of the viewed mesh, where

the optimal view would see all of the faces of the mesh with the same relative projected

area. Blanz et al. [13] studied the preferences of users and found that views at an angle to

the major axis were selected. Using their own definition of mesh saliency, Lee et al. [77]

selected views that maximized the visibly salient regions.

We have developed a method for generating icons that displays only the most distinc-

tive region of a mesh. Our algorithm is quite simple. After computing shape descriptors at

the 0.25 scale for many points on the mesh, we select the single most distinctive position

with respect to a chosen database. We then produce an image of the mesh zoomed in

such that the view frustum exactly covers that most distinctive region. The rotation of the

camera is chosen by the computer automatically with one of many possible heuristics or

by interactive user control.

We find that this simple method produces useful icons for many classes of objects. For

example, Figure 8.3 shows automatically generated icons for six shapes in the Princeton

Shape Benchmark. For many meshes (such as the turtle, wrench, and car), large and

recognizable features are visible in the icon. Showing a limitation of our approach, the

biplane icon is focused on the tail region because that region distinguished planes from

many other classes of shapes, but perhaps the tail is not the most semantically important

feature to humans. However, it should be clearly stated that our measure of distinction is

based on 3D shape matching not 2D image matching, and thus it is not guaranteed that

the regions determined to be most distinctive by our method will match the ones most

visually recognizable by a human. Nonetheless, we find that our simple method based on

mesh distinction produces good icons in most cases.

97

Chapter 8. Applications of Distinction

Figure 8.3: Icons showing the most distinctive surface region for each mesh.

8.3 Conclusion

We have demonstrated that shape distinction can be incorporated into computer graphics

applications by focusing an algorithm on the distinctive regions of a mesh. During mesh

simplification, important regions are preserved that distinguish an object from others in

the database even at greatly reduced polygon counts. When creating icons of numerous

models in a database, we have shown how to produce reasonable images by positioning

the camera to focus on distinctive features.

Our definition of distinction has focused on shape similarity among 3D surface regions

and directly improves shape matching. Other approaches based on distinction in 2D

images of 3D shapes would likely be better for visualization applications. Even with

these limitations, we have shown that shape distinction focuses mesh simplification and

icon generation on important regions of shapes. Our applications of distinction are first

steps – we believe that there is a wealth of new ways to utilize mesh distinction in these

and other applications in computer graphics.

98

Chapter 9

Princeton Shape Benchmark

Introduction

To analyze shape distinction and perform the type of shape retrieval experiments shown

throughout this dissertation, a standardized benchmark of classified shapes is needed.

Despite decades of research on 3D shape representations and matching algorithms [81,

127], there still are no standard ways of comparing the results achieved with different

methods. Usually, computed match results are evaluated according to how well they

correlate with human-generated classifications. However, it seems that each research

group has its own database of 3D models, own classifications, own suites of tests, and

own metrics of success. Moreover, few publications contain results of tests comparing

several approaches on the same data [19, 36, 78, 131].

In this chapter, we describe the Princeton Shape Benchmark (PSB), a publicly-available

database of 3D models, software tools, and a standardized set of experiments for com-

paring 3D shape matching algorithms (Shilane et al. [114]). The database contains

1,814 polygonal models collected from the World Wide Web and classified by humans

according to function and form. It includes a set of hierarchical classifications, separate

training and test sets, annotations for each model, and a suite of software tools for

generation, analysis, and visualization of shape matching results. The PSB classification

and tools were used throughout this dissertation.

99

Chapter 9. Princeton Shape Benchmark

The main contribution of the Princeton Shape Benchmark is the proposed frame-

work for comparison of shape matching algorithms. We demonstrate its use by ex-

posing the differences between fourteen shape descriptors, including D2 shape distribu-

tions [98], Extended Gaussian Images [52, 64], Shape Histograms [3], Spherical Extent

Functions [109, 130], Gaussian Euclidean Distance Transforms [69], Spherical Harmonic

Descriptors [69], Light Field Descriptors [19], and Depth Buffer Descriptors [48].

In short, we find that no single shape descriptor performs best for all classifications,

and no single classification provides the best evaluation of all shape descriptors. From

this result, we conclude that it is only possible to understand the differences between

shape descriptors by looking at the results of several experiments aimed at testing specific

properties. The Princeton Shape Benchmark provides a standardized framework for this

type of experimentation.

9.1 Related Work

The benefits of benchmarks have been well-demonstrated in many fields. For example,

in computer architecture, the SPEC benchmarks [117] have been used successfully to

compare processor performance. In text document retrieval, the Smart Collection [108]

and TREC database [123] provide standard benchmarks. In computer vision, benchmarks

are available for handwriting recognition (e.g., [76]), face recognition (e.g., [22]), and

several other image analysis tasks [25]. There are even databases for specific types of 3D

data – e.g., computer-aided design parts [31, 61] and protein structures [10].

Unfortunately, no standard benchmarks are available for matching of 3D polygonal

models representing a wide variety of objects. Instead, several research groups have

independently gathered databases of 3D models, generated different classifications, run

different sets of tests, employed different metrics to quantify performance, and compared

different shape descriptors.

Table 9.1 shows statistics for several 3D model databases currently in use for shape

matching experiments. For each database, the table shows the total number of 3D models

in the database, the number of classes, the number of models that have been classified,

and the percentage of classified models in the largest class. Also, estimates of what

percentage of classified models belong to different object types (vehicle, household,

100

Chapter 9. Princeton Shape Benchmark

animal, plant, architecture) appear in Table 9.2. The bottom row of each table shows

statistics for the Princeton Shape Benchmark for comparison. From these statistics, we

make several observations.

Num Num Num Largest

Database Models Classes Classified Class

Osada [98] 133 25 133 20%

MPEG-7 [139] 1,300 15 227 15%

Hilaga [49] 230 32 230 15%

Technion [78] 1,068 17 258 10%

Zaharia [140] 1,300 23 362 14%

CCCC [130] 1,841 54 416 13%

Utrecht [122] 684 6 512 47%

Taiwan [19] 1,833 47 549 12%

Viewpoint [36] 1,890 85 1,280 12%

PSB 6,670 161 1,814 6%

Table 9.1: Summary of previous 3D model databases.

V
eh

icles

F
u

rn
itu

re

A
n

im
als

P
lan

ts

H
o

u
seh

o
ld

B
u

ild
in

g
s

Osada [98] 47% 12% 12% 0% 24% 0%

MPEG-7 [139] 12% 0% 14% 13% 0% 7%

Hilaga [49] 12% 0% 23% 2% 12% 0%

Zaharia [140] 35% 0% 7% 7% 11% 0%

CCCC [130] 33% 13% 21% 5% 25% 0%

Utrecht [122] 73% 0% 0% 0% 0% 0%

Taiwan [19] 44% 13% 0% 0% 36% 0%

Viewpoint [36] 0% 42% 1% 0% 50% 0%

PSB 26% 11% 16% 8% 22% 6%

Table 9.2: Types of objects found in previous 3D model databases (shown as percentages

of classified models).

First, most previous databases contain a small number of classified models. For ex-

ample, the Osada database [98], which has been used in experiments by several research

groups (e.g., [122]), contains only 133 models. Some of them appear in classes with

only 2 other models, which makes it difficult to acquire statistically significant results in

classification experiments. In other cases, the total number of 3D models in the database

is quite large (> 1800), but only a small fraction of them are included in the classification.

101

Chapter 9. Princeton Shape Benchmark

For instance, the MPEG-7 database [139] contains 1,300 VRML models in all. But, only

227 (18%) of them are included in labeled classes, while the vast majority of models are

lumped into a “miscellaneous” class that provides only “background noise” during shape

matching experiments. To our knowledge, the only set of more than 1000 classified 3D

polygonal models used for shape matching experiments is the Viewpoint database [128],

as described in [36]. However, it is not available to the general public, and it is expensive

to purchase, which makes its use as a standard benchmark problematic.

Second, most 3D model databases contain a limited range of object types and/or are

dominated by a small set of object classes (see Table 9.2). For example, the Viewpoint

database [36] contains only household objects, and the Utrecht database [122] contains

mainly vehicles among its classified models. Even databases that have a wide variety

of objects often contain a few classes with a disproportionately large number of models.

For example, the MPEG-7 database contains 50 (22%) models representing letters of

the alphabet among its 227 classified objects, and the Osada database contains 27 (20%)

airplanes out of 133 objects. Of course, these large classes significantly bias (micro-)

averaged retrieval results.

Third, current 3D model classifications have significantly different granularities. Some

databases have classes with large, diverse sets of objects (e.g., “Kitchenware” [49]), while

others have very small and specific classes (e.g., “motorcycles with 3 wheels” [140]). For

example, the National Taiwan University database [19] has a single class containing all

types of seats (dining room chairs, desk chairs, patio chairs, sofas, recliners, benches,

and stools), while the Viewpoint database [36] has a separate class for each specific

type. This difference in classification granularity can have an impact on retrieval and

classification results, as significant differences between retrieval methods may be masked

by classifications that are too coarse or too fine.

Finally, many 3D databases have classifications that mix function and form. For

example, the MPEG-7 database contains several classes that group objects with similar

semantics (e.g., “buildings”), while others group objects based solely on their shapes

(e.g., the “aerodynamic” class contains fish, helicopters, and airplanes). Similarly, the

Hilaga database [49] contains some classes corresponding grossly to functions (e.g., “Ma-

chine”) and others corresponding directly to shapes (e.g., “Stick”, “Donut”, “Sphere”, and

“Many Holes”). Results achieved over these disparate class types are averaged together,

102

Chapter 9. Princeton Shape Benchmark

making it difficult to draw specific conclusions about why and when a shape matching

method works well.

9.2 Overview

The Princeton Shape Benchmark provides a repository of 3D models and software tools

for comparing shape matching algorithms. The motivation is to promote the use of

standardized data sets and evaluation methods for research in matching, classification,

clustering, and recognition of 3D models.

Version 1 of the benchmark contains a database of 1,814 classified 3D models col-

lected from 293 different Web domains. For each 3D model, there is an Object File

Format (.off) file with the polygonal surface geometry of the model, a textual information

file containing meta-data for the model (e.g., the URL from whence it came), and a JPEG

image file containing a thumbnail view of the model. We expect larger databases to be

available in future versions.

In addition to the database of 3D models, the benchmark provides guidelines regarding

its use. For instance, the 3D models are partitioned equally into training and test sets. The

benchmark requires that algorithms be trained only on the training set (without influence

of the test set); and then, after all exploration has been completed and all algorithmic

parameters have been frozen, results should be reported for experiments with the test set.

In order to enable evaluation of shape matching algorithms for retrieval and classi-

fication tasks, the benchmark includes a simple mechanism to specify partitions of the

3D models into classes. In Version 1, we provide a hierarchical classification for 1,814

models (907 from the training set and 907 from the test set). At its finest granularity,

this classification provides a tight grouping of objects based on both function and form.

