SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images
ACM Transactions on Graphics (Proc. SIGGRAPH Asia), December 2020
Abstract
We study the problem of symmetry detection of 3D shapes from single-view
RGB-D images, where severely missing data renders geometric detection
approach infeasible. We propose an end-to-end deep neural network which
is able to predict both reflectional and rotational symmetries of 3D objects
present in the input RGB-D image. Directly training a deep model for symmetry prediction, however, can quickly run into the issue of overfitting. We
adopt a multi-task learning approach. Aside from symmetry axis prediction, our network is also trained to predict symmetry correspondences. In
particular, given the 3D points present in the RGB-D image, our network
outputs for each 3D point its symmetric counterpart corresponding to a
specific predicted symmetry. In addition, our network is able to detect for
a given shape multiple symmetries of different types. We also contribute a
benchmark of 3D symmetry detection based on single-view RGB-D images.
Extensive evaluation on the benchmark demonstrates the strong generalization ability of our method, in terms of high accuracy of both symmetry
axis prediction and counterpart estimation. In particular, our method is
robust in handling unseen object instances with large variation in shape,
multi-symmetry composition, as well as novel object categories.
Paper
Supplemental Material
Citation
Yifei Shi, Junwen Huang, Hongjia Zhang, Xin Xu, Szymon Rusinkiewicz, and Kai Xu.
"SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images."
ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 39(6), December 2020.
BibTeX
@article{Shi:2020:SLT, author = "Yifei Shi and Junwen Huang and Hongjia Zhang and Xin Xu and Szymon Rusinkiewicz and Kai Xu", title = "{SymmetryNet}: Learning to Predict Reflectional and Rotational Symmetries of {3D} Shapes from Single-View {RGB-D} Images", journal = "ACM Transactions on Graphics (Proc. SIGGRAPH Asia)", year = "2020", month = dec, volume = "39", number = "6" }