Princeton > CS Dept > PIXL > Graphics > Publications Local Access 

Shape Distributions
ACM Transactions on Graphics, October 2002

Robert Osada, Thomas Funkhouser, Bernard Chazelle,
David Dobkin


Abstract

Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer graphics, computer vision, molecular biology, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, while still discriminating between similar and dissimilar shapes.In this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence, or model fitting.We find that the dissimilarities between sampled distributions of simple shape functions (e.g., the distance between two random points on a surface) provide a robust method for discriminating between classes of objects (e.g., cars versus airplanes) in a moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations, simplifications, and model degeneracies. They can be evaluated quickly, and thus the proposed method could be applied as a pre-classifier in a complete shape-based retrieval or analysis system concerned with finding similar whole objects. The paper describes our early experiences using shape distributions for object classification and for interactive web-based retrieval of 3D models.

Citation (BibTeX)

Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Shape Distributions. ACM Transactions on Graphics 21(4):807-832, October 2002.

Paper
  PDF File