For example, there is a class for “birds in a flying pose” in the test database. Yet, it

also includes a hierarchy of classes that reflects primarily the function of each object and

secondarily its form. Continuing with the example, there are classes for “birds”, “flying

creatures,” and “animals” at coarser levels of the hierarchy. Note that every level of the

hierarchy is useful for a different type of evaluation.

Since arbitrarily many semantic groupings are plausible for a given set of 3D models,

the benchmark provides a flexible mechanism for specifying multiple classifications. It

103

Chapter 9. Princeton Shape Benchmark

also includes a method for averaging over queries for models with certain geometric

properties (e.g., “roughly spherical”). The differences in matching results achieved with

respect to these different classifications and queries yield interesting insights into the

properties of the shape retrieval algorithms being tested (e.g., algorithm X works better

on round objects, but worse on elongated ones), and the combined results of multiple

classifications provide a much more complete view of the differences between competing

algorithms.

To standardize analysis of shape matching experiment results, the benchmark includes

free source code for evaluation and visualization of 3D model matching scores. For in-

stance, there are programs for: 1) generating precision-recall plots, 2) computing several

retrieval statistics (e.g., nearest neighbor, 1st and 2nd tier, discounted cumulative gain,

etc.), 3) producing color-coded similarity matrices, and 4) constructing web pages with

thumbnails of the best ranked matches for a given query model. These programs provide

a standard toolbox with which researchers can compare results of independently run tests

in a consistent manner.

In summary, the benchmark provides a flexible framework for comparing shape match-

ing algorithms. The remainder of the chapter describes many of the design decisions and

issues that were addressed during its construction. Specifically, detailed descriptions of

how our database was acquired, classifications were constructed, and models were anno-

tated appear in Sections 9.3-9.5. Section 9.6 describes our software tools for evaluating

matching results, and Section 9.7 presents experimental results obtained during tests with

several different shape descriptors, classifications, and databases. Finally, Section 9.8

summarizes our finding.

9.3 Acquisition

The 3D models in the PSB were acquired from the World Wide Web by three automated

crawls over a two year period. This section describes how they were found, processed to

remove duplicates, converted to a common file format, and organized to form a database.

The first crawl was performed in October 2001 and targeted VRML files only. It began

with the results of search engine queries for web pages linking to files with extension

“.wrl” and “.wrz” and then crawled outward from those pages in a breadth-first fashion.

104

Chapter 9. Princeton Shape Benchmark

The crawl ran for 48 hours and downloaded 22,243 VRML files from 2,185 different Web

sites [87].

The second crawl was executed in August 2002 and targeted VRML, 3D Studio,

Autocad, Wavefront, and Lightwave objects, both in plain links as well as in compressed

archive files (“.tar” and “.zip”). Unlike VRML, the other formats were not designed to

be used on the web and often are contained within compressed archives, so they typically

cannot be located simply by file name extension. Instead, the second crawler searched for

them using a focusing method, where web sites were crawled in priority order according

to the number of pages already downloaded from that site containing 3D models. The

crawl ran for 2 days and 16 hours and resulted in 13,217 3D model files and 5,539

compressed archive files containing 3D models. After expansion of archive files, there

were 20,084 model files retrieved from 455 different sites [87].

The third crawl was executed in August 2003 and targeted models from known 3D

model repositories (e.g., 3dcafe.com and avalon.viewpoint.com). The crawl ran for ap-

proximately 5 hours and resulted in 1,908 3D models in a variety of formats, downloaded

from 16 different web domains.

These three crawls provided 44,235 model files. We ignored 3,763 of the models

found in the second crawl because they had URLs in common with ones found in the

first crawl. Another 6,863 models were thrown out because they contained no geometry

or could not be parsed by our conversion software [97]. We culled 15,035 more models

because their shapes were exact-duplicates or near-duplicates of some other model in

the database. For example, we found multiple copies of the same model at different

URLs (e.g., 483 spheres), multiple levels of detail for the same object, and different

colors/textures for models with the same geometry. Finally, 11,904 models were elim-

inated manually because they came from application domains outside the scope of our

benchmark. Specifically, we kept only models of “every-day objects,” and threw out

molecular structures, CAD parts, data visualizations, and abstract geometric shapes. The

remaining 3D models form the database for our shape benchmark. In all, there are 6,670

unique models acquired from 661 distinct Web domains.

All of the remaining models were converted to the Object File Format (.off), a simple-

to-parse polygonal format designed by the University of Minnesota Geometry Center [124].

During the conversion process, all color, texture, and scene graph information was elim-

inated, leaving a single indexed face set comprising a list of vertices (x,y,z) and a list of

105

Chapter 9. Princeton Shape Benchmark

polygons (v1, v2,...). We chose to make only these simple files available in the first ver-

sion of the benchmark to focus matching experiments on geometric surface information

only.

9.4 Classification

The PSB benchmark splits the 3D model database into training and test sets and partitions

both test sets into classes (e.g., telephones, dogs, etc.) that can be used as labels in

shape matching, retrieval, and classification experiments. In this section, we first explain

how the models are partitioned into classes. Then, we discuss how training and test

sets were formed. Finally, we describe the mechanisms provided for creating alternative

classifications.

9.4.1 Base Classification

We manually partitioned the models of the benchmark database into a fine-grained set of

classes. During this process, our goal was to create clusters of objects primarily based

on semantic and functional concepts (e.g., furniture and table) and secondarily based

on shape attributes (e.g., round tables). We use the hierarchical nature of this grouping

strategy to form classifications at multiple granularities.

The steps used to produce our base classification proceeded as follows. First, we

rendered thumbnail images for all 6,670 3D models and stored them in a single direc-

tory of a file system. Then, two students used Windows Explorer to create directories

representing object classes and to move the thumbnail image files into the directories

to indicate membership in the class. This process was executed iteratively until each

class represented an atomic concept (e.g., a noun in the dictionary) and could not be

partitioned further. Then, where appropriate, a few classes were further partitioned based

on geometric attributes (e.g., “humans with arms out” versus “humans with arms down”).

No textual information besides an integer model ID was available to the students (e.g., file

names were hidden). So, we believe the students were not biased by auxiliary information

during the formation of classes. The result of this process was a set of 1,271 classes

partitioning the 6,670 models.

106

Chapter 9. Princeton Shape Benchmark

Many of the classes contained too few models to be included in meaningful experi-

ments. For example, there were only two drill presses and three fire hydrants. So, we

manually selected 161 classes, each containing at least four models, to be included in

the first version of the benchmark (the other classes will be included in later versions).

We also eliminated models from the largest classes (e.g., fighter jets and humans) so that

every class contains at most 100 members (∼6% of the classified models). The net result

is our base classification, a set of 161 classes containing a total of 1,814 models.

9.4.2 Training and Test Sets

We then partitioned the models of the base classification into training and test sets. Our

goal was to split the models as evenly as possible, producing two sets with similar types

of classes, yet without splitting small classes, and without biasing either set with a large

number of models of the same type. To meet these goals, we applied the following steps.

First, all classes with 20 or more models were split equally between the training and test

sets (models downloaded from the same domain were evenly distributed). Then, smaller

classes were alternately placed in the training and test sets in a manner that ensured that

both had a balanced number of classes for every object type (plants, animals, vehicles,

etc.). Finally, we manually swapped a few small classes so that the training and test sets

have an equal number of models. The final result is two sets of classified 3D models,

one with 907 models partitioned into 90 classes to be used for training the parameters of

shape matching algorithms, and the other with a different 907 models partitioned into 92

classes to be used for comparison with other algorithms. Detailed lists of the classes in

both sets appear in Table 9.3.

107

Chapter 9. Princeton Shape Benchmark

Training Test

aircraft/airplane/F117 4 aircraft/airplane/biplane 14

aircraft/airplane/biplane 14 aircraft/airplane/commercial 11

aircraft/airplane/commercial 10 aircraft/airplane/fighter jet 50

aircraft/airplane/fighter jet 50 aircraft/airplane/glider 19

aircraft/airplane/multi fuselage 7 aircraft/airplane/stealth bomber 5

aircraft/balloon vehicle/dirigible 7 aircraft/balloon vehicle/hot air balloon 9

aircraft/helicopter 17 aircraft/helicopter 18

aircraft/spaceship/enterprise like 11 aircraft/spaceship/enterprise like 11

aircraft/spaceship/space shuttle 6 aircraft/spaceship/flying saucer 13

aircraft/spaceship/x wing 5 aircraft/spaceship/satellite 7

animal/arthropod/insect/bee 4 aircraft/spaceship/tie fighter 5

animal/arthropod/spider 11 animal/arthropod/insect/ant 5

animal/biped/human 50 animal/arthropod/insect/butterfly 7

animal/biped/human/arms out 21 animal/biped/human 50

animal/biped/trex 6 animal/biped/human/arms out 20

animal/flying creature/bird/duck 5 animal/biped/human/walking 8

animal/quadruped/apatosaurus 4 animal/flying creature/bird/flying 14

animal/quadruped/feline 6 animal/flying creature/bird/standing 7

animal/quadruped/pig 4 animal/quadruped/dog 7

animal/underwater creature/dolphin 5 animal/quadruped/horse 6

animal/underwater creature/shark 7 animal/quadruped/rabbit 4

blade/butcher knife 4 animal/snake 4

blade/sword 15 animal/underwater creature/fish 17

body part/brain 7 animal/underwater creature/sea turtle 6

body part/face 17 blade/axe 4

body part/head 16 blade/knife 7

body part/skeleton 5 blade/sword 16

body part/torso 4 body part/face 16

bridge 10 body part/hand 17

building/castle 7 body part/head 16

building/dome church 13 body part/skull 6

building/lighthouse 5 book 4

building/roman building 12 building/barn 5

building/tent/multiple peak tent 5 building/church 4

building/two story home 11 building/gazebo 5

chess piece 17 building/one story home 14

chest 7 building/skyscraper 5

city 10 building/tent/one peak tent 4

computer/laptop 4 building/two story home 10

Continued on next page

108

Chapter 9. Princeton Shape Benchmark

Table 9.3 – continued from previous page

Training Test

display device/tv 12 chess set 9

door/double doors 10 city 10

fantasy animal/dragon 6 computer/desktop 11

furniture/bed 8 display device/computer monitor 13

furniture/desk/desk with hutch 7 door 18

furniture/seat/chair/dining 11 eyeglasses 7

furniture/seat/chair/stool 7 fireplace 6

furniture/seat/couch 15 furniture/cabinet 9

furniture/shelves 13 furniture/desk/school 4

furniture/table/rectangular 26 furniture/seat/bench 11

furniture/table/round 12 furniture/seat/chair/dining 11

furniture/table and chairs 5 furniture/seat/chair/desk 15

gun/handgun 10 furniture/shelves 13

gun/rifle 19 furniture/table/rectangular 25

hat/helmet 10 furniture/table/round/single leg 6

ice cream 12 geographic map 12

lamp/desk 14 gun/handgun 10

liquid container/bottle 12 hat 6

liquid container/mug 7 hourglass 6

liquid container/tank 5 ladder 4

liquid container/vase 11 lamp/streetlight 8

microchip 7 liquid container/glass with stem 9

microscope 5 liquid container/pail 4

musical instrument/guitar/acoustic 4 liquid container/vase 11

musical instrument/piano 6 mailbox 7

phone handle 4 musical instrument/guitar/electric 13

plant/flower with stem 15 newtonian toy 4

plant/potted plant 25 plant/bush 9

plant/tree 17 plant/flowers 4

plant/tree/barren 11 plant/potted plant 26

plant/tree/palm 10 plant/tree/barren 11

sea vessel/sailboat 5 plant/tree/conical 10

sea vessel/sailboat/sailboat with oars 4 satellite dish 4

sea vessel/ship 10 sea vessel/sailboat/large sail boat 6

shoe 8 sea vessel/ship 11

sign/street sign 12 sea vessel/submarine 9

skateboard 5 sign/billboard 4

snowman 6 sink 4

Continued on next page

109

Chapter 9. Princeton Shape Benchmark

Table 9.3 – continued from previous page

Training Test

swingset 4 slot machine 4

tool/screwdriver 5 staircase 7

tool/wrench 4 tool/hammer 4

vehicle/car/antique 5 tool/shovel 6

vehicle/car/sedan 10 umbrella 6

vehicle/car/sports 19 vehicle/car/race 14

vehicle/cycle/bicycle 7 vehicle/car/sedan 10

vehicle/military tank 16 vehicle/covered wagon 5

vehicle/pickup truck 8 vehicle/cycle/motorcycle 6

vehicle/suv 4 vehicle/monster truck 5

vehicle/train 7 vehicle/semi 7

watch 5 vehicle/suv/jeep 5

wheel/tire 4 vehicle/train/train car 5

wheel 4

wheel/gear 9

Total 907 Total 907

Overall Total = 1,814

Table 9.3: The PSB base classification.

9.4.3 Alternative Classifications

There are many possible classifications for a given set of 3D models. For instance, one

person might group models based primarily on function (e.g., like our base classification),

while another might group them according to how the objects are constructed (e.g., man-

made versus natural), where they are used (e.g., office versus home versus outdoors), or

who uses them (e.g., adults versus children). We believe that the results of shape retrieval

experiments for multiple classifications are interesting, as they provide information about

the circumstances in which each shape matching algorithm performs well/poorly. The

cumulative results of experiments with multiple classifications can provide a more com-

plete picture of the differences between competing shape matching algorithms than does

any single classification alone.

110

Chapter 9. Princeton Shape Benchmark

To support multiple classifications, the benchmark includes a simple language in which

researchers can define new classifications. Briefly, an ASCII file is used to specify a

hierarchy of class names and to indicate which models belong to each class. We have

used this language to create three alternatives to the base classification, each representing

a different granularity of grouping. For instance, a coarse classification merges all types

of tables into a single class, a coarser classification merges all furniture into one class, and

the coarsest partitions objects based only whether they are man-made or appear naturally

in the real world. We use these alternative classifications to compare shape matching

algorithms in Section 9.7.

In the future, we expect that other researchers will use the language to define new

classifications that we did not anticipate, thereby adding to the suite of experiments that

can be used to compare shape matching algorithms.

9.5 Annotation

The benchmark includes several types of auxiliary information for each model in the

database. For instance, the following meta-data is provided to help identify the source

and object type for each model:

• Model URL: the Web address where the model was found on the Web. The last

part of the URL provides the model’s file name, which may be useful for semantic

labeling. More importantly, the URL can be used to determine the owner of the

model for assigning credit and attribution.

• Referring URL: the address of the Web page containing a link to the model. The

textual anchor and context on this page may be useful for extracting information

about the model (if the Web page still exists).

• Thumbnail image: an image of the model rendered with colors and textures as

seen from a plausible viewpoint. This view of the model with all its surface

attributes is useful for seeing what the model looked like in its original form.

In addition, the benchmark lists several geometric attributes for each 3D model (e.g.,

number of polygons, average dihedral angle, averaged depth complexity over all views,

etc.), which are useful for identifying interesting subsets of the database. While these

111

Chapter 9. Princeton Shape Benchmark

attributes could be derived from the models, and thus are somewhat redundant, they

provide a standardized set of values that can be used to avoid the risk that differences

in implementations can cause differences in matching results. For instance, the following

attributes provide useful data for normalizing 3D models for differences in translation,

scale, and orientation:

• Center of mass: the average (x,y,z) coordinates for all points on the surfaces of

all polygons. These values can be used to normalize models for translations.

• Scale: the average distance from all points on the surfaces of all polygons to the

center of mass. This value can be used to normalize models for isotropic scales.

• Principal axes: the eigenvectors (and associated eigenvalues) of the covariance

matrix obtained by integrating the quadratic polynomials xi · x j, with xi ∈ {x,y,z},

over all points on the surfaces of all polygons. These axes can be used to normalize

models for rotations.

9.6 Evaluation

The benchmark includes several tools for evaluating and comparing how well shape

matching algorithms work. These tools assume that every algorithm being evaluated can

compute the “distance” between any pair of 3D models, producing positive values that are

small if the models are similar and larger for pairs with greater shape differences. So, for

a given shape matching algorithm and database of 3D models, we can compute a distance

matrix, where element (i, j) represents the computed distance between models i and j.

Similarly, for any given model Q, we can rank the others from best to worst according to

their computed distances from Q. This ranked list corresponds to the retrieval result that

would be returned if Q were provided as a query to a shape-based search engine.

Given a classification and a distance matrix computed with any shape matching algo-

rithm, a suite of PSB benchmark tools produces statistics and visualizations that facilitate

evaluation of the match results (i.e., how many of the top ranked models are from the

same class as the query). We include detailed descriptions so that the reader can get a

feel for the tools available in the benchmark and can understand the results presented in

Section 9.7.

112

Chapter 9. Princeton Shape Benchmark

• Best matches: a web page for each model displaying images of its best matches in

rank order. The associated rank and distance value appears below each image, and

images of models in the query model’s class (hits) are highlighted with a thickened

frame. This simple visualization provides a qualitative evaluation tool emulating

the output of many 3D model search engines (e.g., [19, 29, 36, 71, 102, 120, 130,

133, 142]).

• Precision-recall plot: a plot describing the relationship between precision and

recall in a ranked list of matches. For each query model in classC and any number

K of top matches, “recall” (the horizontal axis) represents the ratio of models in

class C returned within the top K matches, while “precision” (the vertical axis)

indicates the ratio of the top K matches that are members of class C. A perfect

retrieval result produces a horizontal line across the top of the plot (at precision =

1.0), indicating that all the models within the query object’s class are returned as

the top ranked matches. Otherwise, curves that appear shifted up represent superior

retrieval results (see Figure 9.2).

• Distance image: an image of the distance matrix where the lightness of each

pixel (i, j) is proportional to the magnitude of the distance between models i and

j [98]. Models are grouped by class along each axis, and lines are added to separate

classes, which makes it easy to evaluate patterns in the match results qualitatively

– i.e., the optimal result is a set of darkest, class-sized blocks of pixels along the

diagonal indicating that every model matches the models within its class better than

ones in other classes. Otherwise, the reasons for poor match results can often be

seen in the image – e.g., off-diagonal blocks of dark pixels indicate that two classes

match each other well.

• Tier image: an image visualizing nearest neighbor, first tier, and second tier match-

es [98]. Specifically, for each row representing a query with model j in a class with

|C| members, pixel (i, j) is: (a) black if model i is model j or its nearest neighbor,

(b) red if model i is among the |C|−1 top matches (the first tier), and blue if model i

is among the 2∗(|C|−1) top matches (the second tier). As with the distance image,

models are grouped by class along each axis, and lines are added to separate classes.

This image is often more useful than the distance image because the best matches

are clearly shown for every model, regardless of the magnitude of their distance

values. The optimal result is a set of black/red, class-sized blocks of pixels along

113

Chapter 9. Princeton Shape Benchmark

the diagonal indicating that every model matches the models within its class better

than ones in other classes. Otherwise, more colored pixels in the class-sized blocks

along the diagonal represents a better result (see Figure 9.1).

Figure 9.1: Tier image visualizing nearest neighbor (black), first tier (red), and second

tier (blue) computed by matching every model (rows) with every other model (columns)

in the base classification of the test set using the LFD algorithm – separating lines and

labels indicate classes. Note that the full image is 907x907 “pixels,” and only a small

portion is shown.

In addition to these qualitative visualizations, the benchmark includes tools for com-

puting quantitative statistics for evaluation of match results. Usually, the statistics are

summarized by averaging over all query models (micro-average), with the query model

removed from the matching results. However, our tools also support output of separate

114

Chapter 9. Princeton Shape Benchmark

statistics for each query model, averages for each class, an average of the averages for

each class (macro-average), and averages over any user-supplied list of query models.1

As will be shown in Section 9.7.4, this last feature is particularly useful for studying the

quality of matches for models having specific properties. Specifically, our tools compute

Nearest Neighbor, First Tier, Second Tier, E-Measure, and Discounted Cumulative Gain,

which are described in Section 4.1.3.

The Discounted Cumulative Gain [78] metric incorporates the entire query result list

in an intuitive manner, so we typically use it to summarize results when comparing

algorithms. More specifically, we usually look at the “normalized DCG,” which scales

the DCG values down by the average over all algorithms tested and shifts the average to

zero:

NormalizedDCGA =
DCGA

DCG−1

where DCGA is the DCG value computed for algorithm A, and DCG is the average

DCG value for all algorithms being compared in the same experiment. Positive/negative

normalized DCG scores represent above/below average performance, and higher numbers

are better (see the rightmost column of Table 9.4).

9.7 Results

In order to investigate the utility of the proposed benchmark, we used it to compare

fourteen shape matching algorithms recently described in the literature. While the results

of these experiments are interesting in their own right, the focus of our investigation is

whether the database, classifications, annotations, and evaluation tools provided by the

benchmark are useful for understanding the differences between the algorithms. Our

hypothesis is that we might learn something about the algorithms that would have been

difficult to discover without the benchmark tools.

1For precision-recall plots, the precision for each model (micro) or class (macro) is averaged using

linear interpolation over the recall range [1/|C|,1], if there areC models in a class.

115

Chapter 9. Princeton Shape Benchmark

9.7.1 Shape Descriptors

The fourteen shape matching algorithms are all similar in that they proceed in three steps:

the first step normalizes models for differences in scale and possibly translation and

rotation; the second step generates a shape descriptor for each model; and the third step

computes the distance between every pair of shape descriptors, using their L2 difference

unless otherwise noted. The differences between the algorithms lie mainly in the details

of their shape descriptors:

• D2 Shape Distribution (D2): a histogram of distances between pairs of points on

the surface [98].

• Extended Gaussian Image (EGI): a spherical function giving the distribution of

surface normals [52].

• Complex Extended Gaussian Image (CEGI): a complex-valued spherical func-

tion giving the distribution of normals and associated normal distances of points on

the surface [64].

• Shape Histogram (SHELLS): a histogram of distances from the center of mass

to points on the surface [3]. This is similar to the Shells Descriptor used in other

chapters.

• Shape Histogram (SECTORS): a spherical function giving the distribution of

model area as a function of spherical angle [3].

• Shape Histogram (SECSHEL): a collection of spherical functions that give the

distribution of model area as a function of radius and spherical angle [3].

• Voxel: a binary rasterization of the model boundary into a voxel grid.

• Spherical Extent Function (EXT): a spherical function giving the maximal dis-

tance from center of mass as a function of spherical angle [109].

• Radialized Spherical Extent Function (REXT): a collection of spherical func-

tions giving the maximal distance from center of mass as a function of spherical

angle and radius [130].

• Gaussian Euclidean Distance Transform (GEDT): a 3D function whose value

at each point is given by composition of a Gaussian with the Euclidean Distance

Transform of the surface [69].

116

Chapter 9. Princeton Shape Benchmark

• Harmonic Shape Descriptor (HSD): a rotation invariant representation of the

GEDT obtained by computing the restriction of the function to concentric spheres

and storing the norm of each (harmonic) frequency [69].

• Fourier Shape Descriptor (FSD) [69]: similar to the HSD, but the amplitude of

every spherical harmonic coefficient is stored – it is similar to the Harmonic Shape

Contexts of [34].

• Light Field Descriptor (LFD): a representation of a model as a collection of

images rendered from uniformly sampled positions on a view sphere. The distance

between two descriptors is defined as the minimum L1-difference, taken over all

rotations and all pairings of vertices on two dodecahedra. [19]. We use the original

implementation provided by Chen et al. without modification.

• Depth Buffer Descriptor DSR740 (DBD): a collection of depth buffer images

captured from orthogonal parallel projections. Images are stored as Fourier co-

efficients of the lowest frequencies, and differences between Fourier coefficients

provide a measure of object dissimilarity [48]. We use Dejan Vranic’s implemen-

tation of this method [129] without modification.

All computations were performed on a Windows PC with a Pentium 4 CPU running

at 2.00 GHz and 512 MB of memory, except the LFD and FSD computations. The LFD

was executed on a Windows PC with Pentium 4 CPU running at 2.4 GHz with 256 MB

RAM and an NVIDIA GeForce 2 MX graphics card, and the FSD was computed on a

x86 64 Linux server running at 2.2 GHz with 16 GB RAM.2

2 Every model was normalized for size by isotropically rescaling it so that the average distance from

points on its surface to the center of mass is 0.5. Then, for all descriptors except D2 and EGI, the model was

normalized for translation by moving its center of mass to the origin. Next, for all descriptors except D2,

SHELLS, HSD, and LFD, the model was normalized for rotation by aligning its principal axes to the x-, y-,

and z-axes. The FSD only required alignment of the x-axis. The ambiguity between positive and negative

axes was resolved by choosing the direction of the axes so that the area of the model on the positive side of

the x-, y-, and z-axes was greater than the area on the negative side [28].

Every spherical descriptor (EGI, CEGI, Sectors, etc.) was computed on a 64 × 64 spherical grid and

then represented by its harmonic coefficients up to order 16. Similarly, every 3D descriptor (e.g., Voxel

and GEDT) was computed on a 64 × 64 × 64 axial grid, translated so that the origin is at the point

(32,32,32), scaled by a factor of 32, and then represented by thirty-two spherical descriptors representing

the intersection of the voxel grid with concentric spherical shells. Values within each shell were scaled by

the square-root of the corresponding area and represented by their spherical harmonic coefficients up to

order 16. Histograms of distances (D2 and Shells) were stored with 64 bins representing distances in the

range [0,2]. All descriptors, except LFD and DBD, were scaled to have L2-norm equal to 1.

The LFD comprises 100 images encoded with 35, 8-bit, coefficients to describe Zernike moments and

10, 8-bit, coefficients to represent Fourier descriptors.

117

Chapter 9. Princeton Shape Benchmark

9.7.2 Base Classification Results

In our first experiment, we used each of the fourteen shape matching algorithms to

compute the distances between all pairs of models in the test set and analyzed them

with the benchmark evaluation tools to quantify the matching performance with respect

to the base classification (the training set was not used for training any of the algorithms).

Figure 9.2 shows a precision-recall plot showing the micro-averaged retrieval results

achieved for this experiment, and Table 9.4 shows micro-averaged storage requirements,

processing times, and retrieval statistics for each algorithm. We found that the micro

and macro-average gave consistent results, and we decided to present micro-averaged

statistics.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

DBD
LFD
FSD

REXT
HSD

GEDT
EXT

SECSHEL
VOXEL

SECTORS
CEGI

EGI
D2

SHELLS

Figure 9.2: Precision-recall curves computed for fourteen shape descriptors for tests with

the PSB base classification.

The Depth Buffer Descriptor encodes six images with 8-bit gray values encoding depth from the viewing

plane. The Fourier transform is applied to the images and the k low-frequency values are recorded as a

feature vector (k=73 by default).

118

Chapter 9. Princeton Shape Benchmark

Storage Timing Discrimination

Shape Size Generate Compare Nearest First Second E- Normalized

Descriptor (bytes) Time (s) Time (s) Neighbor Tier Tier Measure DCG DCG

DBD 1,752 0.55 0.000018 66.5% 40.3% 51.2% 29.5% 66.3% 21.3%

LFD 4,700 3.25* 0.001300* 65.7% 38.0% 48.7% 28.0% 64.3% 17.7%

FSD 32,768 1.82* 0.000450* 63.1% 35.6% 45.5% 26.7% 62.6% 14.6%

REXT 17,416 2.22 0.000229 60.2% 32.7% 43.2% 25.4% 60.1% 10.0%

HSD 2,184 1.69 0.000027 55.6% 30.9% 41.1% 24.1% 58.4% 6.9%

GEDT 32,776 1.69 0.000450 60.3% 31.3% 40.7% 23.7% 58.4% 6.9%

EXT 552 1.17 0.000008 54.9% 28.6% 37.9% 21.9% 56.2% 2.8%

SECSHEL 32,776 1.38 0.000451 54.6% 26.7% 35.0% 20.9% 54.5% -0.3%

VOXEL 32,776 1.34 0.000450 54.0% 26.7% 35.3% 20.7% 54.3% -0.6%

SECTORS 552 0.90 0.000014 50.4% 24.9% 33.4% 19.8% 52.9% -3.2%

CEGI 2,056 0.37 0.000027 42.0% 21.1% 28.7% 17.0% 47.9% -12.4%

EGI 1,032 0.41 0.000014 37.7% 19.7% 27.7% 16.5% 47.2% -13.6%

D2 136 1.12 0.000002 31.1% 15.8% 23.5% 13.9% 43.4% -20.6%

SHELLS 136 0.66 0.000002 22.7% 11.1% 17.3% 10.2% 38.6% -29.4%

Table 9.4: Comparing fourteen shape descriptors using the PSB base classification.

(*Times were approximated by normalizing for processor speed.)

Surprisingly, we find that the top two shape descriptors (DBD and LFD) in this ex-

periment were image-based. While the DBD uses depth information, the LFD uses only

2D projections to achieve high retrieval performance. The DBD not only has the best

retrieval performance, it is among the fastest to compute and use for comparisons. Among

the other descriptors, FSD, REXT, HSD, GEDT, and EXT provide the best matching

performance. While FSD provides slightly better discrimination than the others, HSD

and EXT are smaller and quicker to compare, suggesting they provide more “bang for the

buck.” The least discriminating descriptors are D2 and SHELLS. However, they are also

the smallest and fastest to compare, which may be useful in certain applications.

Overall, we conclude that there is a quality-cost trade-off in the choice between shape

descriptors, and no one descriptor beats the others in all respects.

9.7.3 Multi-Classification Results

In our second experiment, we investigated the impact of alternative classifications on the

analysis of retrieval results. Specifically, we created three new classifications representing

increasingly coarser groupings for the 907 models in the benchmark test set, and then

we tested how these different classifications affect the evaluation of the fourteen shape

matching algorithms.

The base classification provides the grouping with finest granularity in this experiment.

It contains the 92 classes listed in Table 9.3. Most classes contain all the objects with a

119

Chapter 9. Princeton Shape Benchmark

particular function (e.g., microscopes). Yet, there are also cases where objects with the

same function are partitioned into different classes based on their forms (e.g., round tables

versus rectangular tables). In the alternative classifications, we recursively merge classes

to form coarser granularity groups. Specifically, the “Coarse” classification merges ob-

jects with similar overall function to form 44 classes, the “Coarser” classification merges

groups further to form the 6 classes listed in Table 9.1, plus a miscellaneous class not

included in averaged retrieval results. Finally, the “Coarsest” classification merges those

classes until just two classes remain: one with man-made objects and the other with

naturally occurring objects.

Table 9.5 lists the normalized DCG scores achieved by the fourteen shape match-

ing algorithms (rows) when evaluated with respect to the four different classifications

(columns). From this table, we make two observations. First, as you might expect,

the differences between shape matching algorithms are diminished when evaluated with

coarser granularity classifications - i.e., the normalized DCG scores, which measure

differences from the average, become less in columns further to the right. Second,

we observe that the relative rankings of algorithms can vary significantly for different

classifications. In particular, the EGI algorithm performs twelfth best with respect to the

base classification (13.6% below the average). However, it performs best of all for the

coarsest classification (3.0% above the average). Apparently, it is very good at deter-

mining the difference between man-made and natural objects, but not that good at telling

apart the differences between specific classes. We conjecture that man-made objects have

a narrower distribution of normals, making detection easy with EGIs. Similar behavior is

shown by CEGI, which is a closely related algorithm.

These results provide a simple example of the value of using multiple classifications

when evaluating shape matching algorithms. The information available in multiple clas-

sifications is more than in any one classification alone. We expect that many alternative

semantic classifications will be made for these models in the future, exposing further

differences between algorithms.

9.7.4 Query List Results

In our third experiment, we studied the properties of the fourteen shape matching al-

gorithms further by looking at retrieval results with respect to the base classification

120

Chapter 9. Princeton Shape Benchmark

Shape Base Coarse Coarser Coarsest

Descriptor (92) (44) (6) (2)

DBD 21.3% 11.4% 2.8% 0.3%

LFD 17.7% 8.8% 3.0% 0.3%

FSD 14.6% 7.0% 1.2% 0.0%

REXT 10.0% 5.3% 1.7% 0.2%

HSD 6.9% 4.4% 0.5% -0.6%

GEDT 6.9% 3.4% 0.8% -0.4%

EXT 2.8% 0.6% 0.3% -0.6%

SECSHEL -0.3% -1.7% -0.3% -0.4%

VOXEL -0.6% -1.3% -0.4% -0.4%

SECTORS -3.2% -2.9% -1.1% -0.7%

CEGI -12.4% -2.6% -0.2% 2.6%

EGI -13.6% -3.5% -0.1% 3.0%

D2 -20.6% -11.7% -3.6% -1.6%

SHELLS -29.4% -17.1% -4.9% -1.5%

Table 9.5: Evaluating fourteen shape descriptors using classifications of different

granularity. The columns represent different classifications (with the number of classes

listed in parenthesis), and the rows represent different shape descriptors. The numbers

show normalized DCG scores averaged over all models.

averaged over sets of models with specific properties. Some of the properties were

semantic (e.g., is a piece of furniture), others were procedural (e.g., aligned well with

other members of its class), and the rest were geometric (e.g., roughly linear in shape).

Our hope is that we can infer the conditions under which each shape matching algorithm

performs best by comparing the retrieval results of this experiment.

Table 9.6 lists normalized DCG scores achieved by the fourteen shape matching algo-

rithms (rows) with respect to the base classification when averaged over all models with

specific properties (columns). The first column of numbers (“All Models”) shows the

average for all models, as a reference for comparison. The next six columns (“Animal”-

“Vehicle”) correspond to averages over the sets of models of the same object type. The

next column (“Rotation Aligned”) shows the average over all models for which our

normalization steps were successfully able to align the model consistently with other

members of is class. The following column (“Stick Shape”) lists averages over the 200

models whose shape is most stick-like (as determined by the ratio of the largest and

second largest eigenvalues of the covariance matrix of second order moments). Finally,

the right-most column (“Complex Shape”) shows averages over the 200 models with

the most “complex shapes” (as estimated by the average pixel depth complexity when

the model is rendered with parallel projection from viewpoints at the vertices of an

121

Chapter 9. Princeton Shape Benchmark

Shape All Furni- House- Tree & Rotation Stick Complex

Descriptor Models Animal Building ture hold Plant Vehicle Aligned Shape Shape

DBD 21.3% 22.5% 21.3% 19.1% 21.2% 31.5% 20.5% 20.9% 19.3% 20.0%

LFD 17.7% 8.6% 38.2% 31.8% 22.0% 19.1% 11.7% 14.1% 5.8% 23.2%

FSD 14.5% 12.5% 4.4% 14.2% 12.7% 23.4% 17.3% 11.5% 12.0% 20.4%

REXT 10.0% 5.8% 2.1% 8.2% 10.5% 3.1% 12.5% 9.3% 7.7% 10.8%

HSD 6.9% 7.4% -10.0% 7.2% 10.1% 14.2% 3.6% 4.8% 2.8% 5.4%

GEDT 6.9% 7.0% 1.2% 4.5% 7.9% 1.4% 7.1% 10.1% 6.2% 9.3%

EXT 2.8% 3.8% 9.3% 1.9% 5.2% -11.1% 4.5% 2.4% 4.4% 2.3%

SECSHEL -0.3% -1.7% -0.5% -7.8% 3.8% -15.2% 4.0% 2.6% 1.9% -1.2%

VOXEL -0.6% 1.1% -1.2% -4.5% 1.1% -7.3% 2.2% 2.2% 3.3% -3.2%

SECTORS -3.2% -4.8% 0.1% -8.9% 0.9% -25.2% 0.2% -0.7% 2.3% -5.1%

CEGI -12.4 -6.6% -24.8% -1.9% -21.8% 6.3% -16.1% -11.0% -9.9% -15.8%

EGI -13.6% -12.1% -13.8% -2.8% -23.3% 6.8% -15.4% -13.4% -11.7% -12.3%

D2 -20.6% -18.0% -4.2% -27.2% -18.2% -25.3% -21.7% -21.9% -13.9% -20.2%

SHELLS -29.4% -25.4% -22.0% -34.1% -32.3% -21.5% -30.6% -31.0% -30.3% -33.6%

Table 9.6: Evaluating retrieval performance for fourteen shape descriptors on query lists

with specific object types and geometric properties using the PSB base classification.

Numbers represent normalized DCG value averaged over models with the property listed

in the column heading.

icosahedron). These latter properties are derived directly from the annotations provided

with the benchmark.

With these results, we confirm that shape matching algorithms do not perform equally

well on all object types. Although the ranking of algorithms is fairly consistent, there is

sometimes a big difference in the relative performance of algorithms when focusing on

models with specific properties. For instance, we note that SECTORS does better than

EGI on household objects (0.9% above average versus 23.3% below average), while the

opposite is true for trees and plants (25.2% below average versus 6.8% above average).

Also, we see that the top ranked algorithms (DBD, LFD, FSD, REXT, and HSD) do worse

on stick-shaped objects relative to other algorithms (the normalized DCG scores averaged

for stick shaped objects are worse than the average over all models by 2.0%, 11.9%, 2.5%,

and 2.3%, respectively), probably because the principal axes of sticks align well and/or

the descriptors eliminate high-frequency information. Finally, we note that queries with

“Rotation Aligned” models produce significantly different retrieval results, indicating that

misalignment of models during normalization significantly affects the results achieved

with some algorithms (GEDT, SECSHEL, VOXEL, and SECTORS).

122

Chapter 9. Princeton Shape Benchmark

9.7.5 Comparison with Other Databases

In our final experiment, we compared results of the Princeton Shape Benchmark database

versus those achieved with other databases previously described in the literature [36, 98,

130, 139]. Our goal in this experiment was to validate whether our benchmark produces

results consistent with those previously reported.

Table 9.7 shows the normalized DCG scores computed for twelve shape matching

algorithms on six different databases. Note that the FSD and DBD descriptors were not

available when analyzing these databases. We see that the results computed with the

Osada [98] and MPEG-7 [139] databases are less consistent than the others. We conjec-

ture that the reason is that they are relatively small (133 and 227 models, respectively)

and have less variation of object types. The categorized models of the Utrecht [122]

database are entirely airplanes, which probably explains why the descriptors clustered to

a few values. Meanwhile, the relative performance of the algorithms on the other three

databases appear fairly consistent. We expect that the minor differences between the

databases can be explained by the differences in their object types.

Shape Osada MPEG-7 CCCC Utrecht VP PSB

Descriptor [98] [139] [130] [122] [36] [ours]

LFD 14.9% 5.8% 20.3% 5.4% 17.7% 21.3%

REXT 8.6% 3.6% 11.3% 2.4% 8.5% 13.3%

HSD 12.1% 5.5% 12.5% 2.3% 10.6% 10.2%

GEDT 5.2% 2.5% 5.5% 4.3% 6.3% 10.1%

EXT 2.9% 0.4% 5.5% 2.4% 5.6% 6.0%

SECSHEL -0.7% -0.2% -0.8% 2.2% 0.7% 2.8%

VOXEL 2.2% 1.3% -0.5% 2.5% 0.4% 2.4%

SECTORS -0.8% -2.3% -1.9% 2.3% -1.6% -0.3%

CEGI -13.9% -1.8% -4.7% -6.9% -7.6% -9.6%

EGI -10.7% -1.0% -7.3% -7.0% -9.5% -10.9%

D2 -1.1% -4.3% -16.6% -3.1% -12.8% -18.2%

SHELLS -18.7% -9.6% -23.2% -6.8% -18.2% -27.3%

Table 9.7: Evaluating shape descriptors using different databases. Numbers represent

normalized DCG averaged over all models in each database.

123

Chapter 9. Princeton Shape Benchmark

9.8 Conclusion

In summary, this chapter describes the Princeton Shape Benchmark, a publicly avail-

able framework for comparing shape matching algorithms. The benchmark includes a

database of annotated 3D polygonal models, multiple classifications, and software tools

for evaluating the results of shape matching experiments. All data and source code is

freely available on the Web (http://shape.cs.princeton.edu/benchmark). As of December,

2007, the PSB has had 20,000 unique visitors and been downloaded over 8,500 times.

Since the original publication of the Princeton Shape Benchmark, there has been

ongoing interest in comparing 3D shape retrieval techniques. The Network of Excellence

AIM@SHAPE has organized the Shape Retrieval Contest (SHREC) [92, 93] in 2006

and 2007, which has included new shape matching techniques and several databases of

models with specialized characteristics. Contestants from many countries compared their

shape matching algorithms using standardized data sets and performance measures.

The main research contribution of this work is the methodology proposed for com-

paring shape matching algorithms. In particular, we advocate experimenting with several

different classifications and query lists targeted at exposing specific differences between

shape matching algorithms. Using this methodology, for example, we were able to

discover that EGIs are good at discriminating between man-made and natural objects,

but not that good at making detailed class distinctions. We also find that the Depth

Buffer Descriptor [48], which is computed from multiple depth buffer images of a 3D

model, is the most discriminating among the shape descriptors tested, with relatively

low storage and computational requirements. We hope that results of this type encourage

shape matching researchers to use the benchmark in future experiments, possibly creating

new classifications and query lists of their own. In time, we expect that a common set of

tests will emerge to form a de-facto standard for shape matching experiments.

124

Chapter 10

Conclusion and Future Work

Conclusion

In this dissertation, we explored techniques for retrieving 3D models from large databases.

Our main focus has been on identifying the important, distinctive regions of 3D shapes

and methods for focusing retrieval on those regions. We have been guided by the twin

goals of improving the accuracy of shape retrieval and exploring the properties of shape

distinction. There are six main contributions of this dissertation.

First, we have defined distinctive regions of 3D surfaces as those regions that provide

the best retrieval performance relative to a classified database. Unlike previous techniques

that have focused on inherent properties of a mesh (curvature or likelihood), shape dis-

tinction analyzes meshes in relation to an entire database. Shape distinction adjusts to the

classes in the database, shape descriptors used for retrieval, scale of the descriptors, and

even the retrieval metric used during analysis of the database. By visualizing distinction

scores within a database, properties that define classes become readily apparent.

Second, we developed an algorithm for multi-feature matching of 3D shapes that can

efficiently search a database for results within a few seconds. The main contribution is a

priority-driven search algorithm that focuses on the best candidates without considering

all possible combinations of matches. By focusing on the distinctive regions of shapes

in the database, search speed and retrieval performance are significantly improved. Us-

ing the framework of priority-driven search, the effects of numerous parameters were

125

Chapter 10. Conclusion and Future Work

explored including: filtering the database based on shape distinction or other properties,

the scale of shape descriptors, number of features used in matching, and a cost function

for combining feature correspondences.

Third, we developed an efficient algorithm for calculating distinction for large data-

bases undergoing additions. We compared several shape retrieval metrics and found that

metrics that weight correct results near the front of the retrieval list more heavily than later

results produce distinction scores that improve retrieval performance. We approximated

distinction by modifying the DCG retrieval metric to use a small number of nearest

neighbors that can be found with an index structure for shape descriptors and showed

that retrieval performance improved with the accuracy of the approximation.

Fourth, we predicted distinction for the query model (as compared to target models)

using a function that maps descriptor likelihood to distinction scores learned from a

training set. Compared to several common selection techniques (selecting descriptors

randomly or based directly on likelihood), using a likelihood mapping leads to better

retrieval performance. The improvement is because descriptors grouped by their likeli-

hood values have similar distinction scores, and we found that descriptors with likelihood

values between the most rare and most common provide the best retrieval performance.

Selecting a small set of descriptors with high predicted distinction not only improves

retrieval performance, but filtering query descriptors also improves retrieval time.

Fifth, we demonstrated that shape distinction is useful for graphics applications that

benefit from importance scores across the surface of a mesh. Differences within a database

can be visualized since distinction directly relates to regions that are similar within a

class and differ from shapes of other classes. Also, icons and mesh simplifications were

generated by focusing on distinctive regions. Our methodology of learning importance

scores directly from a training set can likely be applied to numerous other graphics

applications.

Sixth, we introduced the Princeton Shape Benchmark: including a classified data set,

tools for evaluating shape retrieval, and a methodology for comparing shape-matching

techniques. Using the PSB, we were able to directly compare shape-matching techniques

from the literature and show that visual-based descriptors such as the Depth Buffer De-

scriptor and Light Field Descriptor are among the best choices for many retrieval tasks.

We also showed that for specific types of queries, the relative performance of descriptors

can change dramatically, and a generally poor performing descriptor such as EGI has

126

Chapter 10. Conclusion and Future Work

the best performance on man-made versus natural objects. The PSB has become a de-

facto standard in the computer graphics shape matching community and has hopefully

improved the methodology of experiments in the field.

Future Work

There are several promising venues for future research related to shape distinction, re-

trieval from large databases, and the Princeton Shape Benchmark.

Defining Distinction

There are several strengths and weaknesses of our definition of distinction that should

be considered and addressed in future work. First, the shape descriptor (HSD) used in

our implementation is not the most descriptive possible. Experiments with the PSB have

shown that the Depth Buffer Descriptor has better retrieval performance than the HSD,

though using image-based descriptors for local matching has not been explored. How-

ever, a strength of our approach is that it is independent of a particular shape descriptor.

So, in future work, we intend to investigate more descriptive shape representations to

define mesh distinction.

Matching with Distinction

Results with the priority-driven search algorithm suggest several areas for improvement

and future work. In particular, there are three main computational bottlenecks in the

system: 1) constructing shape descriptors, 2) determining the distinction of shape de-

scriptors, and 3) generating pairwise feature correspondences. There are many simple

ways to speed up these steps, including random sampling, compression, and indexing.

For example, the time required to establish the best pairwise correspondences between

features could be improved with standard multi-dimensional indexing schemes. We have

focused our efforts on utilizing distinction with the priority-driven search algorithm, and

thus we have not yet investigated these options in detail.

Another interesting option is to compute the cost of feature correspondences in a

weighted manner that more fully takes advantage of distinction scores. Currently, we

127

Chapter 10. Conclusion and Future Work

filter the set of descriptors to the most distinctive k that meet a separation threshold and

use those during matching. The selected k descriptors have distinction scores that reflect

their relative importance from a retrieval perspective and could be used as weights when

calculating the cost of feature correspondences. The challenge of this approach is how

to normalize the distinction weights since the weights are on the target models instead

of on the query, so normalization would be across the entire database. Also, while more

emphasis should be placed on correct matches in highly distinctive regions, our current

priority-driven search algorithm focuses on low cost correspondences, which would be

areas of low distinction.

Updating Distinction

The retrieval measure (DCG) used in most of our experiments can be slow to compute.

While we have shown one method for improving the scalability by approximating DCG

with a small set of neighbors and a cover tree index structure, this may only be practical

for a few thousand models. Specifically, our method for handling a dynamic database

is only a first solution to the problem. In future work, we would like to improve the

scalability of our algorithm. Techniques to consider include hierarchical distinction on

the surface of a mesh, updating distinction scores for clusters of similar regions, and

further indexing techniques.

Predicting Distinction

Our prediction model for distinction can be extended in several ways. We assumed a

normal distribution as an initial mapping, which also suggests a range of alternatives.

Other distribution models may more accurately reflect the true likelihood, but all likeli-

hood mappings condense the descriptors to one dimension parameterized by likelihood.

Any likelihood model has the drawback of grouping all descriptors within a shell of

equal likelihood, even if there is a large variation of retrieval performance within each

shell. Other groupings of descriptors may better cluster those with similar distinction

scores, though increasing the dimensionality of the mapped space can adversely affect

the calculation time. The feature space of descriptors could be used directly by making

a prediction based on similar descriptors (measured by the L2 distance). Using nearby

128

Chapter 10. Conclusion and Future Work

descriptors is likely to provide a better clustering of retrieval scores, though a combination

of indexing and compression techniques would be needed to minimize the lookup time.

Applications of Distinction

While we have shown that shape distinction provides a good measure of surface impor-

tance for icon generation and mesh simplification, analyzing distinction of 2D images of

3D shapes would likely provide higher quality results. Finally, we feel that extending

our methodology of calculating an importance score from a well labeled training set can

improve numerous graphics tasks beyond retrieval such as mesh alignment and 2D image

retrieval.

Princeton Shape Benchmark

From experiences using the PSB, we suggest several areas for future research. First,

the benchmark should be expanded to support other shape analysis tasks. Annotations

for human-generated alignment transformations would facilitate evaluation of automatic

registration algorithms, and consistent segmentations for classes of objects would provide

training data for automatic techniques. Second, the results of Section 9.7.4 suggest that it

is possible to build an adaptive multi-classifier that first checks the geometric properties

of a given query model and then dynamically weights the distances computed by several

shape matching algorithms to produce more discriminating results (e.g., [15, 43]). Third,

as more and more data gets added to the benchmark, it will become possible to consider

multi-classifiers that take into account both geometric and non-geometric attributes of 3D

models (e.g., color, texture, scene graph structure, textual annotation, etc.).

Finally, while the PSB has helped standardize shape retrieval experiments, after five

years it has begun to show its age. The shape-matching community has always had

diverse interests because of the wide range of problems in the field, and a benchmark

or multiple benchmarks should reflect the needs of the community. New benchmarks

should be created with a larger number of classified meshes, expanded annotations, and

subdivisions focusing on specific shape matching tasks such as: partial versus complete

objects, manifold versus polygon-soup meshes, and domain specific meshes such as

proteins, CAD models, and architectural objects. Hopefully, lessons learned from the

PSB will provide guidance as the shape-matching field continues to mature.

129

Bibliography

[1] M. Ankerst, G. Kastenmüller, H. Kriegel, and T. Seidl. Nearest neighbor

classification in 3D protein databases. In ISMB, 1999.

[2] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl. 3D shape histograms for

similarity search and classification in spatial databases. In Proc. SSD, 1999.

[3] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and T. Seidl. Nearest neighbor

classification in 3D protein databases. In Proc. ISMB, 1999.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal

algorithm for approximate nearest neighbor searching fixed dimensions. Journal

of the ACM, 45(6):891–923, 1998.

[5] M. A. Audette, F. P. Ferrie, and T. M. Peters. An algorithmic overview of surface

registration techniques for medical imaging. Medical Image Analysis, 4(3):201–

217, 2000.

[6] H. Barrow and R. Burstall. Subgraph isomorphism, matching relational structures

and maximal cliques. Inf. Process. Lett., 4:83–84, 1976.

[7] S. Belongie, J. Malik, and J. Puzicha. Matching shapes. In ICCV, 2001.

[8] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using

shape contexts. IEEE Transations on Pattern Analysis and Machine Intelligence,

24(24):509–522, 2002.

[9] A. Berg, T. Berg, and J. Malik. Shape matching and object recognition using

low distortion correspondence. In IEEE Computer Vision and Pattern Recognition

(CVPR), 2005.

130

[10] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.

Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research,

28:235–242, 2000.

[11] P. Besl and N. McKay. A method for registration of 3D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[12] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In

23rd International Conference on Machine Learning (ICML), pages 97–104, June

2006.

[13] V. Blanz, M. Tarr, H. Buelthoff, and T. Vetter. What object attributes determine

canonical views? Perception, pages 575–599, 1999.

[14] H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-

Dunn, editor, Proc. Models for the Perception of Speech and Visual Form, pages

362–380, Cambridge, MA, November 1967. MIT Press.

[15] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranić. Using entropy impurity

for improved 3D object similarity search. In Proc. IEEE International Conference

on Multimedia and Expo (ICME’04), pages 1303–1306. IEEE, 2004.

[16] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranić. Feature-based similarity

search in 3D object databases. ACM Computing Surveys, 37(4):345–387, 2005.

[17] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranić. An experimental

effectiveness comparison of methods for 3D similarity search. International

Journal on Digital Libraries, Special issue on Multimedia Contents and

Management in Digital Libraries, 6(1):39–54, 2006.

[18] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroquı́n. Searching in metric

spaces. ACM Comput. Surv., 33(3):273–321, 2001.

[19] D.-Y. Chen, M. Ouhyoung, X.-P. Tian, and Y.-T. Shen. On visual similarity based

3D model retrieval. Computer Graphics Forum, pages 223–232, 2003.

[20] C. Chua and R. Jarvis. Point signatures: A new representation for 3D object

recognition. International Journal of Computer Vision, 25(1):63–85, 1996.

131

[21] H. Chui and A. Rangarajan. A new algorithm for non-rigid point matching. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 44–

51, 2000.

[22] CMU. Pose, Illumination, and Expression (PIE) database, 2003.

http://www.ri.cmu.edu/projects/project 418.html.

[23] J. Copas. Regression, prediction, and shrinkage. Journal of the Royal Statistical

Society. Series B (Methodological), 45(3):311–354, 1983.

[24] J. Corney, H. Rea, D. Clark, J. Pritchard, M. Breaks, and R. MacLeod. Coarse

filters for shape matching. IEEE Computer Graphics & Applications, 22(3):65–

74, May/June 2002.

[25] P. Courtney and N. Thacker. Peformance characterization in computer vision,

2003. http://peipa.essex.ac.uk/benchmark.

[26] I. L. Dryden and G. Walker. Highly resistent regression and object matching.

Biometrics, 55(3):820–825, September 1999.

[27] R. Duda, P. Hart, and D. Stork. Pattern Classification, Second Edition. John Wiley

& Sons, New York, NY, 2001.

[28] M. Elad, A. Tal, and S. Ar. Content based retrieval of VRML objects - an iterative

and interactive approach. In 6th Eurographics Workshop on Multimedia 2001,

2001.

[29] T. T. Elvins and R. Jain. Web-based volumetric data retrieval. In VRML ‘95, pages

7–12, 1995.

[30] M. Fischler and R. Bolles. Random sample consensus: a paradigm for model

fitting with application to image analysis and automated cartography. Commun.

Assoc. Comp. Mach., 24:381–395, 1981.

[31] C. Foster, E. Hayes, C. Y. Ip, D. McWherter, M. Peabody, Y. Shapirsteyn,

V. Zaychik, and W. C. Regli. National design repository project: A status report.

In Int’l Joint Confs. on Artificial Intelligence (IJCAI) AAAI/SIGMAN Workshop on

AI in Manufacturing Systems, August 2001.

[32] I. E. Frank and J. H. Friedman. A statistical view of some chemometrics regression

tools. Technometrics, 35(2):109–135, May 1993.

132

[33] S. Frintrop, A. Nüchter, H. Surmann, and J. Hertzberg. Saliency-based object

recognition in 3D data. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, Sendai, Japan, sept 2004.

[34] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik. Recognizing objects in

range data using regional point descriptors. In European Conference on Computer

Vision (ECCV), pages 224–237, May 2004.

[35] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz,

and D. Dobkin. Modeling by example. Transactions on Graphics (Proceedings of

ACM SIGGRAPH 2004), 2004.

[36] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and

D. Jacobs. A search engine for 3D models. Transactions on Graphics, 22(1):83–

105, 2003.

[37] T. Funkhouser and P. Shilane. Partial matching of 3D shapes with priority-driven

search. In Symposium of Geometry Processing, July 2006.

[38] T. A. Funkhouser, R. A. Laskowski, and J. M. Thornton. Protein function

prediction by matching volumetric models of active sites. In Automated Function

Prediction Meeting (AFP), August 2006.

[39] N. Gagvani and D. Silver. Parameter controlled volume thinning. Graphical

Models and Image Processing, 61(3):149–164, 1999.

[40] R. Gal and D. Cohen-Or. Salient geometric features for partial shape matching and

similarity. ACM Transaction on Graphics, 25(1):130–150, January 2006.

[41] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics.

In Proceedings of SIGGRAPH 1997, Computer Graphics Proceedings, Annual

Conference Series, pages 209–216, Aug. 1997.

[42] N. Gelfand, N. Mitra, L. Guibas, and H. Pottman. Robust global registration. In

Symposium on Geometry Processing, 2005.

[43] G. Giacinto and F. Roli. Dynamic classifier selection. Lecture Notes in Computer

Science, 1857, 2000.

133

[44] C. Giacovazzo, H. L. Monaco, D. Viterbo, F. Scordari, G. Gilli, G. Zanotti,

and M. Catti. Fundamentals of Crystallography. International Union of

Crystallography. Oxford University Press, 1992.

[45] Google. 3D Warehouse, 2007. http://sketchup.google.com/3dwarehouse.

[46] K. Grauman and T. Darrell. The pyramid match kernel: Discriminative

classification with sets of image features. In IEEE International Conference on

Computer Vision (ICCV), 2005.

[47] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning:

data mining, inference, and prediction. Springer-Verlag, Berlin, Germany, 2001.

[48] M. Heczko, D. Keim, D. Saupe, and D. Vranić. Methods for similarity search on

3D databases, volume 2, pages 54–63. Springer-Verlag, 2002. (In German).

[49] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for

fully automatic similarity estimation of 3D shapes. In Proceedings of SIGGRAPH

2001, Computer Graphics Proceedings, Annual Conference Series, pages 203–

212, August 2001.

[50] D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63, 1997.

[51] R. Hogg and E. Tanis. Probability and Statistical Inference. Pearson Education,

sixth edition, 2001.

[52] B. Horn. Extended Gaussian images. Proc. of the IEEE, 72(12):1671–1686,

December 1984.

[53] S. Howlett, J. Hamill, and C. O’Sullivan. An experimental approach to predicting

saliency for simplified polygonal models. In Proceedings of the 1st Symposium on

Applied Perception in Graphics and Visualization, 2004.

[54] Q.-X. Huang, S. Flory, N. Gelfand, M. Hofer, and H. Pottmann. Reassembling

fractured objects by geometric matching. Transactions on Graphics (Proceedings

of ACM SIGGRAPH 2006), 2006.

[55] C. Y. Ip, D. Lapadat, L. Sieger, and W. C. Regli. Using shape distributions to

compare solid models. In 7th ACM/SIGGRAPH Symp. on Solid Modeling and

Applications, pages 273–280, June 2002.

134

http://sketchup.google.com/3dwarehouse

[56] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani. Three dimensional

shape searching: State-of-the-art review and future trends. Computer-Aided

Design, 37(5):509–530, 2005.

[57] N. Iyer, S. Jayanti, and K. Ramani. An engineering shape benchmark for 3D

models. In Proc. ASME IDETC/CIE, 2005.

[58] N. Iyer, Y. Kalyanaraman, K. Lou, S. Jayanti, and K. Ramani. A reconfigurable 3D

engineering shape search system part I: shape representation. In ASME DETC’03,

2003.

[59] M. James. Classification algorithms. Wiley-Interscience, New York, 1985.

[60] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant

documents. In 23rd Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, 2000.

[61] S. Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani. Developing an engineering

shape benchmark for CAD models. Computer-Aided Design, 38:939–953,

September 2006.

[62] A. Johnson. Surface landmark selection and matching in natural terrain. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pages

413–420, June 2000.

[63] A. Johnson and M. Hebert. Using spin-images for efficient multiple model

recognition in cluttered 3-D scenes. IEEE PAMI, 21(5):433–449, 1999.

[64] S. Kang and K. Ikeuchi. Determining 3-D object pose using the complex extended

Gaussian image. In CVPR, pages 580–585, June 1991.

[65] M. Kazhdan. Shape Representations and Algorithms for 3D Model Retrieval. PhD

thesis, Department of Computer Science, Princeton University, 2004.

[66] M. Kazhdan, B. Chazelle, D. Dobkin, A. Finkelstein, and T. Funkhouser. A

reflective symmetry descriptor. In European Conference on Computer Vision

(ECCV), pages 642–656, May 2002.

[67] M. Kazhdan, B. Chazelle, D. Dobkin, T. Funkhouser, and S. Rusinkiewicz. A

reflective symmetry descriptor for 3D models. Algorithmica, May 2002.

135

[68] M. Kazhdan and T. Funkhouser. Harmonic 3D shape matching. SIGGRAPH 2002

Visual Proceedings, Technical Sketch, July 2002.

[69] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical

harmonic representation of 3D shape descriptors. In Symposium on Geometry

Processing, June 2003.

[70] D. A. Kleim. Efficient geometry-based similarity search of 3D spatial databases. In

Proceedings of the 1999 ACM SIGMOD International Conference on Management

of Data, pages 419–430. ACM Press, 1999.

[71] I. Kolonias, D. Tzovaras, S. Malasiotis, and M.G.Strintzis. Fast content-based

search of VRML models based on shape descriptors. IEEE Transactions on

Multimedia, 2003. accepted for publication.

[72] M. Kortgen, G.-J. Park, M. Novotni, and R. Klein. 3D shape matching with 3D

shape contexts. In 7th Central European Seminar on Computer Graphics, April

2003.

[73] H.-P. Kriegel, S. Brecheisen, P. Kroger, M. Pfeifle, and M. Schubert. Using sets of

feature vectors for similarity search on voxelized CAD objects. In Proceedings of

the 2003 ACM SIGMOD international conference on Management of data, pages

587–598. ACM Press, 2003.

[74] P. Lachenbruch and M. Goldstein. Discriminant analysis. Biometrics, 35(1):69–

85, March 1979.

[75] J. Langford. Cover tree for nearest neighbor calculations, 2007.

http://hunch.net/˜jl/projects/cover_tree/cover_tree.html.

[76] Y. Lecun. The MNIST database of handwritten digits, 2003.

http://yann.lecun.com/exdb/mnist/.

[77] C. H. Lee, A. Varshney, and D. W. Jacobs. Mesh saliency. In ACM SIGGRAPH,

pages 659–666, New York, NY, USA, 2005. ACM Press.

[78] G. Leifman, S. Katz, A. Tal, and R. Meir. Signatures of 3D models for retrieval. In

4th Israel-Korea Bi-National Conference on Geometric Modeling and Computer

Graphics, pages 159–163, February 2003.

136

http://hunch.net/~jl/projects/cover_tree/cover_tree.html

[79] X. Li and I. Guskov. Multi-scale features for approximate alignment of point-based

surfaces. In Symposium on Geometry Processing, 2005.

[80] J. Löffler. Content-based retrieval of 3D models in distributed web databases

by visual shape information. In Proceedings of the International Conference on

Information Visualizaiton. IEEE Computer Society, 2000.

[81] S. Loncaric. A survey of shape analysis techniques. Pattern Recognition,

31(8):983–1001, 1998.

[82] D. Lowe. Object recognition from local scale-invariant features. In Proceedings

of the International Conference on Computer Vision, volume 2, pages 1150–1157,

1999.

[83] D. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, November 2004.

[84] G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition.

Wiley-Interscience, New York, 1992.

[85] R. G. Miller. Beyond ANOVA: Basics of Applied Statistics. Chapman & Hall/CRC,

New York, NY, 1997.

[86] P. Min. A 3DModel Search Engine. PhD thesis, Department of Computer Science,

Princeton University, 2004.

[87] P. Min, J. Halderman, M. Kazhdan, and T. Funkhouser. Early experiences with a

3D model search engine. In Proceeding of the Eighth International Conference on

3D web technology, pages 7–18, 2003.

[88] P. Min, M. Kazhdan, and T. Funkhouser. A comparison of text and shape matching

for retrieval of online 3D models. European Conference on Digital Libraries, Sept

2004.

[89] G. Mori, S. Belongie, and J. Malik. Shape contexts enable efficient retrieval

of similar shapes. In IEEE Computer Vision and Pattern Recognition (CVPR),

December 2001.

[90] National Taiwan University. 3D Model Retrieval System, 2003.

http://3d.csie.ntu.edu.tw/˜dynamic/cgi-bin/DatabaseII_v1.8.

137

http://3d.csie.ntu.edu.tw/~dynamic/cgi-bin/DatabaseII_v1.8

[91] D. Nehab and P. Shilane. Stratified point sampling of 3D models. In Proceedings

of the 1st Eurographics Symposium on Point-Based Graphics, pages 49–56, 2004.

[92] Network of Excellence AIM@SHAPE. SHREC, 2006.

http://www.aimatshape.net/event/SHREC/shrec06.

[93] Network of Excellence AIM@SHAPE. SHREC, 2007.

http://www.aimatshape.net/event/SHREC.

[94] M. Novotni, P. Degener, and R. Klein. Correspondence generation and matching

of 3D shape subparts. Technical Report CG-2005-2, Universität Bonn, June 2005.

[95] M. Novotni and R. Klein. A geometric approach to 3D object comparison. In

Proceedings of International Conference on Shape Modeling and Applications,

pages 167–175, 2001.

[96] R. Ohbuchi, T. Minamitani, and T. Takei. Shape-similarity search of 3D models

by using enhanced shape functions. In Theory and Practice of Computer Graphics

2003, pages 97–104, 2003.

[97] Okino. Polytrans, 2003. http://www.okino.com/conv/conv.htm.

[98] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3D models with

shape distributions. Shape Modeling International, pages 154–166, May 2001.

[99] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions. ACM

Transactions on Graphics, 21(4):807–832, 2002.

[100] S. Paek, C. Sable, V. Hatzivassiloglou, A. Jaimes, B. Schiffman, S. Chang, and

K. McKeown. Integration of visual and text based approaches for the content

labeling and classification of photographs. In ACM SIGIR’99 Workshop on

Multimedia Indexing and Retrieval, 1999.

[101] E. Paquet, A. Murching, T. Naveen, A. Tabatabai, and M. Rioux. Description

of shape information for 2D and 3D objects. In Signal Processing: Image

Communication, volume 16, pages 103–122, 2000.

[102] E. Paquet and M. Rioux. Nefertiti: a query by content software for three-

dimensional models databases management. Image and Vision Computing,

17(2):157–166, 1999. NRC 40243.

138

http://www.aimatshape.net/event/SHREC/shrec06
http://www.aimatshape.net/event/SHREC
http://www.okino.com/conv/conv.htm

[103] E. Paquet and M. Rioux. Influence of pose on 3D shape classification. In Digital

Human Modeling for Design and Engineering, pages 6–8, June 2000. NRC 43627.

[104] M. Pelillo, K. Siddiqi, and S. W. Zucker. Attributed tree matching and maximum

weight cliques. In Proc. Image Analysis and Processing, pages 1154–1159. IEEE,

1999.

[105] J. Pitman. Probability. Springer-Verlag, Berlin, Germany, 1993.

[106] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T. Funkhouser. A

planar-reflective symmetry transform for 3D shapes. Transactions on Graphics

(Proceedings of ACM SIGGRAPH 2006), 2006.

[107] Princeton Shape Retrieval and Analysis group. 3D model search engine, 2007.

http://shape.cs.princeton.edu/.

[108] G. Salton. The smart document retrieval project. In ACM SIGIR Conference on

Research and Development in Information Retrieval, pages 356–358, 1991.

[109] D. Saupe and D. V. Vranić. 3D model retrieval with spherical harmonics and

moments. In B. Radig and S. Florczyk, editors, DAGM 2001, pages 392–397,

September 2001.

[110] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of shapes by editing

shock graphs. In International Conference of Computer Vision (ICCV), pages 755–

762, 2001.

[111] Y. Shan, B. Matei, H. S. Sawhney, R. Kumar, D. Huber, and M. Hebert. Linear

model hashing and batch ransac for rapid and accurate object recognition. In IEEE

International Conference on Computer Vision and Pattern Recognition, 2004.

[112] P. Shilane and T. Funkhouser. Selecting distinctive 3D shape descriptors for

similarity retrieval. In Shape Modeling International, pages 108–117, June 2006.

[113] P. Shilane and T. Funkhouser. Distinctive regions of 3D surfaces. ACM

Transactions on Graphics, 26(2), June 2007.

[114] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton Shape

Benchmark. In Shape Modeling International, pages 167–178, June 2004.

139

http://shape.cs.princeton.edu/

[115] A. Shokoufandeh and S. J. Dickinson. A unified framework for indexing and

matching hierarchical shape structures. In Proceedings of the 4th International

Workshop on Visual Form, volume 4, pages 67–84. Springer-Verlag, 2001.

[116] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs

and shape matching. Int. Journal of Computer Vision, 35(1):13–31, 1999.

[117] SPEC. Standard Performance Evaluation Corporation, 2003.

http://www.specbench.org/benchmarks.html.

[118] SpharmonicKit 2.5. Fast spherical transforms: Spharmonickit, 1998.

http://www.cs.dartmouth.edu/˜geelong/sphere/.

[119] H. Sundar, D. Silver, N. Gagvani, and S. J. Dickinson. Skeleton based shape

matching and retrieval. In Shape Modeling International, pages 130–139, 2003.

[120] M. T. Suzuki. A web-based retrieval system for 3D polygonal models.

Joint 9th IFSA World Congress and 20th NAFIPS International Conference

(IFSA/NAFIPS2001), pages 2271–2276, July 2001.

[121] J. Tangelder and R. Veltkamp. A survey of content based 3D shape retrieval

methods. In Shape Modeling International, pages 145–156, June 2004.

[122] J. Tangelder and R. C. Veltkamp. Polyhedral model retrieval using weighted point

sets. In Shape Modeling International, May 2003.

[123] TREC. Text REtrieval Conference Data, 2003. http://trec.nist.gov/data.html.

[124] University of Minnesota. Object File Format, 1990. Geometry Center.

[125] C. K. van Rijsbergen. Information Retrieval. Butterworths, 1975.

[126] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint selection

using viewpoint entropy. In VMV ’01: Proceedings of the Vision Modeling and

Visualization Conference 2001, pages 273–280. Aka GmbH, 2001.

[127] R. C. Veltkamp. Shape matching: Similarity measures and algorithms. In Shape

Modelling International, pages 188–197, May 2001.

[128] Viewpoint Corporation, 2001. http://www.viewpoint.com.

[129] D. Vranić. Tools for 3D model retrieval, 2006.

http://merkur01.inf.uni-konstanz.de/3Dtools.

140

http://www.specbench.org/benchmarks.html
http://www.cs.dartmouth.edu/~geelong/sphere/
http://merkur01.inf.uni-konstanz.de/3Dtools

[130] D. V. Vranić. An improvement of rotation invariant 3D shape descriptor based

on functions on concentric spheres. In IEEE International Conference on Image

Processing (ICIP 2003), volume 3, pages 757–760, September 2003.

[131] D. V. Vranić and D. Saupe. 3D shape descriptor based on 3D Fourier transform.

In K. Fazekas, editor, EURASIP Conference on Digital Signal Processing

for Multimedia Communications and Services (ECMCS 2001), pages 271–274,

September 2001.

[132] S. Yamany and A. Farag. Surfacing signatures: An orientation independent free-

form surface representation scheme for the purpose of objects registration and

matching. IEEE Trans. Pattern Anal. Mach. Intell., 24:1105–1120, 2002.

[133] Y. Yang, J. Yang, H. Yang, and O. Gwun. Indexing VRML objects with triples. In

SPIE Proceedings, volume 4311, pages 236–243, 2001.

[134] H. yeung Shum, M. Hebert, and K. Ikeuchi. On 3D shape synthesis. In

Proceedings of IEEE Computer Vision and Pattern Recognition, pages 526–531,

1996.

[135] P. Yianilos. Data structures and algorithms for nearest neighbor search in general

metric space. In Proceedings of the Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), 1993.

[136] H. Zabrodky, S. Peleg, and D. Avnir. Continuous symmetry for shapes. 2nd Intl.

Workshop on Visual Form, 1994.

[137] H. Zabrodsky, S. Peleg, and D. Avnir. A measure of symmetry based on shape

similarity. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, CVPR,

pages 703–706, Los Alamitos, California, 15–18 1992. IEEE Press.

[138] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as a continuous feature. IEEE

PAMI, 17(12):1154–1166, December 1995.

[139] T. Zaharia and F. Preteux. 3D shape-based retrieval within the MPEG-7

framework. In SPIE Conf. on Nonlinear Image Processing and Pattern Analysis

XII, volume 4304, pages 133–145, January 2001.

[140] T. Zaharia and F. Preteux. Shape-based retrieval of 3D mesh models. In IEEE

International Conference on Multimedia and Expo (ICME ‘2002), August 2002.

141

[141] C. Zhang and T. Chen. Efficient feature extraction for 2D/3D objects in mesh

representation. In ICIP, 2001.

[142] C. Zhang and T. Chen. Indexing and retrieval of 3D models aided by active

learning. In ACM Multimedia, 2001.

142

	Abstract
	Introduction
	Background and Related Work
	Global Shape Descriptors
	Local Shape Descriptors
	Selection of Local Shape Descriptors
	Research Challenges

	Introducing Distinction
	Examples

	Computing Distinction
	System Overview
	Constructing Regions
	Describing Shapes
	Measuring Distinction
	Mapping to Vertices

	Results
	Effect of Database
	Effect of Scale
	Alternatives to Distinction

	Conclusion

	Matching with Distinction
	System Execution
	Computing Shape Descriptors
	Selecting Distinctive Features
	Creating Pairwise Feature Correspondences
	Searching for the Optimal Multi-Feature Match

	Results
	Comparison to Previous Methods
	Evaluation of Algorithmic Contributions
	Investigation of Parameter Settings
	Alternative Selection Techniques

	Conclusion

	Updating Distinction
	Method
	Retrieval Measures for Defining Distinction
	Nearest Neighbors with a Cover Tree Index

	Results
	Alternative Retrieval Metrics
	Time for K-Nearest Neighbors
	Approximate Distinction versus Calculation Time
	Updating Distinction when Inserting Models

	Conclusion

	Predicting Distinction
	Overview of the Approach
	Mapping from Descriptors to Likelihood
	Mapping from Likelihood to Distinction
	Selecting Distinctive Descriptors

	Results
	Shape Database
	Mapping Functions
	Retrieval Results

	Conclusion

	Applications of Distinction
	Mesh Simplification
	Icon Generation
	Conclusion

	Princeton Shape Benchmark
	Related Work
	Overview
	Acquisition
	Classification
	Base Classification
	Training and Test Sets
	Alternative Classifications

	Annotation
	Evaluation
	Results
	Shape Descriptors
	Base Classification Results
	Multi-Classification Results
	Query List Results
	Comparison with Other Databases

	Conclusion

	Conclusion and Future Work
	Bibliography

